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Abstract

Recent advances in transfer learning have im-
proved the performance of virtual assistants
considerably. Nevertheless, creating sophisti-
cated voice-enabled applications for new do-
mains remains a challenge, and meager train-
ing data is often a key bottleneck. Accord-
ingly, unsupervised learning and SSL (semi-
supervised learning) techniques continue to be
of vital importance. While a number of such
methods have been explored previously in iso-
lation, in this paper we investigate the synergis-
tic use of a number of weakly supervised tech-
niques with a view to improving NLU (Natu-
ral Language Understanding) accuracy in low-
resource settings. We explore three different
approaches incorporating anonymized, unla-
beled and automatically transcribed user utter-
ances into the training process, two focused on
data augmentation via SSL and another one fo-
cused on unsupervised and transfer learning.
We show promising results, obtaining gains
that range from 4.73% to 7.65% relative im-
provements on semantic error rate for each in-
dividual approach. Moreover, the combination
of all three methods together yields a relative
improvement of 11.77% over our current base-
line model. Our methods are applicable to any
new domain with minimal training data, and
can be deployed over time into a cycle of con-
tinual learning.

1 Introduction

Virtual assistants are becoming ubiquitous, their ex-
pansion fueled by third-party developers who build
voice-enabled applications for an increasingly di-
verse array of domains. However, oftentimes these
independent developers don’t have the wherewithal
to produce sufficient amounts of labeled data, and
consequently their applications suffer from poor
NLU performance. Large pre-trained language
models have mitigated but not eliminated the need
for domain-specific training data, and therefore un-
supervised and SSL techniques continue to form

an important direction of work in the field. While
a number of such methods have been previously
tried in isolation, in this paper we explore the syn-
ergistic use of a number of SSL techniques with a
view to improving NLU accuracy in low resource
settings, specifically for third-party (3P) applica-
tions. NLU in our setting is understood as the joint
task of Intent Classification (IC) and Named Entity
Recognition (NER).

Alexa is an AI virtual assistant developed by
Amazon. By default, Alexa is enabled to work
across many Amazon-built domains, including
news, music, calendar, weather, etc. But Alexa
also includes a third-party skill toolkit, which en-
ables external developers to implement new voice-
enabled functionality in the form of external skills,
such as quiz and trivia games, food-ordering skills,
voice interfaces to a host of devices ranging from
vacuum cleaners to automobiles, and so on. Devel-
opers can build skills by creating skill definitions,
consisting of carrier phrases annotated with intent
labels and slot labels (a.k.a named entities). For
example, for a pizza ordering skill, a developer
could provide the following carrier phrase: I would
like a Size pizza with Topping and Topping, with
an intent such as OrderPizza. The values of the
Size and Topping slots are specified in the form of
catalogs:

Catalog(Size) = {large,medium, . . .}
Catalog(Topping) = {bacon, peppers, . . .}

A full utterance can be realized from the carrier
phrase and the slot catalogs, e.g., I would like a
medium pizza with peppers and bacon. Every token
in this utterance would be labeled with an Other
slot, except for the tokens corresponding to the
slots in the carrier phrase, which would be labeled
as Size, Topping and Topping respectively.

In most cases, skill definitions only contain a few
carrier phrases per intent, resulting in very small
training datasets that lack linguistic diversity and
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do not always resemble user queries. The main goal
of this paper is to improve NLU model performance
by incorporating unlabeled, anonymized and auto-
matically transcribed user utterances from skills
into the training pipeline, without human interven-
tion or annotators. We explored three different
methods: 1) Data augmentation via maximal FST-
matching; 2) Data augmentation via tri-training
ensembles; and 3) Injecting auto-encoder sentence
embeddings into our baseline DNN (Deep Neural
Network) model architecture.

The first two techniques automatically obtain
labels for live user utterances, which are then used
to augment the baseline training data. The third
technique performs unsupervised pre-training of an
auto-encoder (AE) on user traffic, and this AE is
then used to inject sentence embeddings into our
models as additional signals. The NLU task we
focus on in this paper is the joint task of Intent
Classification (IC) and Named Entity Recognition
(NER), also referred to as Slot Labeling.

The rest of this paper is organized as follows:
Section 2 gives an overview of data augmenta-
tion for NLU skills; Section 3 introduces the three
methods; Section 4 details our experimental design;
Section 5 summarizes the results for all skills, in-
cluding cumulative results for the three methods.
Finally, Section 6 presents our conclusions.

2 Related Work

Learning strategies focused on addressing the
scarcity of labeled data within a specific domain
can be grouped into two approaches: one focused
on leveraging models and resources from other do-
mains for which there is a wealth of resources; and
approaches that aim to leverage unannotated data
for the target domain.

In the first group, Transfer Learning strategies
(McCann et al., 2017; Peters et al., 2018) focus on
pre-training unsupervised models on large amounts
of unlabeled data and then fine-tuning that model
on a small quantity of labeled data. The most re-
cent successful example of transfer learning are
BERT models (Devlin et al., 2019), where a large
transformer language model is pre-trained on either
the task of masked language modeling or next sen-
tence prediction, and whose encoder can be later
fine-tuned as a feature extractor on other NLU tasks
(Peshterliev et al., 2019).

In the second group, Active Learning algo-
rithms use individual classifiers or ensembles of

classifiers to select data points for human annota-
tion based on different criteria: Least-confidence
for examples that are assigned low confidence
scores by the classifiers (Lewis and Catlett, 1994),
query-by-committee for examples that are assigned
a diverse set of labels by the individual classi-
fiers in the ensemble (Freund et al., 1997), or,
more recently, a Majority-CRF that relies on ma-
jority voting from an ensemble of binary classi-
fiers (Peshterliev et al., 2019) to select data for
new NLU domains. Similarly, Semi-Supervised
Learning (SSL) (Chapelle et al., 2009) algorithms
aim to use models trained on small amounts of
annotated data to assign soft labels to unseen exam-
ples which can later be incorporated into the train-
ing set. Self-training (Scudder, 1965; Yarowsky,
1995; Lee, 2013) does this by using the same classi-
fier or a teacher-student pair of classifiers to select
and annotate data, whereas tri-training (Zhou and
Li, 2005) creates an ensemble of three diverse clas-
sifiers that augments unlabeled datasets during an
iterative process based on classifier agreement.

In this paper, we use (a) transfer learning to
pre-train an auto-encoder that is later used to in-
ject sentence embeddings into our IC-NER models
(Section 3.2) and (b) SSL to augment data with
IC-NER annotations obtained by maximal FST-
matching and tri-training ensembles (Sections 3.1
and 3.3 respectively). On the topic of data augmen-
tation via partial parses, similar to our maximal
FST-matching approach, (Kim et al., 2015) pro-
poses to extract slot tagging annotations from web
logs using a weakly supervised approach based on
Conditional Random Fields; and in (Augenstein
et al., 2016) the authors use regular expressions to
augment training data for the task of Stance Detec-
tion. More recently, (Karamanolakis et al., 2021)
has proposed a semi-supervised framework to lever-
age unlabelled data and weak classification rules
for improved text classification.

3 Methods

3.1 Maximal FST-Matching

The carrier phrases given by a developer are ar-
ranged into a finite-state transducer (FST), which
can take an arbitrary utterance u and either (a) ac-
cept it, if u is an instance of a carrier phrase, while
emitting the corresponding slot labeling and intent
as its output; or (b) reject it, if u is not an exact
match for any of the given carrier phrases. This
FST is then sampled to generate the training data
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for the DNN. Depending on the number and lin-
guistic diversity of the carrier phrases, the resulting
training set can range from complete enough for a
good NLU model (given smart use of transfer learn-
ing and model adaptation techniques) to severely
underspecified.

With the SSL method described in this section,
which we call maximal FST matching, we aim to
augment the training set with automatically tran-
scribed user utterances that are close in form and
meaning to the ones provided by the skill devel-
opers, and which inject greater language diversity
into the training. Specifically, while only a mi-
nority of user utterances are perfect FST matches
(i.e., completely match developer-provided carrier
phrases), many more of them are partial or imper-
fect matches. The intuition here is to compute the
maximal part of a user utterance that matches a
carrier phrase and then superimpose the semantics
(intent and NER labeling) of that matched carrier
phrase to the entire utterance. To take a simple
example, the utterance Hi, I would like a large
pizza with peppers and mushrooms please does not
match the earlier carrier phrase I would like a Size
pizza with Topping and Topping, due to the initial
Hi and the trailing please. However, it is a partial
match, since there is an internal segment of the
utterance that is a perfect instance of the carrier
phrase. Thus, the entire utterance can receive the
intent and NER labeling of the internal segment
(with tokens outside of the matching segment re-
ceiving the label Other) and become part of the
training data.

We use a greedy approach to extract maximal
internal FST matches from a user utterance: we
first run the full span of the utterance through the
FST, then every sub-utterance of length n− 1, and
so on down to length 1. The FST matching is
stopped as soon as a match is found, at which point
the intent and slot labels output from the FST are
transferred to the full utterance as described above.

For each extracted match, we compute its span
ratio, which is the fraction of the length of the FST-
matched sub-utterance over the length of the full
utterance. We treat this ratio as a tunable hyper-
parameter. In Section 5.1 we perform data augmen-
tation by only keeping maximally FST-matched ut-
terances whose span ratio exceeds a certain thresh-
old, both globally and on a skill-specific basis.

Maximal FST-matching can introduce misla-
beled utterances in several ways: a) it can ignore

important semantic information if this is outside of
the scope of the FST match (e.g. "(Do not) include
pepperoni in the pizza."), which can potentially
change the intent of the utterance (in our example,
from ExcludeTopping to AddTopping); and b) it
can miss slot entities that fall out of the scope of
the match (e.g. "Add pepperoni (and green pep-
pers)"). Both risks can be mitigated by filtering out
utterances with low match span ratios.

This method has important advantages. It is easy
to productize, since changes made to the NLU skill
and its carrier phrases can be accommodated by re-
running the new FST on the already matched FST
utterances, which is relatively inexpensive; and the
resulting augmented training set will better reflect
the true distribution of live user traffic.

3.2 Sentence Embeddings via Seq2Seq
Auto-Encoder

Our baseline NLU model consists of a shared com-
ponent that is pre-trained on the MLM task on
Alexa traffic and other large NLP corpora, and
a specific component that jointly models IC and
NER, trained from scratch for every skill sepa-
rately. We add to this architecture a component that
is pre-trained on large amounts of automatically-
transcribed traffic and optionally fine-tuned.

In particular, we experiment with seq-2-seq auto-
encoder (s2s-AE) architectures. We pre-train sev-
eral s2s-AE models with different features and data
sources to obtain an encoder, and we plug the en-
coder’s output into the baseline NLU model as a
new component. The impact of this new feature
on NLU performance (measured on a test set of 86
skills) is detailed in Section 5.2.

3.3 Tri-training
In an effort to obtain more realistic training data,
we use SSL to compute high-quality labels for
automatically-transcribed live user traffic. Specif-
ically, we build a series of tri-training ensembles
that we use to annotate live utterances. We show
that by adding this newly annotated data to our
regular training data, our baseline NLU models
attain very significant improvements on SemER
(Semantic Error Rate).

Tri-training (Zhou and Li, 2005) is a SSL tech-
nique that relies on three independently trained
classifiers. It fine-tunes the three models by pulling
examples from a pool of unlabeled data. On each
iteration of the algorithm, if a pair of classifiers
agree on an unlabeled example, that example is
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Algorithm 1 Generalized Tri-Training
1: L = grammar utterances
2: U = live utterances
3: Train M1, M2 on L
4: while not criterion do
5: U12 = Utts in U that M1 & M2 agree on
6: M3 = Train(L + U12)
7: U13 = Utts in U that M1 & M3 agree on.
8: M2 = Train(L + U13)
9: U23 = Utts in U that M2 & M3 agree on.

10: M1 = Train(L + U23)
11: end while
12: Obtain labelled examples from U for examples

that M1, M2 and M3 agree on.

then labeled and added to the training set of the
third classifier. Algorithm 1 shows an implemen-
tation of the Generalized Tri-Training algorithm
(Søgaard and Rishøj, 2010), that we also expanded
to an arbitrary number of a classifiers.

Section 5.3 discusses our tri-training experi-
ments.

4 Experiment Design

We compare our methods against our production
3P DNN model, which is depicted in Figure 1. It
consists of a pre-trained shared component and a
skill-specific component. The shared component
is pre-trained on Alexa unsupervised traffic and
external NLP corpora and computes BPE embed-
dings. The specific component consists of a large
Bi-LSTM encoder whose input is the shared embed-
dings and a small BPE embedding followed by a
short Bi-LSTM encoder. The IC layer output takes
the summary vectors from both encoders and out-
puts an IC prediction. The NER layer takes as input
a sequence of vectors, where each vector is com-
posed of the concatenation of the two encoder rep-
resentations and the gazetteer feature of each token.
Gazetteer features are mappings from sequences of
strings to Named Entities, e.g., the sequence The
Beatles would be mapped to Artist_Name. This
model is referred to as Base in what follows.

This study was carried out on 86 English skills
from the top 100 Alexa skills with the highest
amount of user traffic. Baseline training datasets
for 3P skills consist of ten thousand carrier phrases
sampled with repetition. For the 26 skills that in-
clude an out-of-domain (OOD) intent in their skill
definition, we sample the training sets to contain

Figure 1: The Baseline NLU model.

50% of OOD intent examples. For the 86 skills in-
cluded in this study, the average number of unique
carrier phrases in a baseline dataset for a skill is
3,302. Our test sets for every skill are comprised of
live user traffic annotated in-house with Intent and
Slot labels. On average, the number of utterances
in a skill test set is 816, with 425 of those being
unique.

5 Results

We use two different metrics, SemER (Semantic
Error Rate) and IRER (Interpretation Recognition
Error Rate) (Su et al., 2018). SemER combines
intent and slot classification accuracy into a single
score. It computes a modified edit distance that
takes into account the number of substitutions (S),
incorrect predictions (I), and deletions (D) in the
sequence of slots, and the intent prediction. For a
sequence of L tokens, SemER is defined as (S + I +
D) / (L + 1). The IRER of a single utterance is 1 if
all the slots and intent are correctly recognized, and
0 otherwise. The IRER of a dataset is the fraction
of utterances whose IRER is 1.

5.1 Data Augmentation via Maximal
FST-Matching

We collected a dataset of live automatically-
transcribed user traffic spanning four months across
86 skills, and split it in two: we use one set for se-
lecting a Maximal Span Ratio (MSR) threshold,
and the second one for testing the MSR threshold
selection (and vice versa). All live user traffic used
in this study was de-identified. When using a global
threshold across all 86 skills, the best global thresh-
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old is 0.8. Under this scheme, a newly labeled
live utterance is retained only if its maximal FST
match spans at least 80% of the utterance. Using
this policy, the relative improvement on SEMER
with respect to our baseline DNN model (i.e., the
SEMER improvement that we obtain by adding
those utterances to our training data) is 1.14%.

When performing skill-specific thresholding (by
using part of the skill’s test data as a dev set for
selecting a threshold, and the rest of the test set
to compute metrics), we obtained a 10.14% rela-
tive improvement on SEMER and 6.2% improve-
ment on IRER with respect to our baseline DNN.
Another set of experiments where MSR threshold
selection was performed on two months of data
and tested on five months of data obtained relative
improvements on SEMER and IRER of 5.01% and
1.44% respectively.

5.2 Sentence Embedding Injection

We collected automatically transcribed live traffic
from the last six months of 2019. After deduping
the utterances, we split them into an unsupervised
training set of 60K hours of speech, and validation
and test sets of 1.6K hours each.

We trained and evaluated s2s-AE models with
different architectural features, as in LSTM and
Transformer layers for their encoder or decoder,
encoder and decoder depth (2 or 3 hidden layers),
number of hidden units per layer (256, 512, or
1,024 units per layer), number of epochs for train-
ing, vocabulary token types (words or BPE), vo-
cabulary size (20k or 50K) and size of training set
(16.6K, 33K and 60K hours of transcribed speech).
The best performing model, measured both on vali-
dation perplexity and on SEMER on an annotated
test set that spanned September to December 2019,
was a s2s-AE model with two transformer layers
on both encoder and decoder, 512 units per layer,
trained on 60K hours of automatically transcribed
speech using a BPE vocabulary of 50k tokens.

The s2s-AE is hooked into our baseline NLU
model by discarding the decoder and passing the la-
tent code (sentence embedding) into the Intent Clas-
sification (IC) block; and by passing the sequence
of hidden states into the Named Entity Recognition
(NER) block. A block diagram for the resulting
NLU model can be seen in Figure 2. Injecting
the s2s-AE into the baseline model without any
skill-specific fine-tuning yields SEMER relative
improvements of 1.53% on our seven month anno-

Figure 2: A Baseline 3P NLU model with a Sentence
Embedding from the s2q-AE.

tated test set. Using an additional annotated test
set that spanned September to December 2019, and
by trying several learning rate multipliers (LRMs)
for our seq2seq encoder, we found the overall best
LRM was 0.0 (no fine-tuning), followed by 0.1
(which caused a -0.31% relative regression on SE-
MER). This indicates that for fine-tuning to work,
it needs to be done in a skill-specific fashion.

Following the same steps for skill-specific fine-
tuning as for maximal FST-matching and for the
MSR threshold parameter, we use one annotated
dataset from September to December 2019 for
LRM selection and an annotated test set that spans
January to July 2020 for evaluation. We choose
the best LRM for each of the 86 skills on the first
dataset, obtain SEMER values on the second one,
and average them, observing a 4.73% relative im-
provement.

5.3 Data Augmentation via Tri-training
Ensembles

We start by training a tri-training ensemble of three
identical NLU models with different seeds to di-
versify the initial training/validation sets and the
training algorithm. The tri-training stopping crite-
rion was set to either reaching an average SEMER
on the validation sets of 0.0 or run for a maximum
of three iterations. Upon finishing, we obtained
live utterances labeled with high-precision labels.
These are utterances that all three models had com-
plete agreement on IC and NER annotations (not
majority vote agreement). On average, each skill
had their training set size increased by 138.54%,
ranging from 7.11% to 1089.57%.



293

We trained NLU models on new training sets
formed by the baseline 10k training utterances and
up to another 10k utterances from the live utter-
ances with high-precision labels. The average train-
ing set went up to 16K utterances per skill and the
average SEMER was improved with a 2.56% rel-
ative improvement. Without capping the amount
of live data added to the training set, the SEMER
is further improved with a 2.91% relative improve-
ment on SEMER, and a 4.45% relative improve-
ment on IRER. Despite the good initial results, 28
skills suffered SEMER degradation.

The second ensemble we tried consists of a base-
line NLU model, the NLU model with an additional
encoder pre-trained as an auto-encoder model on
live utterances from Section 5.2, and an NLU
BERT-based model. We use the same stopping
criterion. By the end of tri-training, we obtained
high-quality labels that increased the domain train-
ing sets for an average of 99.15% per skill.

Again, we trained NLU models without a maxi-
mum training size, with a validation set of 10% of
these utterances. This time we obtained a relative
improvement of 7.65% on SEMER. The IRER rel-
ative improvement is 9.67%. A total of 18 skills
suffered SEMER degradation with this ensemble.

We used our trained tri-ensemble to infer high-
precision labels on the test set and measure how
accurate the high-precision labels really are. Using
a setting where an utterance is only retrieved with
complete agreement in the ensemble, the average
coverage was 63.88%.

Tri-training theory assumes that the ensemble
classifiers are independently trained. Here we ex-
plore the addition of an altogether different type
of classifier to our collections of neural classifiers,
namely SVMs for IC and NER. Both use BPE word
embeddings as features. For IC, we extract the BPE
embeddings and concatenate the max, min, sum
and mean vector of the embedding sequence for a
total of 1024 dimensions. For NER, we map ev-
ery word to the sum of its BPE embeddings. Both
models use linear kernels, since the size of our
datasets and the need to perform grid search make
non-linear kernels impractical.

We built a 4-classifier ensemble by adding the
SVM classifiers to the previous ensemble com-
posed of a NLU model, a NLU model with an
additional encoder pre-trained as an auto-encoder
model on live utterances, and an NLU BERT-based
model. In this occasion the addition of the SVM

Model SEMER ∆% IRER ∆%
+M-FST 5.01 1.44
+Tri 7.65 9.67
+M-FST&Tri 10.54 11.49

Table 1: NLU Performance for Base Model with three
Data Augmentation options. Relative improvement val-
ues are computed with respect to the Base Model with-
out data augmentation.

model causes the test coverage ratio to be greatly re-
duced to 55%.Furthermore, the NLU DNN model
trained on the additional data labeled by this ensem-
ble achieves 7.27% and 8.32% relative improve-
ments on SEMER and IRER, which is small reduc-
tion from the previous best ensemble.

5.4 Cumulative Experiments
In this section we present some cumulative re-
sults obtained by applying combinations of the
three techniques. We start by analyzing the per-
formance of our baseline NLU model (Base) by
itself; b) after adding fine-tuned maximally FST-
matched data (FT-FST); c) after adding SSL data
from tri-training (Tri); and d) after adding both
FST-matched data and tri-training data (Table 1).
Fine-tuned FST-matched data yields relative im-
provements of 5.01% and 1.44% on SEMER and
IRER respectively, tri-training data yields 7.65%
and 9.67% relative improvements on SEMER and
IRER, and both combined deliver 10.54% and
11.49% relative improvements.

Next, we analyze the performance of the NLU
model that incorporates a sentence embedding from
an auto-encoder fine-tuned specifically for every
skill (Base+SE). By adding fine-tuned maximally
FST-matched data, SEMER and IRER improve by
8.23% and 7.73%, respectively. Adding tri-training
data yields 8.33% and 10.81% relative improve-
ments on SEMER and IRER, respectively, while
both combined deliver relative improvements of
11.77% and 12.94% on SEMER and IRER. All
these relative improvements are with respect to the
baseline NLU model (without data augmentation).
See Table 2.

6 Conclusions

We presented three different approaches to improv-
ing NLU performance for skills that have limited
amounts of annotated data. The two data augmen-
tation approaches, based on maximal fst-matching
and tri-training ensembles, yield considerable rel-
ative improvements of 5.01 and 7.65%. A third
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Model SEMER ∆% IRER ∆%
Base+SE 4.73 4.51
+M-FST 8.23 7.73
+Tri 8.33 10.81
+M-FST&Tri 11.77 12.94

Table 2: NLU Performance for Base+SE Model with
three Data Augmentation options. Relative improve-
ment values are computed with respect to the Base
Model performance.

approach, based on injecting sentence embeddings
obtained from an auto-encoder pre-trained on live
traffic, gave 4.73%. The combination of the three
techniques attained a total relative improvement of
11.77%. Overall, adding these three methods into
our pipeline improves NLU performance, lever-
ages automatically transcribed user traffic for all
skills, lessens the need for developers to provide
annotated data, and eliminates the need for internal
human-based annotations for training better mod-
els.
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