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Abstract

Named Entity Recognition (NER) and Entity
Linking (EL) play an essential role in voice as-
sistant interaction, but are challenging due to
the special difficulties associated with spoken
user queries. In this paper, we propose a novel
architecture that jointly solves the NER and EL
tasks by combining them in a joint reranking
module. We show that our proposed frame-
work improves NER accuracy by up to 3.13%
and EL accuracy by up to 3.6% in F1 score.
The features used also lead to better accura-
cies in other natural language understanding
tasks, such as domain classification and seman-
tic parsing.

1 Introduction

Understanding named entities correctly when inter-
acting with virtual assistants (e.g. “Call Jon”, “Play
Adele hello”, “Score for Warrior Kings game”)
is crucial for a satisfying user experience. How-
ever, NER and EL methods that work well on
written text often perform poorly in such appli-
cations: utterances are relatively short (with just 5
tokens, on average), so there is not much context to
help disambiguate; speech recognizers make errors
(“Play Bohemian raspberry” for “Play Bohemian
Rhapsody"); users also make mistakes (“Cristiano
Nando” for “Cristiano Ronaldo”); non-canonical
forms of names are frequent (“Shaq” for “Shaquille
O’Neal”); and users often mention new entities un-
known to the system.

In order to address these issues we propose a
novel Named Entity Understanding (NEU) system
that combines and optimizes NER and EL for noisy
spoken natural language utterances. We pass multi-
ple NER hypotheses to EL for reranking, enabling
NER to benefit from EL by including information
from the knowledge base (KB).
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We also design a retrieval engine tuned for spo-
ken utterances for retrieving candidates from the
KB. The retrieval engine, along with other tech-
niques devised to address fuzzy entity mentions,
lets the EL model be more robust to partial men-
tions, variation in named entities, use of aliases, as
well as human and speech transcription errors.

Finally, we demonstrate that our framework can
also empower other natural language understanding
tasks, such as domain classification (a sentence
classification task) and semantic parsing.

2 Related Work

There have been a few attempts to explore NER
on the output of a speech pipeline (Ghannay et al.,
2018; Abujabal and Gaspers, 2018; Coucke et al.,
2018). Among these, our NER model is closest
to Abujabal and Gaspers (2018) and Coucke et al.
(2018); however, unlike the former, we use a richer
set of features rather than phonemes as input, and
unlike the latter, we are able to use a deep model
because of the large volume of data available.

EL has been well explored in the context of clean
(Martins et al., 2019; Kolitsas et al., 2018; Luo
et al., 2015) and noisy text inputs (Eshel et al.,
2017; Guo et al., 2013; Liu et al., 2013), but as with
NER, there have been only a few efforts to explore
EL in the context of transcribed speech (Benton and
Dredze, 2015; Gao et al., 2017), although crucially,
both these works assume gold standard NER and
focus purely on the EL component.

Traditionally, a pipelined architecture of NER
followed by EL has been used to address the en-
tity linking task (Lin et al., 2012; Derczynski et al.,
2015; Bontcheva et al., 2017; Bowden et al., 2018).
Since these approaches rely only on the best NER
hypothesis, errors from NER propagate to the EL
step. To alleviate this, joint models have been pro-
posed: Sil and Yates (2013) proposed an NER+EL
model which re-ranks candidate mentions and en-
tity links produced by their base model. Our work
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differs in that we use a high precision NER system,
while they use a large number of heuristically ob-
tained Noun Phrase (NP) chunks and word n-grams
as input to the EL stage. Luo et al. (2015) jointly
train an NER and EL system using a probabilis-
tic graphical model. However, these systems are
trained and tested on clean text and do not address
the noise problems we are concerned with.

3 Architecture Design

For a given utterance, we first detect and label en-
tities using the NER model and generate the top-l
candidate hypotheses using beam search. The EL
model consists of two stages: (i) candidate retrieval
and (ii) joint linking and re-ranking. In the retrieval
stage, for each NER hypothesis, we construct a
structured search query and retrieve the top-c can-
didates from the retrieval engine. In the ranking
stage, we use a neural network to rank these candi-
date entity links within each NER hypothesis while
simultaneously using rich signals (entity popularity,
similarity between entity embeddings, the relation
across multiple entities in one utterance, etc.) from
these entity links as additional features to re-rank
the NER hypotheses from the previous step, thus
jointly addressing both the NER and EL tasks.

3.1 NER

For the NER task, following Lample et al. (2016)
we use a combination of character and word level
features. They are extracted by a bi-directional
LSTM (biLSTM) (Hochreiter and Schmidhuber,
1997), and then concatenated with pre-trained
GloVe word embeddings 1 (Pennington et al., 2014)
to pass through another biLSTM and fed into a CRF
model to produce the final label prediction based on
a score s(ỹi,x; θ) that jointly optimizes the prob-
ability of labels for the tokens and the transition
score for the entire sequence ỹi = (y1, . . . , yT )
given the input x:

s(ỹi,x; θ) =

T∑
t=0

(ψt,θ(yt) + φt,t+1(yt, yt+1)) ,

where ψt,θ is the biLSTM prediction score from the
label yt of the tth token, and φ(j, k) is the transition
score from label j to label k.

1We also tried more recent contextual embeddings such
as BERT (Devlin et al., 2019), and empirically observed very
little difference in performance when compared to GloVe. So
we adopt GloVE, which is substantially more efficient in terms
of inference time required.

During training, we maximize the probability of
the correct label sequence pseq, which is defined as

pseq(ỹi,x; θ) =
exp(s(ỹi,x; θ))∑

ỹj∈S exp (s(ỹj,x; θ))
,

where ỹi is the label sequence for hypothesis i, and
S is the set of all possible label sequences.

During inference, we generate up to 5 NER alter-
natives for each utterance using beam search. We
also calculate a mention level confidence pmen for
each entity mention mk. pmen is computed by ag-
gregating the sequence level confidence for all the
prediction sequences that share the same mention
sub-path mk:

pmen(mk,x; θ) =

∑
ỹi∈Smi

exp(s(ỹi,x; θ))∑
ỹj∈S exp(s(ỹj,x; θ))

,

where Smi is the set of prediction sequences that
all have mk as the prediction for the correspond-
ing tokens. Both pseq and pmen are computed by
dynamic programming, and serve as informative
features in the EL model.

3.2 Joint Linking and Re-ranking
The entity linking system follows the NER model
and consists of two steps: candidate retrieval, and
joint linking and re-ranking.

To build the candidate retrieval engine, we first
index the list of entities in our knowledge base,
which can be updated daily to capture new entities
and change of their popularity. To construct the
index, we iterate through the flattened list of enti-
ties and construct token-level unigram, bigram and
trigram terms from the surface form of each entity.
Apart from using the original entity names, we also
use common aliases, harvested from usage logs, for
popular entities (e.g. LOTR as an alias for “Lord
of the Rings”) to make the retrieval engine more
robust to commonly occurring variations. Next, we
create an inverted index which maps the unique
list of n-gram terms to the list of entities that these
n-grams are part of, also known as posting lists.
Further, to capture cross-entity relationships in the
knowledge base (such as relationships between an
artist and a song or two sports teams belonging to
the same league), we assign a pointer2 for each

2Each entity in our knowledge base consists of metadata
(for example, a song entry in our knowledge base would con-
tain metadata such as the music artist, album, year the song
was released in etc.) that we leverage to automatically con-
struct these relationship pointers.
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entity in the knowledge base to its related entities
and this relational information is leveraged by the
EL model for entity disambiguation (described in
5.2). We then compute the tf-idf score for all the
n-gram terms present in the entities and store them
in the inverted index.

For each hypothesis predicted by the NER model
we query the retrieval engine with the correspond-
ing text. We first send the query through a high-
precision seq-to-seq correction model (Schmaltz
et al., 2017; Ge et al., 2019) trained using common
errors observed in usage. Next, we construct n-
gram features from the corrected query in a similar
way to the indexing phase and retrieve all entities
matching these n-gram features in our inverted in-
dex. Additionally, we use synonyms derived from
usage for each term in the query to expand our
search criteria: for example, our synonym list for
“Friend" contains “Friends", which matches the TV
show name which would have been missed if only
the original term was used.

For each entity retrieved, we get the tf-idf score
for the terms present in the query chunk from the in-
verted index. We then aggregate the tf-idf scores of
all the terms present in the query for this entity and
linearly combine this aggregate score with other
attributes such as popularity (i.e. prior usage prob-
ability) of the entity to generate a final score for all
retrieved entity candidates for this query. Finally,
we perform an efficient sort across all the entity
candidates based on this score and return a top-c
(in our case c = 25) list filtered by the entity type de-
tected by the NER model for that hypothesis. These
entity candidates coupled with the original NER
hypothesis are sent to the ranker model described
below for joint linking and re-ranking.

Following the candidate retrieval step, we intro-
duce a neural model to rerank the candidate entities,
aggregating features from both the NER model and
the candidate retrieval engine.

The EL model scores each entity linking hypoth-
esis separately. An entity linking hypothesis con-
sists of a prediction from the NER model (which
consists of named entity chunks in the input utter-
ance and their types), and the candidate retrieval
results for each chunk. Formally, we define an en-

tity linking hypothesis y with k entity predictions
as:

y = {futter, fNER, fCR, {j ∈ {1 . . . k} : (mj , ej)}}

where mj is the j-th mention in the utterance, and
ej is the entity name associated with this mention
from the knowledge base. futter, fNER, fCR are fea-
tures derived from the original utterance text, the
NER model and the candidate retrieval system re-
spectively. In our system, futter is a representa-
tion of the utterance from averaging the pre-trained
word embeddings for the tokens in the utterance.
Intuitively, having a dense representation of the full
utterance can help the EL model better leverage sig-
nals from the utterance context. fNER includes the
type of each mention, as well as the sequence and
mention confidence computed by the NER model.
fCR includes popularity, and whether a relation ex-
ists between the retrieved entities in y.

To be robust to noise, the EL model adopts a
pair of CNNs to compare each entity mention mj

and its corresponding knowledge base entity name
ej . The CNN learns a name embedding with one-
dimensional convolution on the character sequence,
and the kernel parameters are shared between the
CNN used for user mention and the one used for the
canonical name. A character-based text representa-
tion model is better at handling mis-transcriptions
or mis-pronounced entity names. While a noisy
entity name may be far from the canonical name in
the word embedding space when they are semanti-
cally different, they are usually close to each other
in the character embedding space due to similar
spellings. To model the similarity between CNN
name embeddings of mj and ej , we use the stan-
dard cosine similarity as a baseline, we experiment
with an MLP that takes the concatenated name em-
beddings as input. We are able to model more
expressive interactions between the two name em-
beddings with the MLP, and in turn better handle
errors. Finally, we concatenate the similarity fea-
tures with other features as input to another MLP
that computes the final score for y. Formally, the
scoring function is defined in Equation 1, where ⊕
means concatenation.

s(y) = MLP(futter ⊕ fNER ⊕ fCR

k⊕
j=1

[MLP(CNN(mj),CNN(ej))⊕ CNN(mj)⊕ CNN(ej)]) (1)
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In our data, the number of entity mentions in
an utterance averages less than 3. We pad the en-
tity feature sequence to length 5, which provides a
good coverage. In the scoring model above, we use
a simple concatenation to aggregate the embedding
similarities of multiple entity mentions which em-
pirically performs as well as sequence models like
LSTM, while being much cheaper in computation.

To train the EL model, we use the standard max-
margin loss for ranking tasks. If for the i-th ex-
ample, we denote the ground truth as y∗i and an
incorrect prediction as ŷi, and the scoring function
s(·) is as defined in Equation 1, the loss function is

L =
1

N

N∑
i=1

[γ(ŷi,y
∗
i) + s(ŷi)− s(y∗i)]+. (2)

The max-margin loss encourages the ground truth
score to be at least a margin γ higher than the score
of an incorrect prediction. The margin is defined as
a function of the ground truth and the incorrect pre-
diction, thus adaptive to the quality of prediction.
A larger margin is needed when the incorrect pre-
diction is further away from the ground truth. For
our reranking task, we set a smaller margin when
only the resolved entities are incorrect but the NER
result is correct, and a larger margin when the NER
result is wrong. This adaptive margin helps rerank
NER hypotheses even when the model cannot rank
the linking results correctly. During training, we
uniformly sample the negative predictions from the
candidates retrieved by the retrieval engine.

3.3 Improvement on Other Language
Understanding Tasks

We also explore the impact of our NEU feature
encoding on two tasks: a domain classifier and a
domain-specific shallow semantic parser.

3.3.1 Domain Classification
Domain classification identifies which domain a
user’s request falls into: sports, weather, music,
etc., and is usually done by posing the task as
sequence classification: our baseline uses word
embeddings and gazetteer features as inputs to an
RNN, in a manner similar to Chen et al. (2019).

Consider a specific token t. Let a be the num-
ber of alternatives used from the NER model in
the domain classifier (which we treat as a hyperpa-
rameter), pi represent the (scalar) sequence level
confidence score pseq(ỹi,x; θ) of the ith NER alter-
native defined in Section 3.1, ci represent an integer

for the entity type that NER hypothesis i assigns
to the token t, and o(.) represent a function con-
verting an integer into its corresponding one-hot
vector. Then the additional NER feature vector fr
concatenated to the input vector fed into token t as
part of the domain classifier can be written as:

fr =

i=a⊕
i=1

pio(ci). (3)

Likewise, for the featurization that uses both
NER and EL, let a be the number of alternatives
used from the NER+EL system in the domain clas-
sifier (also a hyperparameter); these a alternatives
are now sorted by the scores from the EL hypothe-
ses, as opposed to the sequence level confidence
scores from NER. Let si be the ith re-ranked alter-
native’s cosine similarity score between the men-
tion and knowledge base entity name as output by
the EL model. pi and ci are consistent with our
earlier notation, except that they now correspond to
the ith NER alternative after re-ranking. Then the
additional NER+EL feature vector fu concatenated
to the input fed into token t as part of the domain
classifier can be written as:

fu =
i=a⊕
i=1

pio(ci)⊕ sio(ci). (4)

3.3.2 Semantic Parsing

Our virtual assistant also uses domain-specific shal-
low semantic parsers, running after domain classi-
fication, responsible both for identifying the cor-
rect intent that the user expects (such as the “play”
intent associated with a song) and for assigning
semantic labels to each of the tokens in a user’s
utterance (such as the word “score" and “game”
respectively being tagged as tokens related to a
sports statistic and sports event respectively in the
utterance “What’s the score of yesterday’s Warriors
game?”). Each semantic parser is structured as a
multi-task sequence classification (for the intent)
and sequence tagging (for the token-level semantic
labelling) task, with our production baseline using
word embeddings and gazetteer features as inputs
into an RNN similar to our domain classifier. Here,
fr and fu are featurized as described above. Note
that in contrast to the NEU system, the semantic
parser uses a domain-specific ontology, to enable
each domain to work independently and to not be
encumbered by the need to align ontologies.
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4 Datasets and Training Methodology

To create our datasets, we randomly sampled
around 600k unique anonymous English transcripts
(machine transcribed utterances), and annotated
them with NER and EL labels. Utterances are sub-
ject to Apple’s baseline privacy practices with re-
spect to Siri requests, including that such requests
are not associated with a user’s Apple ID, email ad-
dress, or other data Apple may have from a user’s
use of other Apple services, and have been filtered
as described in Section 7. We then split the anno-
tated data into 80/10/10 for train, development and
test sets. For both the NER and EL tasks, we report
our results on test sets sampled from the “music”,
“sports” and “movie & TV” domains. These are
popular domains in the usage and have a high per-
centage of named entities: with an average of 0.6,
1.1 and 0.7 entities for each utterance in the 3 do-
mains respectively. To evaluate model performance
specifically on noisy user inputs, we select queries
from the test sets that are marked as containing
speech transcription or user errors by the annota-
tors and report results on this “noisy" subset, which
constitutes 13.5%, 12.7% data for movie&TV and
music domain respectively when an entity exists. 3

To evaluate the relation feature, we also look at the
“related" subset where a valid relation exists in the
utterance. This subset consists 13.4% and 5.3% of
data for the music and sports domain with at least
one entity. 4

We first train the NER model described in Sec-
tion 3.1. Next, for every example in our training
dataset, we run inference on the trained NER model
and generate the top-5 NER hypotheses using beam
search. Following this, we retrieve the top 25 candi-
dates for each of these hypotheses using our search
engine combined with the ground truth NER and
EL labels and fed to the EL model for training.

To measure the NER model performance, we use
the standard NER F1 metric used for the CoNLL-
2003 shared task (Tjong Kim Sang and De Meulder,
2003). To measure the quality of the top-5 NER
hypotheses, we compute the oracle top-5 F1 score
by comparing and choosing the best alternative hy-
pothesis among the 5 and calculate its F1 score, for
each test utterance. In this manner, we also know
the upper bound that EL can reach from reranking

3Sports domain does not have the annotation for noisy data
available when this experiment was conducted.

4Our KB does not have relation information for movie&TV
domain.

NER hypotheses. As described in section 3.2, the
EL model is optimized to perform two tasks simul-
taneously: entity linking and reranking of NER
hypotheses. Hence to evaluate the performance
of the EL model, we use two metrics: reranked
NER-F1 score and the EL-F1 score. The reranked
NER F1 score is measured on the NER predictions
according to the top EL hypothesis, and is defined
in the same way as the previous NER task. To
evaluate entity linking quality, we adopt a strict F1
metric similar to the one used for NER. Besides
entity boundary and entity type, the resolved entity
also needs to be correct for the entity prediction to
be counted as a true positive.

For NER model training, we use standard mini-
batch gradient descent using the Adam optimizer
with an initial learning rate of 0.001, a scheduled
learning rate decay of 0.99, LSTM with a hidden
layer of size 350 and a batch size of 256. We apply
a dropout of 0.5 to the embedding and biLSTM
layers, and include token level gazetteer features
(Ratinov and Roth, 2009) to boost performance in
recognizing common entities. We linearly project
these gazetteer features and concatenate the projec-
tion with the 200 dimensional word embeddings
and 100 dimensional character embeddings which
are then fed into the biLSTM followed by the CRF.

For EL, the character CNN model we use has
two layers, each with 100 convolution kernels of
size 3, 4, and 5. Character embedding are 25 di-
mensional and trained end to end with the entity
linking task. The MLP for embedding similarity
takes the concatenation of two name embeddings,
as well as their element-wise sum, difference, min-
imum, maximum, and multiplication. It has two
hidden layers of size 1024 and 256, with output
dimension 64. Similarity features of mentions in
the prediction are averaged, while the other fea-
tures like NER confidence and entity popularity
are concatenated to the representation. The final
MLP for scoring has two hidden layers, with size
256 and 64. We train the model on 4 GPUs with
synchronous SGD, and for each gradient step we
send a batch of 100 examples to each GPU.

5 System Evaluation

5.1 Results

We present F1 scores in different domains of the
NER and EL model in Table 1. Since the EL model
takes 5 NER hypotheses as input, it also acts as a re-
ranker of the NER model, and we show substantial
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improvements on top-1 NER F1 score consistently
over all test sets.

NER F1
top-1/top-5

reranked
NER F1 EL F1

movie&TV 78.76 / 96.83 81.62 79.67
music 84.27 / 97.26 87.40 84.95
sports 92.97 / 99.15 93.48 91.13

Table 1: Results for the best model setting. NER F1 are
reported on the top-1 and top-5 NER prediction from
the NER model that provides features for EL. Reranked
NER F1 and EL F1 are reported on top-1 prediction
from the best EL model selected by development sets.

In Table 2, we show improvements achieved by
several specific model design choices and features
on entity linking performance. Table 2(a) shows
the MLP similarity substantially improves entity
linking accuracy with its capacity to model text
variations, especially on utterances with noisy en-
tity mentions. The relation feature is powerful for
disambiguating entities with similar names, and
we show a considerable improvement in EL F1 on
the subset of utterances that have related entities
in Table 2(b). Table 2(c) shows utterance embed-
dings brought improvements in the music, and me-
dia & TV domains. The improvement brought by
log-scale popularity feature is the largest for the
movie & TV domain as shown in Table 2(d), where
the popularity distribution has extremely long tails
compared to other domains.

5.2 Qualitative Analysis

We provide a few examples to showcase the effec-
tiveness of our NEU system. Firstly, the EL model
is able to link noisy entity mentions to the corre-
sponding entity canonical name in the knowledge
base. For instance, when the transcribed utterance
is “play Carla Cabello”, the EL model is able to
resolve the mention “Carla Carbello” to the correct
artist name “Camila Cabello”.

Secondly, the EL model is able to recover from
errors made by the NER system by leveraging the
knowledge base to disambiguate entity mentions.
The reranking is especially powerful when the ut-
terance contains little context of the entity for the
NER model to leverage. For example, for “Doc-
tor Strange”, the top NER hypothesis labels the
full utterance as a generic “Person” type, and after
reranking, EL model is able to leverage the pop-
ularity information (“Doctor Strange” is a movie

that was recently released and has a high popular-
ity in our knowledge base) and correctly label the
utterance as “movieTitle”. Reranking is also effec-
tive when the entity mentions are noisy, which will
cause mismatches for the gazetteer features that
NER uses. For “play Avengers Age of Ultra”, the
top NER hypothesis only predicts “Avengers” as
“movieTitle”, while after reranking, the EL model
is able to recover the full span “Avengers Age of Ul-
tra” as a “movieTitle”, and resolve it to “Avengers:
Age of Ultron”, the correct canonical title.

The entity relations from the knowledge base
are helpful for entity disambiguation. When the
user refers to a sports team with the name “Giants”,
they could be asking for either “New York Giants”,
a National Football League (NFL) team, or “San
Francisco Giants”, a Major League Baseball team.
When there are multiple sports team mentions in
an utterance, the EL model leverages a relation fea-
ture from the knowledge base indicating whether
the teams are from the same sports league (as the
user is more likely to mention two teams from the
same league and the same sport). Knowing entity
relations, the EL model is able to link the men-
tion “Giants” in “Cowboys versus Giants” to the
NFL team, knowing that “Cowboys” is referring to
“Dallas Cowboys”.

To validate the utility of our proposed NEU
framework, we illustrate performance improve-
ments in the Domain Classifier and the Semantic
Parsers corresponding to the three domains (music,
movies & TV and sports) as described in Section
3.3. Table 3 reports the classification accuracy for
the Domain Classifier and the parse accuracies for
the Semantic Parsers (the model is said to have
predicted the parse correctly if all the tokens are
tagged with their correct semantic parse labels).
We observe substantial improvements in all 4 cases
when NER features are used as additional input,
given all the other components of the system being
the same. In turn, we observe further improvements
when our NER+EL featurization is used.

6 Conclusion

In this work, we have proposed a Named Entity Un-
derstanding framework that jointly identifies and
resolves entities present in an utterance when a user
interacts with a voice assistant. Our proposed ar-
chitecture consists of two modules: NER and EL,
with the EL serving the additional task of possi-
bly correcting the recognized entities from NER
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(a)
+ MLP

movie&TV +3.58
(noisy) +9.67
music +2.05
(noisy) +10.03

(b)
+ Relation

music +0.86
(related) +1.97
sports +0.07
(related) +0.81

(c)
+ Utterance
Embedding

(d)
+ Log-scale
Popularity

movie&TV +0.25 +0.27
music +0.39 +0.02
sports -0.07 +0.08

Table 2: EL mean F1 relative % improvements, reported on 10 runs average.

A B C
DC 88.95 89.46 90.04
SP [movie&TV] 89.62 90.99 91.67
SP [music] 83.97 84.26 84.42
SP [sports] 86.37 86.47 86.46

Table 3: Results for domain classifier (first row) and
semantic parser. A is the baseline, B is A+NER, C is
A+NER+EL.

by leveraging rich signals from entity links in the
knowledge base while simultaneously linking these
entities to the knowledge base. With several de-
sign strategies in our system targeted towards noisy
natural language utterances, we have shown that
our framework is robust to speech transcription
and user errors that occur frequently in spoken dia-
log systems. We have also shown that featurizing
the output of NEU and feeding these features into
other language understanding tasks substantially
improves the accuracy of these models.

7 Ethical Considerations

We randomly sampled transcripts from Siri pro-
duction datasets over a period of months, and we
believe it to be a representative sample of usage in
the domains described. In accordance with Apple’s
privacy practices with respect to Siri requests, Siri
utterances are not associated with a user’s Apple ID,
email address, or other data Apple may have from
a user’s use of other Apple services. In addition
to Siri’s baseline privacy guarantees, we filtered
the sampled utterances to remove transcripts that
were too long, contained rare words, or contained
references to contacts before providing the dataset
to our annotators.
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