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Abstract

Nowadays, with many e-commerce platforms
conducting global business, e-commerce
search systems are required to handle product
retrieval under multilingual scenarios. More-
over, comparing with maintaining per-country
specific e-commerce search systems, having a
universal system across countries can further
reduce the operational and computational
costs, and facilitate business expansion to
new countries. In this paper, we introduce
a universal end-to-end multilingual retrieval
system, and discuss our learnings and tech-
nical details when training and deploying
the system to serve billion-scale product
retrieval for e-commerce search. In particular,
we propose a multilingual graph attention
based retrieval network by leveraging recent
advances in transformer-based multilingual
language models and graph neural network
architectures to capture the interactions be-
tween search queries and items in e-commerce
search. Offline experiments on five countries
data show that our algorithm outperforms
the state-of-the-art baselines by 35% recall
and 25% mAP on average. Moreover, the
proposed model shows significant increase of
conversion/revenue in online A/B experiments
and has been deployed in production for
multiple countries.

1 Introduction

Modern e-commerce search engines (Huang et al.,
2020; Nigam et al., 2019) typically consist of a
retrieval stage and a ranking stage. The retrieval
stage is responsible for collecting a set of relevant
products with minimum computational resources.
The ranking stage then applies sophisticated ma-
chine learning (ML) algorithms to determine their
impression positions. Traditional retrieval models
rely on keyword matching (Manning et al., 2008),
which may lead to poor results when the exact
term match is unavailable. Recently, semantic
matching models (Huang et al., 2013; Pang et al.,
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2016) have been adopted to improve retrieval per-
formance (Mitra et al., 2018). These models are
trained using click/purchase logs and typically sep-
arated by countries (Ahuja et al., 2020). However,
such per-country specific training schema exposes
three major drawbacks. First, maintaining country-
specific models increase both operational burden
and model iteration risks among countries. Sec-
ond, the small amount of training data in low traffic
countries may limit the ML model performance
and this can also block the business expansion to
new countries. Third, such models can not han-
dle second language searches well. For example,
the training data in US are dominated by English,
which produces a model that cannot handle Spanish
searches well. To solve above issues, ideally, a mul-
tilingual semantic retrieval model should be consid-
ered over monolingual retrieval models. However,
how to design an effective and scalable multilin-
gual semantic retrieval model for industry grade
e-commerce search engine remains unsolved.

Built upon the success of pre-trained
transformer-based models (Devlin et al., 2018;
Yang et al., 2019b; Liu et al., 2019) such as
Bidirectional Encoder Representations from
Transformers (BERT) for natural language
processing, multilingual BERT (M-BERT) has also
demonstrated success for multilingual tasks (Pires
et al., 2019). Though the techniques are promising,
it is not straightforward to directly apply them
to our problem due to the vocabulary gap issue
(Mandal et al., 2019), i.e., customer searched
queries are often short and from spoken input
(e.g. ‘fancy clothes’) but product descriptions
are usually in formal written style (e.g. ‘formal
attire’). There lacks a well established practice for
fine-tuning multilingual BERT models on product
search retrieval tasks.

In this work, we address the vocabulary gap
by sharing information between queries and prod-
ucts in the model via graph convolution networks
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(GCN). The query-to-product purchase/click logs
naturally form a bipartite graph where each clicked
product links with searched queries as neighbors.
We expect to improve the product representation for
retrieval tasks by incorporating information from
its neighbor queries. For example, it is difficult for
neural networks to directly match the query ‘great
gifts for child’ to the product ‘Disney puzzles for
kids’ given the vocabulary gap. But using the in-
formation that the product is connected with query
‘children gifts’, we can incorporate this informa-
tion in its final representation, and the product will
have a higher chance to be matched with the given
query.

This paper presents an end-to-end multilingual
retrieval system for e-commerce search engine.
Our contributions are three-fold. 1. Model: We
present a general framework that is compatible with
any transformer-based models and any GCN archi-
tectures to capture interactions between products
and search queries; 2. Practice: We provide a
principled and practical guide of how to train the
proposed model for large-scale product retrieval
problem, e.g., how to define effective loss func-
tions, how to feed online model-based hard nega-
tive samples to train the model and how to train
the multilingual model with a novel one-language-
at-a-batch (Sec 2.2) approach; 3. System: We
discuss how to deploy the model to support prod-
uct retrievals in multiple countries for e-commerce
search.

To validate the effectiveness of our proposed
method, we take offline experiments on billion-
scale data across five languages and conduct online
A/B testing experiments to measure the real traffic
impacts. Through experimental results, our model
outperforms state-of-the-art baselines by more than
25% and increases revenue and conversion over the
current production system.

2 Methodology

We formulate the search retrieval task as fol-
lows. Supposed that we have a set of products
P = {p1,...,pn}. Each product p; has a num-
ber of neighbor queries Q; = {g; 1, ..., ¢i+} where
(gi,j,pi) appears in the search logs (customers
search for ¢; ; and purchase p;). For an arbi-
trary query ¢, we want to find the top-K rel-
evant products from P. Note that g is not in
Q ={Q1, ..., @} when our retrieval system han-
dles unseen queries.

2.1 Model Architecture

The model has two main components: (1) a query
encoder that encodes search queries; (2) a product
encoder that encodes both the product description
and its neighbor queries. The product encoder has
a GCN component that encapsulates the neighbor
queries and product information.

Query Encoder: The query encoder could be
any transformer-based encoder, such as BERT (De-
vlin et al., 2018), XLNet (Yang et al., 2019b), Dis-
tilBERT (Sanh et al., 2019), and RoBERTa (Liu
et al., 2019). Choosing these transformer-based en-
coders over other encoders (e.g. LSTM (Hochreiter
and Schmidhuber, 1997)) has several benefits. First,
these models employ the word-piece tokenization
which is robust to spelling errors and allows us to
share vocabulary between different languages. In
addition, transformer-based models can be easily
parallelized and deployed online. We use the last
hidden states of the encoders’ [CLS] token as the
embeddings for the query. For the other compu-
tationally more costly option of using the average
pooling of the last hidden states of all tokens, we
did not observe significant performance difference.

Product Encoder: The product encoder con-
sists of 1) a transformer based encoder layer to
extract the features of a product and its neighbor
queries, and 2) a graph convolution layer that ag-
gregates the extracted features to compute the final
embeddings for a given product. The transformer-
based encoder layer shares its parameters with the
query encoder, and we also use the last hidden
states of the encoder’s [CLS] token as the features.
The operations in the graph convolution layer are
described in Algorithm 1.

Algorithm 1: Graph Convolution Layer

Input: extracted feature h,,; of a product p;, extracted
features {hy, ,, ..., hg, , } of p;’s neighbor queries
{qi,ly ) qi,t}

Output: the final product embedding x,,

Step 1: hy, = 3 >~ ReLU(Wq - hy, ; + bg)

Step 2: x,,, = ReLU(W,, - CONCAT(h,,,h,,) +bp)

The intuition of adding the graph convolution
layer to the product encoder is that it can fill the vo-
cabulary gap between queries and product descrip-
tions. With the vocabulary gap and length distribu-
tion discrepancy between queries and product de-
scriptions, directly using the transformer-extracted
embeddings of queries and products for matching
is sub-optimal. By incorporating neighbor query
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Figure 1: The base architecture of multilingual GCN. Each circle indicates a query and each rectangle represents a
product. Query A and product B is a positive pair in the training data, while C' and D are the neighbor queries of
B. The query encoder takes query A as the input and outputs A’s embedding, h 4. The product encoder takes B,

C, D as the input and output B’s embedding, = 3.

information into the product representation, the
matching model not only learns information from
query-to-product similarity, but also learns from
query-to-query similarity. This is especially help-
ful to tail queries that have limited behavior signals.

Note that our framework is compatible with any
GCN architectures in theory, such as GCN (Kipf
and Welling, 2017) and GAT (Velickovi¢ et al.,
2018), and we will leave those explorations for
future work.

Loss Function: In the training stage, we use a
pairwise ranking loss to train the model. Specifi-
cally, for each query ¢; in the training set, we sam-
ple a positive product p;; and a negative product
pi—. The triplet loss is defined as

L= 3 Log(1 + expl, -,

%

— Xg; 'Xpi+)) (D
The intuition of is that we want the inner product of
the positive pairs <x,, X;,, > to be larger than the
inner product of the negative pairs <xg,, X,, >and
the margin to be as large as possible.

2.2 Training Details

There are two key factors in successfully training
the aforementioned framework: 1) how to select
proper negative samples for training the model; 2)
how to properly feed training data from different
languages to the model.

Negative Sampling: Defining negative samples
for semantic retrieval tasks is a tricky problem. A
widely-adopted method is random sampling, where
one can randomly sample a product from the prod-
uct catalog as the negative samples for a given
query. However, this simple setting would gen-
erate sub-optimal results, since the randomly se-

lected negative samples can be too easily distin-
guished from the positive samples. Thus, it rarely
brings knowledge for model learning and produces
a model with low discriminative power for the re-
trieval task.

Recent research work has indicated that using
hard negatives could improve the model perfor-
mance for retrieval tasks (Ying et al., 2018; Nigam
et al., 2019; Huang et al., 2020). The hard nega-
tive sample should be the product that is somewhat
related to the query but not a exact match. In the
search retrieval scenario, we can define the follow-
ing three kinds of hard negatives.

Behavior-based hard negative: the negative sam-
ples are defined by users’ behavior and are ex-
tracted from the search logs. For a given query,
we take those products that were shown to the cus-
tomer but not clicked as the hard negatives.
Offline model-based hard negative: the negative
samples are calculated by the current model in an
offline fashion. Specifically, we first use the current
model to generate the embeddings for all queries
and products in the training set, and then calculate
the inner product between all queries and all prod-
ucts. For each query, we sample negatives from its
top-200 to top-1000 relevant products.

Online model-based hard negative: the negative
samples are generated on-the-fly with model learn-
ing. Specifically, we first randomly sample a batch
of products. Then we use the current model to cal-
culate the inner product between embeddings of
these products and a batch of queries. For each
query in the batch, we select the product with high-
est inner product value as the hard negative sample.

We argue that the online model-based hard neg-
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ative is the most suitable sampling method to our
application. The behavior-based hard negative sam-
ples requires additional data collection processes
and often yields worse results in the search retrieval
task (Huang et al., 2020). In fact, it is more suit-
able to the ranking task where the candidate pool
is more refined. Besides, the offline model-based
hard negative is too time-consuming, as we have to
compute K-NN for each query in training set when
we select/update the hard negatives.

Multilingual Data Fusion: How to properly
feed the multilingual data to the model is another
crucial factor to the training process. The amount
of training data from different languages/countries
varies greatly, and therefore low-resource lan-
guages would be underrepresented in the neural net-
work model. Inspired by (Devlin et al., 2018), we
perform exponentially smoothed weighting of the
data. We would take the exponent of the percentage
of a language by factor .S and then re-normalize.
Suppose there are two languages, English and Span-
ish, which accounts for 90% and 10% of training
data respectively. The re-normalized distribution is
Wf% = 0.82 for English. Therefore, high-
resource languages will be under-sampled, and low-
resource languages will be over-sampled.

We also find that mixing training samples from
multiple languages in one training batch makes
it harder to train the model. Firstly, the negative
sampling space is more complicated: we could
sample a Spanish product as the negative sample
of a English query. These easy negatives provide
little knowledge to the model. In addition, differ-
ent languages of training data appear in the same
batch, which makes the batch gradient less stable.
We propose to train the model with one-language-
at-a-batch, and make the negative sampling pro-
cess language-dependent. In the experiment, we
observe that doing so dramatically increases the
performance on all languages by 5-6% recall.

3 Deployment

The deployment of the proposed model has two
parts: a query encoder and pre-computed product
embeddings. As the query encoder is a standard
transformer-based model and many papers have
talked about the serving of it, this part can be eas-
ily deployed online. For the pre-computed prod-
uct embeddings, we first compute the embeddings
for products in our catalog, and incrementally up-
date the product embedding periodically. To avoid

repeated computations during the inference time
(multiple products might have the same neighbor
query), we first use the transformer-based encoder
to compute the embeddings for all queries and
products in the graph, and then join the products’
embeddings with their neighbor queries’ embed-
dings. Lastly, we pass these intermediate embed-
dings through the GCN layer to generate the final
product embeddings. During the search retrieval
step, we simply use the query encoder to extract the
embedding for an input query. Then, we find the K-
nearest neighbors (K-NN) products by calculating
the cosine-distance between the query embedding
and the pre-computed product embeddings. The
K-NN products are used to augment the matchset
of the given query.

4 Experiments

We collect the data from a large e-commerce plat-
form that has business in multiple countries. To
provide a comprehensive understanding on the role
of multilingual queries in a real-world product
search system, we select five countries: United
States (US), Spain (ES), France (FR), Italy (IT)
and Germany (DE). We subsample our data from
one year of search log in each country. We orga-
nize the collected search log into query-product
pairs with different customer behavior signals, e.g.
click/purchase. For model offline testing, we first
randomly sample 20K queries from each coun-
try. We then use our algorithm to rank a sub-
corpus of 100K products (in each country) for
those queries. The 100K product corpus consists
of purchased products for those 20K queries and
additional random negatives. Since our work fo-
cuses on the retrieval part of a product search en-
gine, we adopt two matching metrics to summa-
rize our results: Recall@10 (recall) and mean Av-
erage Precision (mAP). We employ the multilin-
gual DistilBERT (Sanh et al., 2019) with 6 layers
and 768 hidden units as our encoder. We set the
batch size to 640 and use Adam optimizer (Kingma
and Ba, 2014) with « = 0.0001, 3; = 0.9, and
B2 = 0.999. We run all the experiments on an
AWS p3dn.24xlarge instance with 768 GB memory
and 8 NVIDIA V100 GPUs. We train the model
on 8 GPUs in a distributed fashion. The model is
trained for 140K batches, where the 28K ‘warm
up’ batches are trained with random negatives and
remaining batches are trained with online model-
based hard negatives.
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Table 1: Matching performance for our model and baselines.

US
method recall mAP recall mAP recall mAP recall mAP recall mAP
DSSM 49.53% | 34.09% | 38.82% | 22.26% | 38.16% | 21.98% | 42.51% | 24.68% | 46.87% | 30.16%
Multilingual BERT 38.82% | 25.14% | 23.06% | 12.07% | 25.41% | 13.67% | 24.36% | 13.06% | 25.31% | 15.18%
Our model w/o BERT | 79.79% | 60.06% | 66.53% | 39.01% | 68.01% | 41.43% | 70.32% | 42.66% | 74.69% | 51.79%
Our model w/o GCN | 80.83% | 60.68% | 68.98% | 41.73% | 70.03% | 42.28% | 72.88% | 44.98% | 76.69% | 53.75%
Our model 85.86% | 66.69% | 73.60% | 44.40% | 74.97% | 47.07% | 77.16% | 48.03% | 81.44% | 58.33%

4.1 Comparison Results

We compare against the following baselines:
DSSM (Huang et al., 2013) is an earlier work
to extract the semantic representations of queries
and documents from large-scale click-through data
by leveraging deep neural networks. We train 5
language-specific DSSM models with monolingual
training data.

Multilingual BERT (Devlin et al., 2018) is the
vanilla BERT without any fine-tuning. We use the
bert-base-multilingual-cased model from hugging-
face implementation. We directly use the Multi-
lingual BERT to encode the queries/products, and
take the output [CLS] embeddings as the represen-
tations of queries/products.

Our model w/o BERT is a variant of our model,
where we replace the DistilBERT encoder with a
one-layer feed forward neural network and use the
same word embedding matrix as the DistilBert. We
train this model with exactly the same settings as
we train the main model.

Our model w/o GCN is a variant of our model,
where we remove the GCN module. It means that
we only use product descriptions to get the prod-
uct embeddings, and there is no graph convolution
layer in the product encoder.

Table 1 shows (1) Multilingual BERT with-
out any fine-tuning does not work for multilin-
gual search retrieval tasks. It has the lowest re-
call and mAP, which proves the necessity of de-
signing proper fine-tuning tasks for BERT-based
model; (2) replacing the feed forward neural net-
works with DistilBERT leads to 6% - 7% recall and
5.5% - 6% mAP improvement on all languages; (3)
adding GCN module to the product encoder further
achieves significant boosts (5-6% recall improve-
ment and 4.5%-6% mAP improvement), suggesting
that GCN help the vocabulary gap issue.

4.2 Ablation Study

Negative Sampling: We try three kinds of hard
negatives as illustrated in Section 2.2. Table 2
shows the results of training our model with dif-
ferent hard negatives. We observe that the perfor-

mance of offline model-based hard negatives is sim-
ilar to that of online model-based hard negatives (<
0.4% recall difference). However, computing the
offline model-based hard negatives takes a total of
4x training time. Besides, training with behavior-
based hard negatives has worst results (-10% recall,
-7% mAP), because behavior-based negatives are
not appropriate for retrieval tasks (Huang et al.,
2020), since most impressed products are often rel-
evant to the query. Including them as negatives con-
fuses the model from focusing on retrieval tasks.

Multilingual Training Data Fusion: We test
three data fusion strategies: 1) sample by un-
weighted data size + train with one language at
a batch (unweight+separate); 2) sample by expo-
nentially weighted data size + train with mixed lan-
guages in a batch (weight+mix); 3) sample by ex-
ponentially weighted data size + train with one lan-
guage at a batch (weight+separate). Table 3 shows
the results from different multilingual data fusion
strategies. By exponentially weighting the training
data, we can improve the matching performance in
low-resource languages (ES, FR, IT) without hurt-
ing the performance in high resource languages
(DE and US). Besides, weighted+separated beats
weighted+mixed by 2-3% recall and 1-2% mAP
margin on all languages, suggesting that training
with one-language-at-a-batch is superior to mixed
training.

4.3 Online Experiments

We report our findings from online A/B experi-
ments on a large-scale e-commerce website with
our multilingual GCN model. We run online match
set augmentation experiments in three countries
and two languages. The proposed algorithm signif-
icantly improves business metrics in all countries,
leading to +1.8% increase in average clicks, +0.3%
in revenue, and +0.4% in conversion. We also
observe reformulated searches decreased by 1%.
This reduction results in customers finding their de-
sired products with less effort, likely from that our
model bridges the vocabulary gap between queries
and products. All results provide evidence that our
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Table 2: Matching performance with different kinds of hard negatives.

UsS ES FR IT DE
hard negative recall mAP recall mAP recall mAP recall mAP recall mAP
behavior 76.62% | 59.36% | 63.28% | 38.80% | 63.90% | 40.31% | 66.17% | 42.18% | 68.44% | 49.67%
offline model | 85.44% | 66.43% | 73.95% | 44.33% | 74.86% | 46.76% | 77.43% | 48.20% | 81.52% | 58.68 %
online model | 85.86% | 66.69% | 73.60% | 44.40% | 74.97% | 47.07% | 77.16% | 48.03% | 81.44% | 58.33%
Table 3: Matching performance with different multilingual data fusion strategies.
UsS ES FR IT DE
fusion strategy recall mAP recall mAP recall mAP recall mAP recall mAP
weight+mix 84.61% | 6524% | 70.45% | 42.01% | 71.41% | 4434% | 73.39% | 45.46% | 78.85% | 55.91%
unweight+separate | 85.82% | 66.60% | 71.69% | 42.93% | 73.29% | 45.63% | 74.53% | 46.66% | 80.61% | 57.73%
weight+separate | 85.86% | 66.69% | 73.60% | 44.40% | 74.97% | 47.07% | 77.16% | 48.03% | 81.44% | 58.33%

algorithm leads to better retrieval performance and
can help customers fulfill their shopping missions.

5 Related Works

Search engine retrieval has been based on lexical
match to identify relevant documents for queries.
Recently, major industry search engines (Nigam
et al., 2019; Huang et al., 2020; Fan et al., 2019)
have incorporated semantic matching for improve-
ments. Such algorithms can be classified into
embedding-based models and interaction models.
Embedding based models such as DSSM (Huang
et al., 2013) and its subsequent works (Shen et al.,
2014; Palangi et al., 2016; Hu et al., 2014) con-
vert queries and documents into embeddings for
retrieval. Interaction models, like MatchPyramid
(Pang et al., 2016) and DRMM (Guo et al., 2016)
leverage interaction matrices to capture local term
matching. However, they are computationally
costly for industry data.

With BERT (Devlin et al., 2018) becoming the
state-of-the-art embedding method, it is adopted
for various applications (Yang et al., 2019a; Yu
et al., 2020; Khattab and Zaharia, 2020; Humeau
et al., 2020; Chang et al., 2020). However, how
to properly fine-tune BERT for retrieval tasks in
product search remains unstudied. Our work fills
this gap and provides a practical guide to fine-tune
BERT-based models using production-scale search
data. Furthermore, M-BERT provides representa-
tions for 104 languages and has proven ability to
handle multilingual tasks (Pires et al., 2019). Other
multilingual embedding models have also been pro-
posed and validated (Schwenk and Douze, 2017;
Conneau and Lample, 2019; Conneau et al., 2020).
Our method is flexible and so that all these models
can serve as a component.

Notably, our multilingual problem is different
from the cross-lingual information retrieval (CLIR)

151

problem (Nie, 2010; Jiang et al., 2020) , which
refers to the scenario where the query is in one
language but document is in other languages. In our
problem, product descriptions and search queries
are always in the same primary language and except
a small fraction in different languages

Graph neural network is gaining prominence in
ML applications (Ying et al., 2018; Zhang et al.,
2019). The notion of "graph convolutions" is first
proposed in (Bruna et al., 2014) with spectral graph
theory. Later, GraphSAGE (Hamilton et al., 2017)
redefines it to avoid operating on the entire graph.
Recent efforts (Wang et al., 2019; Berg et al., 2018)
adopt GCN to the user-item interaction graph and
leverage the neighbors for recommendation. Light-
GCN (He et al., 2020) reported that neighborhood
aggregation is the only important component of
GCN, and weighted-sum of neighbor embeddings
yield the best results. Our method leverages GCN
to incorporate neighbor queries’ information into
product embedding, which bridges the vocabulary
gap between query and product. Moreover, our
framework is compatible with any GCN architec-
tures, so can leverage the advances there.

6 Conclusion

Our paper present a multilingual graph convolution
networks model for language-agonistic semantic
retrieval in product search engine. Our method not
only can handle multilingual text data, but also ad-
dresses the vocabulary gap issues between queries
and product descriptions. We also provide a prac-
tical guide of fine-tuning the proposed model on
retrieval tasks. We conduct various experiments
including offline evaluation on 5 languages and
online A/B test in three countries. In all experi-
ments, our model consistently beats the baselines
and demonstrates improved product discoverabil-

ity.
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