
Proceedings of NAACL-HLT 2021: Demonstrations, pages 42–55
June 6–11, 2021. ©2021 Association for Computational Linguistics

42

Robustness Gym: Unifying the NLP Evaluation Landscape

Karan Goel∗†
Stanford University

Nazneen Rajani†
Salesforce Research

Jesse Vig
Salesforce Research

Zachary Taschdjian
Salesforce Research

Mohit Bansal
UNC Chapel-Hill

Christopher Ré
Stanford University

Abstract

Despite impressive performance on stan-
dard benchmarks, natural language process-
ing (NLP) models are often brittle when de-
ployed in real-world systems. In this work,
we identify challenges with evaluating NLP
systems and propose a solution in the form of

Robustness Gym (RG),1 a simple and ex-
tensible evaluation toolkit that unifies 4 stan-
dard evaluation paradigms: subpopulations,
transformations, evaluation sets, and adver-
sarial attacks. By providing a common plat-
form for evaluation, RG enables practitioners
to compare results from disparate evaluation
paradigms with a single click, and to easily de-
velop and share novel evaluation methods using
a built-in set of abstractions. Robustness Gym
is under active development and we welcome
feedback & contributions from the community.

1 Introduction

Advances in natural language processing (NLP)
have led to models that achieve high test accuracy
on independent and identically distributed (i.i.d.)
data. However, analyses suggest that models are
not robust to data corruptions (Belinkov and Bisk,
2018), distribution shifts (Hendrycks et al., 2020;
Miller et al., 2020), and harmful data manipula-
tions (Jia and Liang, 2017), and rely on spuri-
ous patterns (McCoy et al., 2019b). In practice,
these vulnerabilities hinder deployment of trust-
worthy systems, as seen in public-use systems that
were later revealed to be systematically biased,
such as chatbots (Stuart-Ulin, 2018) and recruit-
ing tools (Hamilton, 2018).

While practitioners know of these problems, it
remains common to evaluate solely on i.i.d. data.
Ideally, the goal of evaluation is to perform a broad

∗E-mail: kgoel@cs.stanford.edu
† Equal contribution.

1 https://github.com/robustness-gym/
robustness-gym

assessment of a model’s capabilities on the types
of examples that it is likely to see when deployed.
This process is complex for practitioners, since ex-
isting tools cater to a specialized set of evaluations
for a task, and provide no clear way to leverage or
share findings from prior evaluations. Thus, current
evaluation practices face two challenges:

1. Idiomatic lock-in (Section 2.1). We identify
4 distinct evaluation types or idioms supported
by existing tools and research – subpopulations,
transformations, adversarial attacks and evalu-
ation sets. Existing tools use bespoke abstrac-
tions to serve a subset of these idioms (e.g., ad-
versarial attacks on words), requiring users to
glue together tools to perform a broad evaluation
that mixes idioms.

2. Workflow fragmentation (Section 2.2). As
practitioners evaluate, they need to save
progress, report findings and collaborate to un-
derstand model behavior. Existing solutions
to save progress are tool- and idiom-specific,
lack versioning, and provide limited support for
sharing. Existing reporting templates are free-
form, and have not successfully incentivized
users to report findings e.g. only 6% of Hug-
gingface (Wolf et al., 2020b) models report eval-
uation information.

In response to these challenges, we introduce Ro-
bustness Gym (RG), a simple, extensible and uni-
fied toolkit for evaluating robustness and sharing
findings (Figure 1). RG users can:

1. Create slices (Section 3.1) of data in RG. Each
slice is a collection of examples, built using
one or more evaluation idioms. RG scaffolds
users in a two-stage workflow, separating the
storage of side-information about examples
(CachedOperation) from the nuts and bolts of
programmatically building slices using this in-
formation (SliceBuilder). This workflow helps

kgoel@cs.stanford.edu
https://github.com/robustness-gym/robustness-gym
https://github.com/robustness-gym/robustness-gym

43

Type Instantiation Examples
R

ul
e-

ba
se

d Filters
HasPhrase Subpopulation that contains negation.
HasLength Subpopulation that is in the {X} percentile for length.
Position Subpopulation that contains {TOKEN} in position {N}.

Logic
IFTTT recipes If example ends in {ING} then transform with backtranslation.
Symmetry Switch the first and last sentences of a source document to create a new eval set.
Consistency Adding “aaaabbbb" at the end of every example as a form of attack.

Template Checklist Generate new eval set using examples of the form “I {NEGATION} {POS_VERB}.”

M
ac

hi
ne

Classifier HasScore Subpopulation with perplexity {>X} based on a LM.
HasTopic Subpopulation belonging to a certain topic.

Tagger* POS Subpopulation that contains {POS_NOUN} in position {N}.
NER Subpopulation that contains entity names with non-English origin.
SRL Subpopulation where there is no {AGENT}.
Coref Subpopulation that contains the pronouns for a particular gender.

Parser* Constituency Transform with all complete subtrees of {POS_VP} in the input.
Dependency Subpopulation that has at least 2 {POS_NP} dependent on {POS_VP}.

Generative Backtranslation Using a seq2seq model for transformation using backtranslation.
Few-shot Using GPT3 like models for creating synthetic eval sets.

Perturbation Paraphrasing Synonym substitution using EDA.
TextAttack Perturbing input using TextAttack recipes.

H
um

an
or

H
um

an
-i

n-
th

e-
lo

op

Filtering Figurative text Using humans to identify subpopulation that contains sarcasm.

Curation Evaluation sets Building datasets like ANLI, Contrast sets, HANS, etc.
Data validation Using human-in-the-loop for label verification.

Adversarial Invariant Perturbing text in a way that the expected output does not change.
Directional Perturbing text in a way that the expected output changes.

Transformation Counterfactual Transforming to counterfactuals for a desired target concept.

Table 1: Sample of slice builders and corresponding data slices along with example use cases that can either be
used out-of-the-box or extended from Robustness Gym. → subpopulations, → transformations, → adversarial
attacks and → evaluation sets. ∗ marked are CachedOperations and the rest are SliceBuilders.

users quickly implement new ideas, minimize
boilerplate code and seamlessly integrate exist-
ing tools.

2. Consolidate evaluations (Section 3.2) and
findings for community sharing. RG users add
slices into a TestBench that can be versioned
and shared, allowing users to collaboratively
build benchmarks and track progress. For stan-
dardized reporting, RG provides Robustness
Reports that can be auto-generated from test-
benches and included in paper appendices.

We close with a discussion of how Robustness Gym
can benefit practitioners2 (Section 4), describing
how users with varying expertise – novice, inter-
mediate, expert – can evaluate a natural language
inference (NLI) model in RG.

2 The Landscape of Evaluation Tools

We describe two challenges facing evaluation today,
and situate them in the context of existing work.

2See 2 minute supplementary demo video.

2.1 Challenge 1: Idiomatic Lock-In
When practitioners decide what they want to eval-
uate, they can suffer from lock-in to a particular
idiom or type of evaluation after they adopt a tool.
Our analysis suggests that most tools and research
today serve a subset of four evaluation idioms:

1. Subpopulations. Identify subpopulations of a
dataset where the model may perform poorly.

Example: short reviews (< 50 words) in the
IMDB sentiment dataset (Maas et al., 2011).

2. Transformations. Perturb data to check that
the model responds correctly to changes.

Example: substitute words with their synonyms
in the IMDB dataset.

3. Attacks. Perturb data adversarially to exploit
weaknesses in a model.

Example: add “aabbccaa" to the end of reviews,
making the model predict positive sentiment.

4. Evaluation Sets. Use existing datasets or au-
thor examples to test generalization and perform
targeted evaluation.

44

Evaluation Idiom Tools Available Research Literature (focusing on NLI)

Subpopulations
Snorkel (Ratner et al., 2017), Hard/easy sets (Gururangan et al., 2018)
Errudite (Wu et al., 2019) Compositional-sensitivity (Nie et al., 2019)

Transformations
NLPAug (Ma, 2019) Counterfactuals (Kaushik et al., 2019), Stress test (Naik et al., 2018),

Bias factors (Sanchez et al., 2018), Verb veridicality (Ross and Pavlick, 2019)

Attacks
TextAttack (Morris et al., 2020), Universal Adversarial Triggers (Wallace et al., 2019a),
OpenAttack (Zeng et al., 2020) Adversarial perturbations (Glockner et al., 2018),
Dynabench (Kiela, 2020) ANLI (Nie et al., 2020)

Evaluation Sets

SuperGLUE diagnostic sets FraCaS (Cooper et al., 1994), RTE (Dagan et al., 2005), SICK (Marelli et al., 2014),
(Wang et al., 2019) SNLI (Bowman et al., 2015), MNLI (Williams et al., 2018),
Checklist (Ribeiro et al., 2020) HANS (McCoy et al., 2019b), Quantified NLI (Geiger et al., 2018),

MPE (Lai et al., 2017), EQUATE (Ravichander et al., 2019), DNC (Poliak et al., 2018),
ImpPres (Jeretic et al., 2020), Systematicity (Yanaka et al., 2020)
ConjNLI (Saha et al., 2020), SherLIiC (Schmitt and Schütze, 2019)

Table 2: Evaluation tools and literature, focusing on NLI as a case study. Some tools support multiple types of
evaluations, e.g., TextAttack supports both augmentations and attacks. For additional related work, see Section 5.

Example: author new movie reviews in the style
of a newspaper columnist.

We note that these idioms are not exhaustive. In
Table 2, we use this categorization to summarize
the tools and research available today, using the
well-studied natural language inference (NLI) task
as a case study. As an example, TextAttack (Mor-
ris et al., 2020) users can perform attacks, while
CheckList (Ribeiro et al., 2020) users author exam-
ples using templates, but cannot perform attacks.

Tools vary in whether they provide scaffolding to
let users build on new evaluation ideas easily. They
often provide excellent abstractions for particular
idioms, e.g., TextAttack (Morris et al., 2020) scaf-
folds users to easily write new adversarial attacks.
However, no tool that we are aware of addresses
this for evaluation that cuts across multiple idioms.

All of these limitations make it difficult for prac-
titioners, who are forced to glue together a combi-
nation of tools. Each tool meets different developer
needs, and has its own abstractions and organizing
principles, which takes away time from users to
inject their own creativity and expertise into the
evaluation process.

We address these challenges with Robustness
Gym (Section 3.1), which uses an open-interface
design to support all 4 evaluation idioms, and pro-
vides a simple workflow to scaffold users.

2.2 Challenge 2: Workflow Fragmentation
As practitioners evaluate, they need to keep track
of progress and communicate findings. Evaluation
tools today let users save their progress, but pro-
vide no support for semantic versioning (Preston-
Werner, 2013) and sharing findings. This is made
more difficult when consolidating evaluations and

results across multiple tools. General-purpose data
storage solutions (McKerns et al., 2012) solve this
problem, but require significant user effort to cus-
tomize and manage.

Reporting findings can be difficult since there
is no consensus on how to report when perform-
ing evaluation across multiple idioms. To study
whether existing tools incentivize reporting, we
scraped model cards for all available Huggingface
models (Wolf et al., 2020a). Model cards (Mitchell
et al., 2019) are free-form templates for standard-
ized reporting that contain an entry for “Evalua-
tion" or “Results", but leave the decision of what
to report to the user. Huggingface provides tools
for users to create model cards when submitting
models to their model hub.

Our findings are summarized in Table 3. Only a
small fraction (6.0%) of models carry model cards
with any evaluation information. Qualitatively, we
found low consistency in how users report findings,
even for models trained on the same task. This
suggests that it remains difficult for users to report
evaluation information consistently and easily.

In Section 3.2, we describe the support that Ro-
bustness Gym provides for versioning evaluations
in testbenches, and easily exporting and reporting
findings with reports.

Model Cards % of Models

Total 2133 64.6%
Non-empty 922 27.9%
Any evaluation info 197 6.0%

Models 3301 100.0%

Table 3: Prevalence of evaluations in model cards on the
HuggingFace Model Hub (huggingface.co/models).

huggingface.co/models

45

Datasets

Model

Eval Sets QA

NLI

SubpopulationsTransformationsAttacks

Slices

Test Bench

Cached
Operations

TasksSlice Builders

LaTex ReportInteractive AnalysisRobustness Report

Evaluation and Reporting

Dialog

Sentiment

Summarization

Figure 1: Robustness Gym system design and workflow.

3 Robustness Gym

We address the challenges highlighted in Section 2
with Robustness Gym (RG). We describe how users
can build evaluations in Section 3.1, and version
evaluations and report findings in Section 3.2. Fig-
ure 1 provides a visual depiction of the system de-
sign and workflow in RG, while Python examples
for RG are in Tables 4, 5 and 6 of the appendix.

3.1 Evaluation Workflow

As highlighted in Section 2.1, practitioners can get
locked into a single tool that supports only a few
evaluation idioms. By contrast, RG enables broad
evaluations across multiple idioms. At a high level,
RG breaks evaluation into a two-stage workflow:

1. Caching information. First, practitioners typi-
cally perform a set of common pre-processing
operations (e.g., tokenization, lemmatization)
and compute useful side information for each
example (e.g., entity disambiguation, corefer-
ence resolution, semantic parsing) using exter-
nal knowledge sources and models, which they
cache for future analysis. An example is running
the spaCy pipeline, and caching the Doc object
that is generated for downstream analysis.

A large part of practitioner effort goes into gen-
erating this side information – which can be
expensive to compute – and into standardizing
it to a format that is convenient for analysis.

RG Support. CachedOperation is an abstrac-
tion in RG to derive useful information or gen-
erate side information for each example in a

dataset by (i) letting users run common oper-
ations easily and caching the outputs of these
operations e.g., running spaCy (Honnibal et al.,
2020); (ii) storing this information alongside the
associated example so that it can be accessed
conveniently; (iii) providing a simple abstrac-
tion for users to write their own operations.

2. Building slices. Second, practitioners use the
examples’ inputs and any available cached in-
formation to build slices, which are collections
of examples used for evaluation based on any
of the 4 evaluation idioms. These slices are de-
rived from a loaded dataset by applying one of
the evaluation idioms, e.g. filtering a dataset
based on some criteria to construct a subpopula-
tion.

RG Support. SliceBuilder is an abstraction to
retrieve information for an example and cre-
ate slices of data from them by (i) providing
retrieval methods to access inputs and cached in-
formation conveniently when writing custom
code to build slices; (ii) providing special-
ized abstractions for specific evaluation idioms:
transformations, attacks and subpopulations.

Robustness Gym includes wrappers for libraries
such as TextAttack and nlpaug that provide
specialized support for constructing adversar-
ial attacks and data transformations respectively.
This allows users the ability to utilize external
libraries in a unified toolkit and workflow.

This breakdown naturally separates the process
of gathering useful information from the nuts and

46

90.2

93.2

90.8

79.5

90.9

88.2

87.7

90.5

92.7High Lexical Overlap (McCoy, 2019)

Low Lexical Overlap (McCoy, 2019)

Temporal Preposition @ hypothesis (Chen, 2020)

Quantifier @ hypothesis (Chen, 2020)

Possessive Preposition @ hypothesis (Chen, 2020)

Negation @ premise (Naik, 2018)

Negation @ hypothesis (Naik, 2018)

High Constituency Tree Overlap (McCoy, 2019)

Low Constituency Tree Overlap (McCoy, 2019) 89.7

92.2

86.0

79.5

90.9

88.3

86.0

89.6

91.9

2.1K

1.99K

109

39

585

170

106

2.04K

1.98K

80.3BAE (Garg, 2019) 78.4 2.92K

82.3

65.8

75.4Synonym Substitution (Ma, 2019)

Keyboard Character Errors (Ma, 2019)

Easy Data Augmentation (Wei, 2019) 82.2

65.4

75.1

9.84K

9.14K

9.84K

90.9

0 100

SNLI (Bowman, 2015) 90.9

0 100 E N C E N C

9.84K

Accuracy F1 Class Dist Pred Dist Size

subpopulation
attack

transform
evalset

20 39 41

53 24 23

22 17 61

31 38 31

39 34 27

38 34 28

13 61 25

20 33 47

52 29 19

20 39 41

51 24 25

23 13 64

38 26 36

36 35 29

39 34 28

13 61 25

20 33 46

51 30 20

13 58 29 12 48 40

34 33 33

34 33 33

34 33 33

28 36 36

24 33 44

24 36 40

34 33 33 33 33 34

Figure 2: Robustness Report for Natural Language Inference using bert-base on SNLI.

bolts of using that information to build slices. Ta-
ble 1 contains examples of CachedOperations and
SliceBuilders that can be supported by RG.

RG relies on a common data interface provided
by the datasets library from HuggingFace (Wolf
et al., 2020a), which is backed by Apache Ar-
row (Foundation, 2019). This ensures that all opera-
tions in RG interoperate with HuggingFace models.

3.2 Testbenches and Reports
As highlighted in Section 2.2, users may find them-
selves consolidating evaluation results across sev-
eral tools and evaluation idioms. RG addresses
this fragmentation by providing users a TestBench
abstraction for storing and versioning evaluations,
and a Report abstraction for sharing findings.

• Versioning evaluations. Users can assemble
and version a collection of slices into a Test-
Bench, which represents a suite of evaluations.
A TestBench contains the slices created by the
user, and users can interact with a TestBench to
evaluate models and store metrics. Each Test-
Bench has an associated semantic version that
can be “bumped" as changes are made, e.g. if a
user adds a new set of slices, they can change the
version to indicate that the TestBench has been
modified.

RG tracks the provenance or history of slices,
making it easy to identify the (i) slice’s origi-
nal data source; (ii) sequence of SliceBuilders

by which a slice was created. This makes it
easy for another user to reproduce evaluations
when given a TestBench, even without the origi-
nal code. They can simply inspect the slices in
the TestBench to look at provenance information,
and use it to reproduce their evaluation process.

• Sharing findings. Users can create a Robustness
Report for any model on a TestBench (Figure 2),
or standalone reports for evaluations that are not
performed in RG, using the Report abstraction.
To incentivize standardized reporting, RG sup-
ports Standard Reports for several tasks. The
Standard Report is comprehensive, static and is
backed by a TestBench that contains slices from
all evaluation idioms. It can be generated in a
PDF or LATEX format to be added to the appendix
of a paper3. Reports reduce user burden in com-
municating findings, and make it easier to stan-
dardize reporting in the community.

RG supports an interactive Streamlit tool4 for
generating standard reports, which will be ex-
panded in the future to allow users to pick slices
based on their evaluation needs.

4 User Personas in Robustness Gym

Next, we discuss how users with varying expertise
can use RG. We describe how 3 user personas—
beginner, intermediate, and advanced—can use RG

3See Figure 3 in the appendix.
4Screenshot in Figure 4 of the appendix.

47

to analyze the performance of an natural language
inference (NLI) model. In NLI, the goal is to deter-
mine whether a premise sentence entails, is neutral
to, or contradicts a hypothesis sentence.

4.1 Scenario I: Beginner User

Description. Users new to NLP and robustness,
lack knowledge to choose or write specific slices.

Example Goal. Exploratory robustness testing.

RG support:

• Visual Interface. The user creates a report with a
few clicks in the Streamlit interface5. They select
“Standard Report”, “SNLI” (dataset)6, “Ternary
Natural Language Inference” (task), “BERT-
Base” (model), and click “Generate Report”.

• Standard Reports. The Standard Report, shown
in Figure 2 provides a detailed snapshot of
various robustness tests for NLI. The tests
may include Subpopulations (e.g., HASNEGA-
TION, LEXICALOVERLAP), Transformations
(e.g., SYNONYMAUG, KEYBOARDAUG) (Ma,
2019), Attacks (TEXTATTACK) (Morris et al.,
2020; Garg and Ramakrishnan, 2020), and Eval-
uation Sets (Bowman et al., 2015). The user
gleans several initial insights from this report.
For example, their model is vulnerable to typing
mistakes due to low accuracy on the KEYBOAR-
DAUG slice; the predicted class distribution col-
umn reveals that this noise causes the model to
predict contradiction more frequently than
entailment or neutral. The user is able to
easily share the generated PDF of this report.

4.2 Scenario II: Intermediate User

Description. Users familiar with NLP and robust-
ness, willing to write minimal code.

Example Goal. Explore gender bias when gen-
dered pronouns are present in the input.

RG support:

• Built-in SliceBuilders. Apply the existing HAS-
PHRASE SliceBuilder to create subpopulations
with female pronouns in the hypothesis:
subpopulations = HasPhrase([’her’, ’she’])
slices = subpopulations(snli, [’hypothesis’])

• Testbenches. Put slices into a TestBench and
make it available on GitHub for collaboration.

5See supplementary demo video for example usage.
6The Stanford Natural Languge Inference dataset (Bow-

man et al., 2015).

• Reports. Generate Robustness Reports for any
model from the TestBench.

4.3 Scenario III: Advanced User

Description. NLP experts, need to write custom
code for their task and research.

Example Goal. Evaluate whether NLI models
rely on surface-level spurious similarities between
premise and hypothesis.

RG support:

• CachedOperations. Run the spaCy pipeline for
tokenization.

• Custom SliceBuilders. Utilize the SCORESUB-
POPULATION class to construct subpopulations
with arbitrary scoring functions. Write a custom
scoring function len_diff that returns the ab-
solute difference in length between the tokenized
hypothesis and premise. Then, find examples
that score in the top 10% as follows:
s = ScoreSubpopulation(

intervals=[(’90%’,’100%’)], score_fn=len_diff)

• Transformations. Transform data using classes
such as EASYDATAAUGMENTATION (Wei and
Zou, 2019). Compose this transformation with
the custom SCORESUBPOPULATION described
earlier to create a larger slice.

• Testbench. Publish a new TestBench on GitHub
for others to reuse and refine the evaluations.

• Report. Generate a report for immediate anal-
ysis and a LATEX appendix to share results in a
research paper (see Figure 3 in appendix).

5 Related Tools and Work

We highlight additional related work for evaluation
and reporting, including work on interpretability.

Evaluation and error-analysis. Tools for eval-
uation and error analysis support users in under-
standing where their models fail. In contrast to
RG, existing tools support only a subset of eval-
uations and analyses. Errudite (Wu et al., 2019),
Snorkel (Ratner et al., 2017) support subpopula-
tions, TextAttack (Morris et al., 2020) adversarial
attacks, nlpaug (Ma, 2019) transformations, and
CrossCheck (Arendt et al., 2020), Manifold (Zhang
et al., 2018) focus on visualization and analysis for
model comparison.

Interpretability. Tools for interpretability enable
a better understanding of model behavior. These

48

tools serve complementary objectives to Robust-
ness Gym, e.g., explaining why a model makes a
certain prediction, rather than performing broad
evaluations. Tools include the recent Language
Interpretability Tool (LIT) (Tenney et al., 2020),
IBM’s AI Explainability 360 (Arya et al., 2019),
AllenNLP Interpret (Wallace et al., 2019b), Inter-
pretML (Nori et al., 2019), Manifold (Zhang et al.,
2018), Pytorch Captum (Narine Kokhlikyan and
Reblitz-Richardson), DiCE (Mothilal et al., 2020),
What-if (Wexler et al., 2019), FairVis (Cabrera
et al., 2019), and FairSight (Ahn and Lin, 2019).
Many of these tools focus on interactive visualiza-
tion, which limits their scope to interpreting small
numbers of examples and makes their use suscepti-
ble to subjectivity and selection bias. By contrast,
Robustness Gym can scale to large datasets, while
testbenches ensure reproducibility of analyses.

6 Conclusion

We introduced Robustness Gym, an evaluation
toolkit that supports a broad set of evaluation id-
ioms, and can be used for collaboratively building
and sharing evaluations and results. Robustness
Gym is under active development and we welcome
feedback and contributions from the community.

Acknowledgements

This work was part of a collaboration between Stan-
ford, UNC, and Salesforce Research and was sup-
ported by Salesforce AI Research grants to MB
and CR. We are thankful to Samson Tan, Jason Wu,
Stephan Zheng, Caiming Xiong, Han Guo, Lau-
rel Orr, Jared Dunnmon, Chris Potts, Marco Tulio
Ribeiro, Shreya Rajpal for helpful discussions and
feedback. CR also gratefully acknowledges the sup-
port of NIH under No. U54EB020405 (Mobilize),
NSF under Nos. CCF1763315 (Beyond Sparsity),
CCF1563078 (Volume to Velocity), and 1937301
(RTML); ONR under No. N000141712266 (Uni-
fying Weak Supervision); the Moore Foundation,
NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft,
NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Ac-
centure, Ericsson, Qualcomm, Analog Devices, the
Okawa Foundation, American Family Insurance,
Google Cloud, Swiss Re, Total, the HAI-AWS
Cloud Credits for Research program, and mem-
bers of the Stanford DAWN project: Facebook,
Google, and VMWare. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copy-

right notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the authors and do not neces-
sarily reflect the views, policies, or endorsements,
either expressed or implied, of NIH, ONR, or the
U.S. Government.

References
Yongsu Ahn and Yu-Ru Lin. 2019. Fairsight: Visual

analytics for fairness in decision making. IEEE
transactions on visualization and computer graphics,
26(1):1086–1095.

Dustin Arendt, Zhuanyi Huang, Prasha Shrestha, E. Ay-
ton, Maria Glenski, and Svitlana Volkova. 2020.
Crosscheck: Rapid, reproducible, and interpretable
model evaluation. ArXiv, abs/2004.07993.

Vijay Arya, Rachel K. E. Bellamy, Pin-Yu Chen, Amit
Dhurandhar, Michael Hind, Samuel C. Hoffman,
Stephanie Houde, Q. Vera Liao, Ronny Luss, Alek-
sandra Mojsilović, Sami Mourad, Pablo Pedemonte,
Ramya Raghavendra, John Richards, Prasanna Sat-
tigeri, Karthikeyan Shanmugam, Moninder Singh,
Kush R. Varshney, Dennis Wei, and Yunfeng Zhang.
2019. One explanation does not fit all: A toolkit and
taxonomy of ai explainability techniques.

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. ArXiv, abs/1711.02173.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Ángel Alexander Cabrera, Will Epperson, Fred
Hohman, Minsuk Kahng, Jamie Morgenstern, and
Duen Horng Chau. 2019. Fairvis: Visual analytics
for discovering intersectional bias in machine learn-
ing. In 2019 IEEE Conference on Visual Analytics
Science and Technology (VAST), pages 46–56. IEEE.

Vincent Chen, Sen Wu, Alexander J Ratner, Jen Weng,
and Christopher Ré. 2019. Slice-based learning: A
programming model for residual learning in critical
data slices. In Advances in neural information pro-
cessing systems, pages 9392–9402.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Johan Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, and et al.
Pulman, Stephen. 1994. Using the framework. Tech-
nical report, Deliverable D6.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190. Springer.

Apache Software Foundation. 2019. Arrow: A cross-
language development platform for in-memory data.

https://arxiv.org/abs/1909.03012
https://arxiv.org/abs/1909.03012
https://arrow.apache.org
https://arrow.apache.org

49

Siddhant Garg and Goutham Ramakrishnan. 2020. Bae:
Bert-based adversarial examples for text classifica-
tion. ArXiv, abs/2004.01970.

Atticus Geiger, Ignacio Cases, Lauri Karttunen,
and Christopher Potts. 2018. Stress-testing neu-
ral models of natural language inference with
multiply-quantified sentences. arXiv preprint
arXiv:1810.13033.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that re-
quire simple lexical inferences. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
650–655.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel R Bowman, and Noah A
Smith. 2018. Annotation artifacts in natural language
inference data. arXiv preprint arXiv:1803.02324.

Isobel Asher Hamilton. 2018. Amazon built an AI tool
to hire people but had to shut it down because it was
discriminating against women.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav
Kadavath, Frank Wang, Evan Dorundo, Rahul Desai,
Tyler Zhu, Samyak Parajuli, Mike Guo, et al. 2020.
The many faces of robustness: A critical analysis
of out-of-distribution generalization. arXiv preprint
arXiv:2006.16241.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy: Industrial-
strength Natural Language Processing in Python.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models imppressive? learning implicature and
presupposition. arXiv preprint arXiv:2004.03066.

Robin Jia and Percy Liang. 2017. Adversarial examples
for evaluating reading comprehension systems. In
EMNLP.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Douwe Kiela. 2020. Rethinking AI Benchmarking.

Alice Lai, Yonatan Bisk, and Julia Hockenmaier. 2017.
Natural language inference from multiple premises.
In Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 100–109, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Edward Ma. 2019. NLP Augmentation.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014),
pages 1–8, Dublin, Ireland. Association for Compu-
tational Linguistics.

R. T. McCoy, Ellie Pavlick, and Tal Linzen. 2019a.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. ArXiv,
abs/1902.01007.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. 2019b.
Right for the wrong reasons: Diagnosing syntac-
tic heuristics in natural language inference. arXiv
preprint arXiv:1902.01007.

M. McKerns, Leif Strand, T. Sullivan, Alta Fang, and
M. A. G. Aivazis. 2012. Building a framework for
predictive science. ArXiv, abs/1202.1056.

J. Miller, Karl Krauth, B. Recht, and L. Schmidt. 2020.
The effect of natural distribution shift on question
answering models. ArXiv, abs/2004.14444.

Margaret Mitchell, Simone Wu, Andrew Zaldivar,
Parker Barnes, Lucy Vasserman, Ben Hutchinson,
Elena Spitzer, Inioluwa Deborah Raji, and Timnit
Gebru. 2019. Model cards for model reporting. In
Proceedings of the conference on fairness, account-
ability, and transparency, pages 220–229.

John X Morris, Eli Lifland, Jin Yong Yoo, and Yanjun
Qi. 2020. Textattack: A framework for adversarial at-
tacks in natural language processing. arXiv preprint
arXiv:2005.05909.

Ramaravind K Mothilal, Amit Sharma, and Chenhao
Tan. 2020. Explaining machine learning classifiers
through diverse counterfactual explanations. In Pro-
ceedings of the 2020 Conference on Fairness, Ac-
countability, and Transparency, pages 607–617.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
arXiv preprint arXiv:1806.00692.

Miguel Martin Edward Wang Jonathan Reynolds
Alexander Melnikov Natalia Lunova Nar-
ine Kokhlikyan, Vivek Miglani and Orion
Reblitz-Richardson. Pytorch captum.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019.
Analyzing compositionality-sensitivity of nli models.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6867–6874.

https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10
https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10
https://www.businessinsider.com/amazon-built-ai-to-hire-people-discriminated-against-women-2018-10
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://dynabench.org/
https://www.aclweb.org/anthology/I17-1011
https://github.com/makcedward/nlpaug
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.3115/v1/S14-2001
https://github.com/pytorch/captum

50

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
nli: A new benchmark for natural language under-
standing. In ACL.

Harsha Nori, Samuel Jenkins, Paul Koch, and Rich
Caruana. 2019. Interpretml: A unified framework
for machine learning interpretability. arXiv preprint
arXiv:1909.09223.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and
Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence rep-
resentation evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 67–81, Brussels, Belgium.
Association for Computational Linguistics.

Tom Preston-Werner. 2013. Semantic versioning 2.0. 0.
línea]. Available: http://semver. org.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose,
and Eduard Hovy. 2019. EQUATE: A benchmark
evaluation framework for quantitative reasoning in
natural language inference. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 349–361, Hong
Kong, China. Association for Computational Lin-
guistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of nlp models with checklist. In
Association for Computational Linguistics (ACL).

Alexis Ross and Ellie Pavlick. 2019. How well do nli
models capture verb veridicality? In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2230–2240.

Swarnadeep Saha, Yixin Nie, and Mohit Bansal. 2020.
Conjnli: Natural language inference over conjunctive
sentences. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8240–8252.

Ivan Sanchez, Jeff Mitchell, and Sebastian Riedel. 2018.
Behavior analysis of NLI models: Uncovering the in-
fluence of three factors on robustness. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1975–1985, New Orleans, Louisiana.
Association for Computational Linguistics.

Martin Schmitt and Hinrich Schütze. 2019. SherLIiC: A
typed event-focused lexical inference benchmark for
evaluating natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 902–914, Florence,
Italy. Association for Computational Linguistics.

Chloe Rose Stuart-Ulin. 2018. Microsoft’s politically
correct chatbot is even worse than its racist one.

Ian Tenney, James Wexler, Jasmijn Bastings, Tolga
Bolukbasi, Andy Coenen, Sebastian Gehrmann,
Ellen Jiang, Mahima Pushkarna, Carey Radebaugh,
Emily Reif, et al. 2020. The language interpretability
tool: Extensible, interactive visualizations and analy-
sis for nlp models. arXiv preprint arXiv:2008.05122.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019a. Universal adversarial
triggers for nlp. arXiv preprint arXiv:1908.07125.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay
Subramanian, Matt Gardner, and Sameer Singh.
2019b. Allennlp interpret: A framework for ex-
plaining predictions of nlp models. arXiv preprint
arXiv:1909.09251.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, pages 3266–3280.

Jason W Wei and Kai Zou. 2019. Eda: Easy
data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint
arXiv:1901.11196.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi,
Martin Wattenberg, Fernanda Viégas, and Jimbo Wil-
son. 2019. The what-if tool: Interactive probing of
machine learning models. IEEE transactions on vi-
sualization and computer graphics, 26(1):56–65.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020a. Hugging-
face’s transformers: State-of-the-art natural language
processing.

https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/K19-1033
https://doi.org/10.18653/v1/N18-1179
https://doi.org/10.18653/v1/N18-1179
https://doi.org/10.18653/v1/P19-1086
https://doi.org/10.18653/v1/P19-1086
https://doi.org/10.18653/v1/P19-1086
https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one
https://qz.com/1340990/microsofts-politically-correct-chat-bot-is-even-worse-than-its-racist-one
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771

51

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020b. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tongshuang Wu, Marco Tulio Ribeiro, J. Heer, and
Daniel S. Weld. 2019. Errudite: Scalable, repro-
ducible, and testable error analysis. In ACL.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, and
Kentaro Inui. 2020. Do neural models learn system-
aticity of monotonicity inference in natural language?
arXiv preprint arXiv:2004.14839.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji
Zhang, Bairu Hou, Yuan Zang, Zhiyuan Liu, and
Maosong Sun. 2020. Openattack: An open-source
textual adversarial attack toolkit. arXiv preprint
arXiv:2009.09191.

Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
David S Ebert. 2018. Manifold: A model-agnostic
framework for interpretation and diagnosis of ma-
chine learning models. IEEE transactions on visual-
ization and computer graphics, 25(1):364–373.

A Appendix

Code. We provide example code snippets for Ro-
bustness Gym in Tables 4 (CachedOperation), 5
(SliceBuilder), and 6 (TestBench, Report), below.

LATEX Report. Figure 3 is an example of a report
generated in a LATEX format. The code for the
figure was auto-generated and the figure was simply
included in the appendix.

Streamlit Application. Figure 4 is a screenshot of
our streamlit application for generating standard
reports.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

52

Goal Code Snippet

C
ac

hi
ng

Create

Create Spacy cached operation

spacy = Spacy()

Create Stanza cached operation

stanza = Stanza()

Create a custom cached opera-
tion

cachedop = CachedOperation(
apply_fn=my_custom_fn,
identifier=Identifier(’MyCustomOp’),

)

Run a cached operation

dataset = cachedop(dataset, columns)

Retrieve

Retrieve all Spacy info cached

Spacy.retrieve(dataset, columns)

Retrieve Spacy tokens

Spacy.retrieve(batch, columns, ’tokens’)

Retrieve Stanza entities

Stanza.retrieve(
batch,
columns,
Stanza.entities

)

Retrieve any cached operation
info after processing

CachedOperation.retrieve(
batch,
columns,
my_proc_fn,
’MyCustomOp’

)

Table 4: Code for the CachedOperation abstraction in Robustness Gym.

53

Goal Code Snippet

Sl
ic

e
B

ui
ld

in
g

Subpopulations

Create a subpopulation that gen-
erates three slices based on raw
lengths in [0, 10], [10, 20] and
[20,∞)

length_sp = Length(
[(0, 10), (10, 20), (20, np.inf)]

)

Create a subpopulation that gen-
erates two slices based on bot-
tom 10% and top 10% length
percentiles

length_sp = Length(
[(’0%’, ’10%’), (’90%’, ’100%’)]

)

Create a custom subpopulation
by binning the outputs of a scor-
ing function custom_sp = ScoreSubpopulation(

[(’0%’, ’10%’), (’90%’, ’100%’)],
my_scoring_fn

)

Transformations

Create EasyDataAugmentation

eda = EasyDataAugmentation()

Create any NlpAug transforma-
tion

nlpaug_trans = NlpAugTransformation(
pipeline=nlpaug_pipeline

)

Create a custom transformation

custom_trans = Transformation(
Identifier(’MyTransformation’),
my_transformation_fn

)

Attacks

Create TextAttack recipe

attack = TextAttack.from_recipe(recipe, model)

Evaluation Sets

Create a slice from a dataset

sl = Slice(dataset)

Slice Builders

Run any SliceBuilder

dataset, slices, membership = slicebuilder(
batch_or_dataset=dataset,
columns=columns,

)

Table 5: Code for the SliceBuilder abstraction in Robustness Gym.

54

Goal Code Snippet

R
ep

or
tin

g

Testbench

Create a testbench

testbench = TestBench(
identifier=Identifier(’MyTestBench’),
version=’0.1.0’

)

Add slices to testbench

testbench.add_slices(slices)

Fuzzy search testbench for slices

top_k_matched_slices = testbench.search(’len’)

Bump testbench minor version

testbench.bump_minor()

Save and load a testbench

testbench.save(path)
testbench.load(path)

Report

Evaluate model on slices and
generate report

testbench.create_report(model)

Create a custom report

report = Report(
dataframe_with_metrics,
report_columns,

)

Generate figure from report

figure = report.figure()

Generate LATEXreport

latex = report.latex()

Table 6: Code for the TestBench and Report abstractions in Robustness Gym.

55

90.2

93.2

90.8

79.5

90.9

88.2

87.7

90.5

92.7High Lexical Overlap (McCoy, 2019)

Low Lexical Overlap (McCoy, 2019)

Temporal Preposition @ hypothesis (Chen, 2020)

Quantifier @ hypothesis (Chen, 2020)

Possessive Preposition @ hypothesis (Chen, 2020)

Negation @ premise (Naik, 2018)

Negation @ hypothesis (Naik, 2018)

High Constituency Tree Overlap (McCoy, 2019)

Low Constituency Tree Overlap (McCoy, 2019) 89.7

92.2

86.0

79.5

90.9

88.3

86.0

89.6

91.9

2.1K

1.99K

109

39

585

170

106

2.04K

1.98K

80.3BAE (Garg, 2019) 78.4 2.92K

82.3

65.8

75.4Synonym Substitution (Ma, 2019)

Keyboard Character Errors (Ma, 2019)

Easy Data Augmentation (Wei, 2019) 82.2

65.4

75.1

9.84K

9.14K

9.84K

90.9

0 100

SNLI (Bowman, 2015) 90.9

0 100 E N C E N C

9.84K

Accuracy F1 Class Dist Pred Dist Size

subpopulation
attack

transform
evalset

20 39 41

53 24 23

22 17 61

31 38 31

39 34 27

38 34 28

13 61 25

20 33 47

52 29 19

20 39 41

51 24 25

23 13 64

38 26 36

36 35 29

39 34 28

13 61 25

20 33 46

51 30 20

13 58 29 12 48 40

34 33 33

34 33 33

34 33 33

28 36 36

24 33 44

24 36 40

34 33 33 33 33 34

Figure 3: Robustness report for textattack/bert-base-uncased-snli model on SNLI dataset. The report lays out scores
for each evaluation, broken out by category. Citations: (Chen et al., 2019; Naik et al., 2018; McCoy et al., 2019a;
Wei and Zou, 2019; Ma, 2019; Bowman et al., 2015).

Note: the LATEX figure and caption above is auto-generated using “report.latex()".

Figure 4: Screenshot of our interactive Streamlit application for creating standard reports. Users can choose a
task, dataset and model on the left side, and a standard report spanning all 4 evaluation idioms – subpopulations,
transformations, attacks and evaluation sets – is auto-generated on the right side.

