Sentiment Preservation in Review Translation
using Curriculum-based Re-inforcement
Framework

Divya Kumari*, Soumya Chennabasavraj**, Nikesh Garera** and Asif Ekbal*

*Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna,
India

**Flipkart, India

*divya_1921csl10,asif@iitp.ac.in

**soumya.cb, nikesh.garera@flipkart.com

Abstract

Machine Translation (MT) is a common approach to feed humans or machines in a cross-lingual
context. However, there are some expected drawbacks. Studies suggest that in the cross-
lingual context, MT system often fails to preserve different stylistic and pragmatic properties
of the source text (e.g. sentiment, emotion, gender traits, etc.) to the target translation. These
disadvantages can degrade the performance of any downstream Natural Language Processing
(NLP) applications, such as sentiment analyser, that heavily relies on the output of the MT
systems (especially in a low-resource setting). The susceptibility to sentiment polarity loss
becomes even more severe when an MT system is employed for translating a source content
that lacks a legitimate language structure (e.g. review text). Therefore, while improving the
general quality of the Neural Machine Translation (NMT) output (e.g. adequacy), we must also
find ways to minimize the sentiment loss in translation. In our current work, we present a deep
re-inforcement learning (RL) framework in conjunction with the curriculum learning to fine-tune
the parameters of a full-fledged NMT system so that the generated translation successfully
encodes the underlying sentiment of the source without compromising the adequacy, unlike the
previous method. We evaluate our proposed method on the English-Hindi (product domain) and
French—English (restaurant domain) review datasets, and found that our method (further) brings
a significant improvement over a full-fledged supervised baseline for the machine translation
and sentiment classification tasks.

1 Introduction

Product and/or service reviews available in the e-commerce portals are predominantly in the
English language, and hence a large number of population can not understand these. Machine
Translation (MT) system can play a crucial role in bridging this gap by translating the user-
generated contents, and directly displaying them, or making these available for the downstream
Natural Language Processing (NLP) tasks e.g. sentiment classification! (Aradjo et al., 2020;
Barnes et al., 2016; Mohammad et al., 2016; Kanayama et al., 2004). However, numerous studies
(Poncelas et al., 2020a; Afli et al., 2017; Mohammad et al., 2016; Sennrich et al., 2016a) have
found a significant loss of sentiment during the automatic translation of the source text.

The susceptibility to sentiment loss aggravates when the MT system is translating a noisy
review that lacks a legitimate language structure at the origin. For example, a noisy review con-
tains several peculiarities and informal structures, such as shortening of words (e.g. “awesome”
as “awsm”), acronyms (e.g. “Oh My God” as “OMG”), phonetic substitution of numbers (e.g.
“before” as “b4”), emphasis on characters to define extremity of the emotion (e.g. “good” as
“g00000000d”), spelling mistakes, etc. Unfortunately, even a pervasively used commercial neural

IPlease note that our current work is limited to cross-lingual sentiment analysis [CLSA] via MT based approach.
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machine translation (NMT) system, Google Translate, is very brittle and easily falters when
presented with such noisy text, as illustrated through the following example.

Review Text (English): I found an awsome product. (Positive)

Google Transliteration (Hindi): mujhe ek ajeeb utpaad mila. (Neutral)

The example shows how the misspelling of a sentiment bearing word “awesome” gets this
positive expression translated to a neutral expression. In the above context, if an unedited raw
MT output is directly fed to the downstream sentiment classifier, it might not get the expected
classification accuracy. Thus, in this work we propose a deep-reinforcement-based framework to
adapt the parameters of a pre-trained neural MT system such that the generated translation im-
proves the performance of a cross-lingual multi-class sentiment classifier (without compromising
the adequacy).

More specifically, we propose a deep actor-critic (AC) reinforcement learning framework
in the ambit of curriculum learning (CL) to alleviate the issue of sentiment loss while improving
the quality of translation in a cross-lingual setup. The idea of actor-critic is to have two neural
networks, viz. (i). an actor (i.e. a pre-trained NMT) that takes an action (policy-based), and (ii).
a critic that observes how good the action taken is and provides feedback (value-based). This
feedback acts as a guiding signal to train the actor. Further, to better utilize the data, we also
integrate curriculum learning into our framework.

Recently, Tebbifakhr et al. (2019) demonstrated that an MT system (actor) can be customised
to produce a controlled translation that essentially improves the performance of a cross-lingual
(binary) sentiment classifier. They achieved this task-specific customisation of a “generic-MT”
system via a policy-based method that optimizes a task-specific metric, i.e. F'1 score (see Section
2). However, this often miserably fails to encode the semantics of the source sentence.

Recent studies (Xu et al., 2018) demonstrated that the non-opinionated semantic content
improves the quality of a sentiment classifier. Accordingly, the transfer of such information from
the source to the target can be pivotal for the quality of the sentiment classifier in a cross-lingual
setup. Towards this, we investigate the optimization of a harmonic-score-based reward function
in our proposed RL-based framework that ensures to preserve both sentiment and semantics. This
function operates by taking a weighted harmonic mean of two rewards: (i). content preservation
score measured through Sentence-level BLEU or SBLEU; and (ii). sentiment preservation
score measured through a function that performs element-wise dot product between a predicted
sentiment distribution and the gold sentiment distribution.

Empirical results, unlike Tebbifakhr et al. (2019), suggest that our RL-based fine-tuning
framework, tailored to optimize the harmonic reward, preserves both sentiment and semantics
in a given NMT context. Additionally, we also found that the above fine-tuning method in the
ambit of curriculum learning achieves an additional performance gain of the MT system over a
setting where curriculum based fine-tuning is not employed. The core of curriculum learning
(CL) (Bengio et al., 2009) is to design a metric that scores the difficulty of training samples,
which is then used to guide the order of presentation of samples to the learner (NMT) in an
easy-to-hard fashion. To the best of our knowledge, this is the very first work that studies the
curriculum learning (CL) for NMT from a new perspective, i.e. given a pre-trained MT model,
the dataset to fine-tune, and the two tasks viz. sentiment and content preservation; we utilize a
reward-based metric (i.e. harmonic score) to define the difficulty of the tasks and use it to score
the data points. The use of harmonic reward based scoring/ranking function implicitly covers the
tasks’ overall difficulty through a single metric.

Moreover, understanding that obtaining a gold-standard polarity annotated data is costlier,
the fine-tuning of pre-trained NMT model is performed by re-using only a small subset of the
supervised training samples that we annotated with respect to (w.r.t) their sentiment. Empirical
results suggest that additionally enriching a random small subset of the training data with extra
sentiment information, and later re-using them for the fine-tuning of the referenced model via
our proposed framework (c.f. Section 3) observes an additional gain in BLEU and F'1 score over
a supervised baseline. We summarize the main contributions and/or the key attributes of our
current work as follows:

(i). create a new domain-specific (i.e. product review) parallel corpus, a subset of which is
annotated for their sentiment;

(ii). propose an AC-based fine-tuning framework that utilizes a novel harmonic mean-based
reward function to meet our two-fold objectives, viz. enabling our NMT model to preserve; (a).
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the non-opinionated semantic content; and (b). the source sentiment during translation.

(iii). Additionally, we utilize the idea of CL during the RL fine-tuning of the pre-trained model
and try to learn from easy to hard data, where hard corresponds to the instances with lower
harmonic reward. To the best of our knowledge, this is the first work in NMT that studies CL in
the ambit of RL fine-tuning.

2 Related Work

The use of translation-based solution for cross-lingual sentiment classification is successfully
leveraged in the literature (Wu et al., 2021; Tebbifakhr et al., 2020; Aratjo et al., 2020; Poncelas
et al., 2020b; Fei and Li, 2020; Tebbifakhr et al., 2019; Akhtar et al., 2018; Barnes et al., 2016;
Balahur and Turchi, 2012; Kanayama et al., 2004) which suggest an inspiring use-case of the
MT system, and brings motivation for this piece of work.

Given the context of this work, we look at the pieces of works that address the preservation
of sentiment in the automatic translation. In one of the early works, Chen and Zhu (2014)
used a lexicon-based consistency approach to design a list of sentiment-based features and used
it to rank the candidates of 7-table in a Phrase based MT system. Lohar et al. (2017, 2018)
prepared the positive, negative and neutral sentiment-specific translation systems to ensure the
cross-lingual sentiment consistency.

Recently, Tebbifakhr et al. (2019) proposed Machine-Oriented (MO) Reinforce, a policy-
based method to pursue a machine-oriented objective? in a sentiment classification task unlike the
traditional human-oriented objective 3. It gives a new perspective for a use-case of the MT system
(i.e. machine translation for machine). To perform this task-specific adaption (i.e. produce
output to feed a machine), Tebbifakhr et al. (2019) adapted the REINFORCE of Williams (1992)
by incorporating an exploration-oriented sampling strategy. As opposed to one sampling of
REINFORCE, MO Reinforce samples k times, (k = 5), and obtains a reward for each sample
from the sentiment classifier. A final update of the model parameters are done w.r.t the highest
rewarding sample. Although they achieved a performance boost in the sentiment classification
task, they had to greatly compromise with the translation quality. In contrast to Tebbifakhr et al.
(2019), we focus on performing a task-specific customisation of a pre-trained MT system via a
harmonic reward based deep reinforcement framework that uses an AC method in conjunction
with the CL. The adapted NMT system, thus obtained, is expected to produce a more accurate
(high-quality) translation as well as improve the performance of a sentiment analyser. Bahdanau
et al. (2017); Nguyen et al. (2017), unlike us, used the popular AC method, and focused only on
preserving the semantics (translation quality) of a text. Additionally, we develop a CL based
strategy to guide the training. Recently, Zhao et al. (2020) also studied AC method in the context
of NMT. However, they used this method to learn the curriculum for re-selecting influential
data samples from the existing training set that can further improve the performance (translation
quality) of a pre-trained NMT system.

3 Methodology

Firstly, we perform the pre-training of a NMT model until the convergence using the standard
log-likelihood (LL) training on the supervised dataset (c.f. Table 1: (A)). The model, thus
obtained, acts as our referenced MT system/actor. To demonstrate the improvements brought
by the proposed curriculum-based AC fine-tuning over the above LL-based baseline in the
sentiment preservation and machine translation tasks, we carry out the task-specific adaption
of the pre-trained LL-based MT model (actor) by re-using a subset of the supervised training
samples. It is worth mentioning here that, in the fine-tuning stage, the actor does not observe any
new sentence, rather re-visit (randomly) a few of the supervised training samples which are now
additionally annotated with their sentiment (c.f. Section 4).

Actor-critic Overview : Here, we present a brief overview of our AC framework which is
discussed at length in the subsequent section. In the AC training, the actor (NMT) receives an

input sequence, s, and produces a sample translation, £, which is evaluated by the critic model.

2Where the MT objective is to feed a machine.
3Where the MT objective is to feed the human.
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Figure 1: An illustration of the Actor-Critic Method

The critic feedback is used by the actor to identify those actions that bring it a better than the
average reward. In the above context, a feedback of a random critic would be useless for training
the actor. Hence, similar to the actor we warm up the critic for one epoch by feeding it samples
from the pre-trained actor, while the actor’s parameters are frozen. We then fine-tune these
models jointly so that - as the actor gets better w.r.t its action, the critic gets better at giving
feedback (see Section 4.2 for the dataset and reward used in the pre-training and fine-tuning
stages). The details of the loss functions that the actor and critic minimizes are discussed in
Section 3.1.

Furthermore, to better utilize the data, we finally integrate CL into our AC framework (our
proposed approach). Empirical results (Section 5.1) show that during fine-tuning, presenting
the data in an easy-to-hard fashion yields a better learned actor model over the one obtained via
vanilla (no-curriculum based) fine-tuning. Our proposed framework brought improvements over

several baselines without using any additional new training data in the two translation tasks, i.e.

(i). English-Hindi* and (ii). French-English 3. Since our proposed framework is a combination
of RL via AC method and CL, we first present the details of the main components of the AC
model alongside their training procedure in Section 3.1. The details of the reward model are
presented in Section 3.2, and then introduce the plausibility of CL in Section 3.3. Finally, we
describe our proposed CL-based AC framework in Algorithm 1.

3.1 Proposed Fine-tuning Method

The architecture of our AC-based framework is illustrated in Figure 1. It has three main
components viz. (i). an actor : the pre-trained neural agent (NMT) whose parameters define the
policy and the agent takes action, i.e. sample translations according to the policy (ii). a reward
model : a score function used to evaluate the policy. It provides the actual (true) estimated reward
to the translations sampled from the model’s policy. To ensure the preservation of sentiment and
content in translation, the chosen reward model gives two constituent rewards - a classifier-based
score and a SBLEU score (Section 3.2), respectively, and (iii). a critic : a deep neural function
approximator that predicts an expected value (reward) for the sampled action. This is then used
to center the true reward (step (ii)) from the environment (see Equation 2). Subtracting critic
estimated reward from the true reward helps the actor to identify action that yields extra reward
beyond the expected return. We employ a critic with the same architecture as of the actor.

We see from the lower-left side of Figure 1 that, for each input sentence (s), we draw a

4Trained using a new parallel dataset created as a part of this work, a subset of which is polarity annotated.
5Trained using publicly available dataset, a part of it is additionally annotated with sentiment.
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single sample (£) from the actor, which is used for both estimating gradients of the actor and the
critic model as explained in the subsequent section.

Critic Network training: During the RL training, we feed a batch of source sentences,
B; (s), to the critic encoder and the corresponding sampled translations obtained from the actor,

B; (f), to the decoder of the critic model. The critic decoder then predicts the rewards (i.e.
value estimates, V, predicted for each time step of the decoder), and accordingly updates its

parameters supervised by the actual (or true) rewards, R(#, s) © (steps to obtain this reward is
discussed in Section 3.2) from the environment.

The objective of the critic network is, thus, to find its parameter value ¢ that minimizes the
mean square error (MSE) between the true reward (see R in Figure 1) from the environment, and
the critic estimated reward (i.e. values predicted by the critic, see V;; in Figure 1). Accordingly,

the MSE loss that the critic minimizes is as in Equation (1), where 7 being the critic decoding
step.

n
VoLer(0) = Y [Vt 8) = R(E,8)] V4V )
7'=1

Note that in this work we explore the setting, where the reward, R, is observable only at time
step 7 = n of the actor (a scalar for each complete sentence). Thus, to calculate the difference
terms in Equation 1 for n steps, we use the same terminal reward, R, in all the intermediate time
steps of the critic decoder.

Actor Network training: To update the actor (G) parameters, 6, we use the policy gradient
loss; weighted by a reward which is centered via the critic estimated value (i.e. the critic
estimated value, V, is subtracted from the true reward, R, from the environment), as in equation
(2). The updated reward is finally used to weigh the policy gradient loss, as shown in (3), where
7 being the decoding step of the actor.

RT (t’ S) = R(t’ 3) - V(t<7" ) 3) (2)
veLgcgtor (0) ~ Z RTVO log‘ Gy (£T|£<T) 3)
T=1

The actor and the critic both are global-attention based recurrent neural networks (RNN).
Algorithm 1 summarizes the overall update framework. We run this algorithm for mini-batches.

3.2 Defining Rewards

As our primary goal is to optimize the performance of the pre-trained NMT system towards
sentiment classification and machine translation tasks, accordingly we investigate the utility
of the following three reward functions (i.e. true reward, R in Equation 1 as R, Ry, R3) for
optimization through our vanilla AC method. Please note, for brevity we only choose the
reward that serves the best to our purpose (i.e. harmonic reward as it ensures both, an improved
cross-lingual sentiment projection, and a high quality translation with our vanilla AC approach,
as discussed in Section 5.1) for our subsequently proposed curriculum-based experiment. The
three types of feedbacks we explored are: (i). Sentence-level BLEU as a reward to ensure the
content preservation, also referred as R;, is calculated following the Equation (4)

R, = SBLEU({, t) 4)
(ii). Element-wise dot product between the gold sentiment distribution and predicted sentiment

distribution (e.g. [1,0,0] and [0.2,0.1,0.7] in Figure 1 evaluates to scalar value 0.2) taken from
the softmax layer of the target language classifier to ensure sentiment preservation, also referred

6 Although shown like this, it only means true reward corresponding to a given source sentence and the corresponding
sampled action, not as a function.
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as R,. To simulate the target language classifier, we fine-tune the pre-trained BERT model
(Devlin et al., 2019). The tuned classifier (preparation steps discussed in Section 4.1) is used to
obtain the reward R» as in Equation (5).

RQ = P(S)gold ° P(f)bert (5)

and,

(iii). Harmonic mean of (i) and (ii) as a reward, also referred to as R3 to ensure the preservation

of both sentiment and semantic during the translation, as in Equation (6).
(2-Rq - Ry)

(6% -R1) +Ra

where (3 is the harmonic weight which is set to 0.5.

Ry = (1+5%) 6)

3.3 Curriculum Construction

The core of CL is (i). to design an evaluation metric for difficulty, and (ii). to provide the model
with easy samples first before the hard ones.

In this work, the notion of difficulty is derived from the harmonic reward, R3, as follows.

Let, X = {a; }Zj\il = {(s%,t%) }ivzl denotes the RL training data points. To measure the difficulty
of say, i*" data point, (s*,t%), we calculate the reward, Rs using (*, s*). In order to obtain

the corresponding sample translation, , we use the LL-based model (pre-trained actor). We
do this for the N data points. Finally, we sort the RL training data points from easy, i.e., with
high harmonic reward, to hard as recorded on their translations. In the fine-tuning step, the
entire sorted training data points are divided into mini-batches, B = [By, ..., Bjs], and the actor
processes a mini-batch sequentially from B. Hence, at the start of each epoch of training, the actor
will learn from the easiest examples first followed by the hard examples in a sequential manner
until all the M batches exhaust. Another alternative is the use of pacing function fp4ce(s), which

helps to decide the fraction of training data available for sampling at a given time step s, i.e.

fpace(8)|Dirain|- However, we leave it to explore in our future work. The Pseudo-code for the
proposed CL-based AC framework including pre-training is described by Algorithm 1.

4 Datasets and Experimental Setup

In this section, we first discuss the datasets used in different stages of experiments followed by
the steps involved in the creation of datasets, the baselines used for comparison, and the model
implementation details.

Dataset: Our NMT adaptation experiments are performed across two language pairs from
different families with different typological properties, i.e. English to Hindi (henceforth, En—Hi)
and French-English (henceforth, Fr—En). We use the following supervised datasets for the
pre-training and validation of LL-based NMT in En—Hi and Fr—En tasks,

(1). For En—Hi task, we use a newly created domain-specific parallel corpus (see section 4.1)
whose sources were selected from an e-commerce site. This corpus is released as a part of this
work. Statistics of the dataset is shown in Table 1 : (A), row(ii).

(ii). For Fr—En task, we concatenate a recently released domain-specific parallel corpus, namely
Foursquare (4SQ) corpus ’ (Berard et al., 2019) with first 60K sentences from OpenSubtitles
8 corpus to simulate a low-resource setting. The basic statistics of this dataset are shown in
Table 1 : (A), row(i). For RL fine-tuning of the LL-based NMT(s), we use the corresponding
RL datasets from Table 1: (B). In each task, the RL trainset sentences are a subset of human
translated sentences drawn from the supervised training samples and additionally annotated with
respect to sentiment. For En—Hi task, these sentences are randomly sampled from the supervised
training corpus (c.f. Table 1: (A), row(ii)), and for Fr—En we use 4SQ-HT dataset (c.f. Table 1:

7A small parallel restaurant reviews dataset released as a part of the review translation task.
8We choose this dataset as it is made of spoken-language sentences which are noisy, sentiment-rich and is closest to
4SQ corpus as suggested by the author.
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Algorithm 1 Proposed algorithm (Curriculum based fine-tuning process). In the vanilla (i.e. no
curriculum-based) approach, we skip steps 5 to 7.

Initialize the actor model Gy with uniform weights 6 € [—0.1, 0.1].

Pre-train the actor (Gg) with LL loss until convergence.

Initialize the critic model V4 with uniform weights ¢ € [—0.1,0.1].

Pre-train the critic for one epoch with SBLEU as a reward on the same LL training data by feeding it

LA

samples from the pre-trained actor, while the actor’s parameters are frozen.
5: Use the actor model to translate all the data points in X.
6: Obtain rewards Ra corresponding to N data points.
7: Rank {X,;}L, = {(s, tl)}i\]:1 based on Rj3.
8
9

: for K epochs do
for mini-batches, B = [B4, ..., By| do
10: Obtain the sample translations B, (£) from the actor for the given source sentences, By, (s).
11: Obtain R, R» and finally observe the rewards R3.
12: Feed the source sentences, By, (s) to the critic encoder and sampled translations, By, () to the
decoder.
13: Obtain the predicted rewards, V4, using the critic model.
14: Update the critic’s parameter using (1).
15: Obtain final reward R using (2).
16: Update the actor’s parameter using (2) in (3).
17:  end for
18: end for

(A), row(i)). To evaluate the performance of all the NMT system(s) we use the corresponding
RL testsets from Table 1.

4.1 Data Creation

To the best of our knowledge, there is no existing (freely available) sentiment annotated parallel
data for English-Hindi in the review domain. Hence, we crawl the electronic products reviews
from a popular e-commerce portal (i.e. Flipkart). These reviews were translated into Hindi
using the Google Translate API. A significant part of this automated translation is then verified
by a human translator with a post-graduate qualification and proficient in English and Hindi
language skills. One more translator was asked to verify the translation. The detailed statistics of
new in-domain parallel corpus are shown in Table 1: (A), row(ii). Further, a subset of human
translated product reviews is selected randomly for sentiment annotation. Three annotators who
are bilingual and experts in both Hindi and English took part in the annotation task. Details of
the instructions given to the annotators and translators are mentioned below.
Instructions to the Translators:
For translation, following were the instructions: (i). experts were asked to read the Hindi sentence carefully;
(ii). source and target sentences should carry the same semantic and syntactic structure; (iii). they were
instructed to carefully read the translated sentences, and see whether the fluency (grammatical correctness)
and adequacy are preserved; (iv). they made the correction in the sentences, if required; (v). vocabulary
selection at Hindi (target) side should be user friendly; (vi). transliteration of an English can also be used,
especially if this is a named entity (NE).
Instructions to the Annotators:
The annotators have post-graduate qualification in linguistics, possessing good knowledge of
English and Hindi both. They have prior experience in judging the quality of machine translation
and sentiment annotation.

For sentiment labeling, annotators were asked to follow the guidelines as below:
(i). they were instructed to look into the sentiment class of the source sentence (Tebbifakhr et al., 2019)
(English), locate its sentiment bearing tokens; (ii). they were asked to observe both of these properties in
the translated sentences; (iii). they were asked to annotate the source sentences into the four classes, namely
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positive, negative, neutral and others.
The further detailed instructions for sentiment annotation are given as below:

(). Select the option that best captures the sentiment being conveyed in the sentences:- positive- negative-
neutral- others- (ii). Select positive if the sentence shows a positive attitude (possibly toward an object or
event). e.g. great performance and value for money. (iii). Select negative if the sentence shows a negative
attitude (possibly toward an object or event). e.g. please do not exchange your phone on flipkart they fool
you . (iv.) Select neutral if the sentence shows a neutral attitude (possibly toward an object or event) or is an
objective sentence. Objective sentences are sentences that do not carry any opinion, e.g. facts are objective
expressions about entities, events and their properties. e.g. (a). the selfie camera is 32 mp .(objective), (b).
after doing research on the latest phones, i bought this phone . (neutral). (iv) Select others for sentences
that do not fall in above three categories, e.g. (a). if the sentence is highly ungrammatical and hard to
understand. (b). if the sentence expresses both positive and negative sentiment, i.e. mixed polarity.

These annotation guidelines were decided after thorough discussions among ourselves. After
we had drafted our initial guidelines, the annotators were asked to perform the verification of the
translated sentences, and sentiment annotation for the 100 sentences. The disagreement cases
were thereafter discussed and resolved through discussions among the experts and annotators.
Finally, we came up with the set of instructions as discussed above to minimize the number
of disagreement cases. Class-wise statistics of the sentiment-annotated dataset for En—Hi task
are shown in Table 1: (B). Additionally, the same annotators also annotated a part of the 4SQ
corpus (i.e. target o (English) sentences from the 4SQ-HT training and 4SQ-test set) to obtain the
sentiment annotated RL dataset for the Fr—En task (c.f. Table 1: (B)). For sentiment classification,
the inter-annotator agreement ratio (Fleiss, 1971) is 0.72 for En—Hi, and 0.76 for Fr—En. We
manually filtered the RL datasets to only include the positive, negative and neutral sentences as
per the the manual annotations. We refer these sentiment-annotated corpora as the RL dataset(s).

Classifier training: In order to build the target language sentiment analyser, we use the
BERT-based '° language model. The classifier is first pre-trained using the target-side sentences
of the supervised training corpus. Classifier pre-training is followed by the task-specific
fine-tuning using the target-side sentences of the RL training set. For example, to build the target
language English classifier for the Fr—En task, the classifier is first pre-trained using the English
sentences from the supervised dataset (c.f. Table 1: (A), row(i)) followed by fine-tuning by using
polarity-labelled English sentences from the RL training corpus (c.f. Table 1: (B), row(i)).

Baselines: Other than the supervised baseline, we also compare our CL-based AC fine-
tuning framework with the following state-of-the-art RL-based fine-tuning frameworks, i.e. (1).
REINFORCE, and (2). Machine-Oriented Reinforce. Additionally, we also conduct the ablation
study to better analyse the utility of harmonic reward in the task through our vanilla AC method
as follows: (3). MT{¢,: AC fine-tuning with sentiment reward only; (4). MTg{f,,,: AC fine-
tuning with content reward only; (5). MTRS . : AC fine-tuning with both the rewards. Finally,
for brevity we choose the best performing AC-reward model for the proposed curriculum-based
learning.

4.2 Hyper-parameters Setting

In all our experiments, we use an NMT system based on Luong et al. (2015), using a single
layer bi-directional RNN for the encoder. All the encoder-decoder parameters are uniformly
initialized in the range of [-0.1,0.1]. The sizes of embedding and hidden layers are set to 256 and
512, respectively. The Adam optimizer (Abdalla and Hirst, 2017) with 51 = 0.9, 52 = 0.99 is
used and the gradient vector is clipped to magnitude 5. We set the dropout to 0.2 and use the
input feeding with learning rate (Ir) and batch size (bs) set to 1le — 3 and 64. We first perform
supervised pre-training of the NMT using the parallel corpora from Table 1: (A), and select the
best model parameters according to the perplexity on the development set (c.f. Table 1: (A)). We
refer the actor- thus obtained- as M'T'y,, that acts as a trained policy in the RL training (refer to
the upper left side of Figure 1). Then, we keep the actor fixed and warm-up the critic for one
epoch with SBLEU reward on the supervised training samples (c.f. Table 1: (A)) with the Ir

9This is different from En—Hi task setting where we annotate source sentence. We do so due to resource constraint.
10We used BERT-Base multilingual uncased model for Hindi and monolingual uncased BERT for English language.
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6]

Task(s) Corpus #Sentences
(1). Fr-En  60K-OPUS (training) 60,000
4SQ-PE (training) 12,080
4SQ-HT (training) 2,784
4SQ-valid (validation) 1,243
(ii). En-Hi (training) 75,821
(validation) 700
Vocabulary (En-Hi) (22,031-27,229)
Avg. Length  (En-Hi) (16.04-17.30)
B)
Task(s) Pos RL trainset ] RL devset ‘RL testset
0s Neu Neg Pos Neu Neg Pos Neu Neg

(). F-En 1,469 1,049 241 1469 1049 241 870 769 184

(). En-Hi 1,147 1,147 1,147 1,147 1,147 1,147 800 800 800
©

Task(s)  Metrics  Mzr, bert  Mbleu bert  Mpleu har

(). F-En  BLEU 2502 2499 2515 2504 2514 2518

Flscore 7531 7533 7565 7543 7535 7539

(ii). En-Hi BLEU 27.87 28.01 27.75 27.97 28.14  28.13
F1lscore 73.14 73.42 73.12 73.12 72.71 73.29

D)
Models Fr-En En-Hi
BLEU F score BLEU F score
My, 25.02 75.31 27.87 73.14
Bt 24.99(-0.03) 75.33(+0.02) 28.01(+0.14) 73.42(+0.28)
bleu 25.15(+0.13) 75.65(+0.34) 27.75(-0.12) 73.12(-0.02)
Bor 25.18%(+0.16)  75.39**(+0.08)  28.13"(+0.26)  73.29% (+0.15)

Mps,.+cL  25.26%(+0.24)  75.38"*(+0.07) 28.18%(+0.31)  73.22"(+0.08)

Table 1: (A). Supervised parallel corpora for LL training. (B). Class-wise distribution of the polarity-tagged RL dataset(s) used to
fine-tune the LL-based (En—Hi and Fr—En) pre-trained NMT(s). For the Fr—En task, we annotate a part of the 4SQ corpora (i.e. training:
4SQ-HT and testing: 4SQ-test). We do not keep a separate development set for the fine-tuning of the LL model. (C). Results of the fine-
tuned vanilla reinforcement-based NMT(s). Here, superscripts mo, r and ac refers to the Machine-Oriented Reinforce, REINFORCE
and actor-critic approach, respectively to fine-tune the LL-based model(s) (M 1., column (iii); En—Hi: row (i), Fr—En: row (ii)), and
the subscripts bleu, bert and har refers to the corresponding rewards (i.e. SBLEU (R1), classifier (R2), and harmonic mean (R3))
optimized via the policy gradient method. (D). Results of curriculum-based fine-tuning and other baselines. Proposed approach is
MEZF+CL. * significant at p < .05, ** significantat p < .01

of 1e — 3 and bs of 64. We employ the same encoder-decoder configuration as of the actor for
the critic. In the RL training, we jointly train the actor and the critic model with Ir of:- 1e — 6
(Fr—En); 1le — 5 (En—Hi), respectively and bs of 4 on the RL datasets with harmonic reward.
For sampling the candidate translation in the RL training, we use multinomial sampling, with a
sampling length of 50 tokens. We run the experiments three times with different seed values, and
record the F'1 and BLEU scores (c.f. Table 1: (C)) to evaluate the performance of the sentiment
analysers and customised MT systems on the RL testset and report the average of the runs in
Section 5. For all the RL-based models, the fine-tuning steps maximize the chosen average
reward discussed in Section 3.2 on the RL devset. The fine-tuning continues for a maximum of
20 epochs (including the baselines). The best epoch is chosen based on the performance observed
on the RL devset (i.e. the best average rewarding epoch). All the sentences are tokenized. As
an extra pre-processing step, we lowercase all the English, French, and normalize all the Hindi
sentences. Tokens in the training sets are segmented into sub-word units using the Byte-Pair
Encoding (BPE) technique (Sennrich et al., 2016b) with 4,000 merge operations.

For evaluating our customised MT systems over all the baselines, we use the relevant RL
testsets.
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5 Results and Analysis

We first present the results of fine-tuning the pre-trained MT through different RL-based methods,
i.e. (i). REINFORCE (ii). MO Reinforce, and (iii). vanilla AC (ours) in Section 5.1. Further,
to better analyse the utility of harmonic reward (R3) in sentiment and content preservation task
over the previously studied rewards (i.e. SBLEU: R; or BERT: R») in the context of NMT
(Tebbifakhr et al., 2020, 2019; Nguyen et al., 2017; Bahdanau et al., 2017; Wu et al., 2018;
Ranzato et al., 2016), we additionally present the fine-tuning results of the vanilla AC method
with the following two types of rewards: (i). only content, i.e. R; and (ii). only sentiment, i.e.
R as areward.

We choose the best performing reward model (i.e. R3) among the AC-based NMT(s). At
last, we discuss the results in the context of our curriculum-based AC framework. To evaluate
the translation quality we record the BLEU score of the RL testset when translated from the
relevant models. To validate our claim that the translations obtained by our proposed MT system
can further improve the performance of the sentiment classifier in a cross-lingual setup over
the baselines, we do the following. We apply the target language sentiment classifier to the
translations obtained by the LL-based NMT system vs. all the customised RL-based NMT
systems, and record their F} scores.

5.1 Evaluation Results

As shown in Table 1: (C), the full-fledged LL-based NMT(s) (trained until convergence as
observed on the development sets, column (iii).) obtain the following BLEU points (25.02,
27.87) and F; scores (75.31, 73.14) for the Fr—En, En—Hi tasks, respectively. We then perform
fine-tuning of the pre-trained models through our vanilla AC harmonic approach (by re-visiting
only a subset of samples from the existing supervised training sets which are now additionally
annotated with their sentiment). We see for both Fr—En and En—Hi that our harmonic-reward-
based models can obtain a significant performance boost (further) over the pre-trained baselines
in both the optimized (targeted) metrics, i.e. BLEU improved to 25.18 (+0.16), 28.13 (4-0.26)
and F} scores reached to 75.39 (4-0.08), 73.29 (40.15) in both the language pairs. This is not
the case with other reinforcement-based fine-tuned models - MO Reinforce !' and REINFORCE
that optimizes a single reward for which we observe non-optimized reward drop in at least
one language-pair. For example, if we consider the MO Reinforce for the Fr—En task, the non-
optimized metric - BLEU drops by —0.03 point (despite an improvement of 4+-0.02 point in the
optimized metric, F} score), and for the REINFORCE in En-Hi task both BLEU and F} score
drop by —0.12 and —0.02 points, respectively. This establishes the efficacy of our reinforcement
method. Further, when we see the results form critic-based fine-tuning of the LL model via
two commonly used reward routines (R;, Ro - column (vi). and (vii).). As expected, we see an
improvement in the targeted metric (e.g. for R;-based model the optimized reward is BLEU. We
can see improvement in BLEU). However, to our surprise, we found that the improvement in
BLEU score does not have a high correlation with the performance in the sentiment classification
task. For example, in the En—Hi task, the critic model with R; as a reward (columns (vii).)
observed the highest BLEU score (28.14) but the highest F; score (73.29) is observed from
the R3 based model (column (viii).). This suggests the effectiveness of the harmonic reward
which successfully improves both BLEU and F} score over the supervised baselines for both
the language pairs. For the sake of brevity, we choose the harmonic model for our curriculum
experiment.

When comparing the performance in the context of our proposed curriculum-based AC
framework, the results from Table 1:(D) show that our method is better at producing coherent
as well as sentiment-rich translation. By comparing row (i). and row (vi)., we can see that
in both Fr-En and En-Hi task, merely learning in an easy-to-hard fashion brings the highest
improvement in BLEU scores over the supervised baselines, i.e. +0.24,40.31 point for the
Fr-En and En—Hi tasks, respectively. F} scores are also improved by +0.07 and +0.08 point,
respectively. All these improvement are statistically significant'?. Furthermore, we also observe

Please note unlike Tebbifakhr et al. (2019) “out-of-domain” MT-adaption approach ours’ LL-based MT is trained
using in-domain data.
120 test significance, we use bootstrap resampling method (Koehn, 2004) for BLEU and student’s t-test for sentiment
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that the CL-based fine-tuning observes a faster convergence over the vanilla approach.

5.2 Error Analysis for English—-Hindi task

Although our proposed method outperforms the LL-based baseline in the sentiment classification
task, we also observe several failure cases. To investigate this, we observe the sentiment-
conflicting cases, i.e. selected those samples from ours’ model where there is an observed
disagreement between the predicted and the gold sentiment. From these samples, we filter those
examples where the source (English) sentences have an explicit presence of the positive or the
negative sentiment expression. Unsurprisingly, we found the main reason for sentiment loss
was still the low-translation quality. Secondly, to better understand what policy is learned by
our-proposed NMT that brings the observed improvement in the sentiment-classifier performance,
we investigate those translations where the LL model has a predicted (by the classifier) sentiment-
disagreement, whereas ours’ shows an agreement, both with the gold sentiment. We present
below one such example.

Review Text (Source): satisfy with overall working. (positive) |l Transliteration(Ref.): kul meelaakar
kaam se santusht hoon. (positive) |l Transliteration(Auto.): kul milaakar kaam ke saath santusht. (positive)
(mT2e, + cr) |l Transliteration(Auto.): kul milaakar kaam kar rahe hain . (neutral) (ML) . We can
see that our proposed model indeed learned to translate the sentiment expressions to their
preferred variant (positive sentiment bearing expression satisfy translated as santusht).

6 Conclusion

In this paper, we have proposed a curriculum-based deep re-inforcement learning framework that
successfully encodes both the underlying sentiment and semantics of the text during translation.
In contrast to the REINFORCE-based frameworks (Williams, 1992; Tebbifakhr et al., 2019)
(actor only models), ours is a critic-based approach that helps the actor learns an efficient
policy to select the actions, yielding a high return from the critic. Besides, with the support of
curriculum learning, it can be more efficient. This is also established (empirically) through the
observed additional boost (significant at p < .05) in BLEU score over the baselines. Further, we
have manually created a domain-specific (product reviews) polarity-labelled balanced bilingual
corpus for English—Hindi, that could be a useful resource for research in the similar areas. We
shall make the data and our codes available to the community.
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