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Abstract

In recent years, several systems have been
developed to regulate the spread of negativity
and eliminate aggressive, offensive or
abusive contents from the online platforms.
Nevertheless, a limited number of researches
carried out to identify positive, encouraging
and supportive contents. In this work, our
goal is to identify whether a social media
post/comment contains hope speech or not.
We propose three distinct models to identify
hope speech in English, Tamil and Malayalam
language to serve this purpose. To attain this
goal, we employed various machine learning
(support vector machine, logistic regression,
ensemble), deep learning (convolutional
neural network + long short term memory)
and transformer (m-BERT, Indic-BERT,
XLNet, XLM-Roberta) based methods.
Results indicate that XLM-Roberta outdoes
all other techniques by gaining a weighted
fi-score of 0.93, 0.60 and 0.85 respectively
for English, Tamil and Malayalam language.
Our team has achieved 15¢, 2% and 1°¢ rank
in these three tasks respectively.

1 Introduction

Nowadays, online and social media platforms
have enormous influence and impact on people’s
societal life. When people undergo a challenging
or unfavourable time, they start to find emotional
support from their friends, relatives or even virtual
platforms to overwhelm this situation. Due
to Covid-19 pandemic, various online forums
have become a popular medium of seeking help,
suggestion or support. Thus, researchers are trying
to develop a computational model that can find
positive and supportive social media information.
In general, the hope speech contains words of
inspiration, promise and suggestions. Chakravarthi
(2020) considered those words as hope speech that
offer suggestions, reassurance, support, insight
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and inspiration. Hope speech can be beneficial
to save individuals who wish to harm themselves
or even attempt to suicide. Such speech inspires
people during the period of depression, loneliness
and stress with the words of promise, suggestions
and support (Herrestad and Biong, 2010). The
major concern of this research is to originate
a computational model on top of this dataset
to identify hope speech from the social media
posts/comments. Lack of resources on hope
speech research, scarcity of training corpora and
multilingual code-mixing are the key concerns to
develop such models.

Machine learning (ML), and deep learning (DL)
based techniques can be utilized to address the
problem of hope speech detection. In recent years,
transformers have gained immense popularity due
to its ability to handle the dependencies between
input and output with both attention and recurrence.
Consequently, many NLP tasks have accomplished
using the transformer-based model to obtain the
state-of-the-art performance (Chen et al., 2021).
The principal contributions in this research as listed
below:

* Develop a model with cross-lingual contextual
word embeddings (i.e. transformers) to
identify the hope speech considering the code-
mixed data for English, Tamil and Malayalam
languages.

Investigated the superiority of various ML, DL
and transformer-based techniques with detail
experimentation.

The rest of the paper organized as follows:
works related to hope speech detection discussed
in Section 2. Task and dataset are described
in detail in Section 3. Section 4 explains the
various techniques used to develop the model
for performing the assigned task. Experimental
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findings and error analysis of the models are
introduced in Section 5.

2 Related Work

With the substantial growth of the Internet and
online contents, several methods have been
developed to identify, classify and stop the
expansion of negativity such as hate speech
detection (Mandl et al., 2020; Chakravarthi et al.,
2020), hostility detection (Sharif et al., 2021),
aggressive language identification (Kumar et al.,
2020), and flagging abusive contents (Akiwowo
et al., 2020). However, very few researchers have
put their focus on the other side that is hope speech
detection. A little work has conducted till to date
in this research avenue of NLP. Palakodety et al.
(2019a) analyzed how hope speech can be utilized
to mitigate tension between two rival (Pakistan
and India) countries. Supporting texts regarding
Rohingya community culled from social media in
Hindi and English languages (Palakodety et al.,
2019b). However, details of the dataset such as
inter-annotator agreement, diversity of annotators
were not clearly described. Chakravarthi (2020)
developed a multilingual code-mixed hope speech
dataset for Equality, Diversity and Inclusion
(HopeEDI) in English, Tamil and Malayalam
language. Data collected from social media like
Facebook, YouTube in trending topics, i.e. COVID-
19, LGBTIQ issues, and India-China war. Their
models achieved the highest weighted f; score of
0.90, 0.56, 0.70 with a decision tree, naive Bayes,
logistic regression techniques for English, Tamil
and Malayalam languages.

3 Task and Dataset Descriptions

In this shared task, we have to perform multi-class
classification where we aim to identify whether a
given comment contains hope speech or not. Our
system goal is to classify a post/comment into one
of the three predefined classes: hope speech (HS),
not hope speech (NHS) and not intended language
(NIL). The shared task organizers (Chakravarthi
and Muralidaran, 2021) developed a hope speech
corpus in multilingual code-mixed setup. A total of
28541 (for English), 20198 (for Tamil) and 10705
(for Malayalam) texts are available in the corpus.
This corpus partitioned into three independent sets:
train, validation and test. Initially, the model
is developed on top of the train set, and model
hyperparameters are tuned based on the validation
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set’s performance. Finally, the model evaluated on
the unseen instances of the test set. Table 1 shows
detail statistics of train, validation and test set for
each class.

Further investigation on the training set revealed
that the training set is highly imbalanced where
several documents in ‘not intended language’ class
are much lower than ‘hope speech’ and ‘not hope
speech’ classes. The average number of words
in ‘not intended language’ is approximately four
words for Tamil and Malayalam languages. The
model generalization capability on unseen data
might degrade due to the lower number of examples
on these classes. Detail analysis of the training set
presented in table 2.

4 Methodology

This section provides a brief discussion of the
schemes and techniques employed to address
the task (Section 3). Initially, different feature
extraction techniques are exploited with machine
learning, and deep learning approaches for a
baseline evaluation. Moreover, we also applied
transformers to obtain a better outcome. Figure
1 shows the abstract process of hope speech
detection.  Architectures and parameters of
different approaches are described in the following
subsections.
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Figure 1: Abstract process of hope speech detection

4.1 Feature Extraction Techniques

ML and DL based techniques are incapable of
processing strings or plain text from the raw forms.
Thus, extracting of appropriate or relevant features
is a prerequisite to train ML and DL based systems.
We utilize TF-IDF (Tokunaga and Makoto, 1994),
and FastText (Bojanowski et al., 2016) techniques
for extracting features from the texts.



English Tamil Malayalam
HS NHS NIL| HS NHS NIL | HS NHS NIL
Train | 1962 20778 22 | 6327 7872 1961 | 1668 6205 691
Valid | 272 2569 2 757 998 263 | 190 96
Test | 250 2593 3 815 946 259 | 194 101

Table 1: Number of instances in train, validation and test sets for each language. Here HS, NHS and NIL indicates

hope speech, not hope speech and not intended language respectively.

Language Classes | Total words val:f(;lse M?;;):.Znsth A(‘[,)ge.rvt‘,:;t()ls
HS 49210 4811 197 25.08
English NHS 317854 19740 191 15.29
NIL 325 239 47 14.77
HS 56000 17274 193 8.85
Tamil NHS 76302 23977 176 9.69
NIL 7309 2093 48 3.72
HS 25144 11827 96 15.07
Malayalam  NHS 60313 24607 95 9.72
NIL 2644 1040 35 3.82

Table 2: Training set statistics for each language. Here HS, NHS and NIL indicates hope speech, not hope speech

and not intended language respectively.

TF-IDF: TF-IDF is a measure that calculates the
relevancy of a word to a document in a collection
of documents. We calculate the TF-IDF value of
unigram features for all the languages. During
the calculation minimum and maximum document
frequency value set at 1.

Word Embedding: Embedding features can
capture the semantic meaning of a word. To get
embeddings features for all the languages, we used

Keras embedding layer with embedding size 100.

During the training phase, Keras tries to find the
optimal values of the embedding layer’s weight
matrix by doing simple matrix multiplication and
thus create a mapping of each unique words into
a vector of real numbers. We utilize the full
vocabulary of the corpus and choose maximum
input text length 100, 50, and 80 respectively for
English, Tamil, and Malayalam data.

FastText: To alleviate the problem of out of
vocabulary words in keras embeddings, we use
FastText embedding. Instead of learning vectors
directly for words, FastText represents each word
as n-gram of characters. Therefore even if a word
was not encountered during training, it could be
split into n-gram to get its embedding. Pre-trained
(Grave et al., 2018) embedding vectors are used to
accomplish the tasks of each language. We retain

the default embedding dimension 300 for FastText
embedding.

4.2 ML Baselines

To address the problem, we investigate the
performance of three traditional ML approaches,
including logistic regression (LR), support vector
machine (SVM) and Ensemble. Scikit-learn library
is employed for the implementation of these
models. TF-IDF features are used to train all the
ML methods for three languages.

LR: LR is constructed by using ‘lbfgs’ solver
along with ‘12’ penalty. The regularization
parameter C' settled to 2, 5, and 1 respectively for
English, Tamil, and Malayalam data.

SVM: For SVM, ‘linear’ kernel is utilized with
C value of 10, 1 and 0.5 respectively for English,
Tamil, and Malayalam language.

Ensemble: To perform classification task
ensemble approach has proven superior compared
to individual models outcome (Roy et al., 2018).
We employ decision tree (DT) and random forest
(RF) classifiers along with SVM and LR to develop
an ensemble method. For RF, 100 ‘n_estimators’
is chosen while ‘gini’ criterion used for both DT
and RF. On the other hand, previously mentioned
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parameters have retained in LR and SVM. The
majority voting technique is utilized to get the
prediction from the ensemble approach.

4.3 DL Baselines

A deep learning-based approach is applied with
word embedding features to address the task.
The model is developed in TensorFlow backend
by using Keras library. The combination
of convolutional neural network (CNN) and
bidirectional long short term memory (BiLSTM)
has achieved an outstanding result in many NLP
tasks (Sharif et al., 2020). In this approach, we
employ one BiLSTM layer on top of a convolution
layer. Initially embedding features are feed to the
CNN layer consisting of 128 filters. Following this,
to choose appropriate features, a max-pooling is
applied with window size 5. The resultant vector
is then passed into the BiLSTM layer. In order to
capture long term dependencies, 100 bidirectional
cells are used in this layer. To mitigate the chance
of overfitting BiILSTM layer dropout technique is
utilized with a dropout rate of 0.2. Afterwards,
the concatenated output of the BiLSTM layer
transferred into a softmax layer for the prediction.

4.4 Transformers

We employed four pre-trained transformer
models such as multilingual bidirectional encoder
representations from transformers (m-BERT),
Indic-BERT, XLNet, and XLLM-Roberta (XLM-R)
and fine-tuned them on the dataset with varying
hyperparameters. For fine-tuning, maximum
text length settled to 50 for Tamil and 100 for
Malayalam and English. The models are fetched
from Huggingface! transformers library and
implemented using Ktrain (Maiya, 2020) package.

m-BERT: m-BERT (Devlin et al., 2018) is pre-
trained on a large corpus of multilingual data. To
accomplish our purpose, we employed ‘bert-base-
multilingual-cased” model and fine-tuned it on our
dataset with batch size 12.

Indic-BERT: Indic-BERT (Kakwani et al.,
2020) is a multilingual model pre-trained
specifically on 12 major Indian languages. It
has fewer parameters than other multi-lingual
models (i.e. m-BERT, XLM-R). Nevertheless, it
outperforms other transformers on various task

'https://huggingface.co/transformers/
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(Kulkarni et al., 2021). The model is fine-tuned
with the batch size of 8.

XLNet: XLNet (Yang et al., 2019) is an auto-
regressive language model which utilizes the
recurrence to output the joint probability of a
sequence of words. It combines transformer
mechanism with slight modification in language
modelling approach. For the implementation ‘xInet-
base-cased” model is used and for all the languages
we choose batch size 12 for fine-tuning.

XLM-Roberta: XLM-R (Conneau et al., 2019)
is referred as cross lingual representation learner.
It is a multi-lingual transformer-based model pre-
trained with more that 100 languages and achieves
the state-of-the-art performance on cross-lingual
NLP tasks. We used ‘xlm-Roberta-base’ model
and select a batch size of 4 to fine-tuned it on our
datasets.

All transformer models are fine-tuned using
Ktrain ‘fit_onecycle’ method, trained for 30 epochs
with a learning rate of 2¢~°. The early stopping
technique is employed to avoid the overfitting
problem.

5 Results and Analysis

This section presents a comprehensive performance
analysis of various machine learning, deep learning
and transformer models for three languages
(English, Tamil and Malayalam). Weighted f;
score uses to determine the excellence of the
models. In some cases, other evaluation metrics
like precision and recall also considered. Table 3
presents the evaluation results of all models on the
test set. It observed that ensemble achieved the
highest f1-score of 0.905 and 0.573 respectively
for English and Tamil data in ML models. On the
other hand, maximum f;-score of 0.813 is obtained
by SVM for the Malayalam language. For all the
languages, LR also performed quite similar to SVM
but failed to beat other models.

In deep learning, the combination of CNN
and BILSTM experiments with two different
embedding features (i.e.  Keras embedding
and FastText). Both models obtained the
highest fi-score of around 0.90 for English
while achieved approximately 0.79 for Malayalam
dataset. However, the combination of CNN-
BiLSTM model with FastText embedding features
shows 1% rise in fi-score (from 0.54 to 0.55) for
Tamil language.



Method Classifiers English Tamil Malayalam
P R F P R F P R F
LR 0914 0.869 0.886 | 0.569 0.563 0.562 | 0.815 0.798 0.804
ML SVM 0915 0.877 0.892 | 0.582 0.574 0.564 | 0.820 0.809 0.813
Ensemble 0.904 0920 0905 | 0.584 0.584 0.573 | 0.80 0.811 0.794
DL C+L(KE) | 0906 0.892 0.899 | 0.569 0.559 0.540 | 0.806 0.796 0.791
C+ L (FT) 0.898 0.899 0.898 | 0.565 0.557 0.548 | 0.789 0.788 0.786
m-BERT 0.928 0.927 0.928 | 0.588 0.591 0.588 | 0.808 0.823 0.804
Trans Indic-BERT | 0.913 0.920 0910 | 0.593 0.592 0.578 | 0.839 0.842 0.840
Xlnet 0931 0.929 0.930 | 0.558 0.560 0.558 | 0.779 0.797 0.781
XLM-R 0.931 0.931 0.931 | 0.610 0.609 0.602 | 0.859 0.852 0.854
Table 3: Performance comparison of different models on test set where P, R, F denotes precision, recall and

weighted fi-score. Here, C+L means the combination of CNN and BiLSTM method and KE and FT represents

Keras and FastText embeddings.

On the other hand, Transformer based models
showed remarkable performance for all three
languages. In English data, m-BERT, XLNet, and
XLM-R got the highest f;-score of approximately
0.93. However, considering both the precision and
recall values, only XLM-R outperformed the other
models. For the Tamil language, f;-score of around
0.56 and 0.58 respectively obtained by XLNet and
Indic-BERT. A slight rise of 1% in f;-score (0.588)
is noticed for m-BERT but it cannot beat XI.M-
R performance (f; score = 0.602). In case of
Malayalam data, Indic-BERT (f; score = 0.84)
shows an increase of 4% to 6% than the f;-score
obtained by m-BERT (0.804) and XLNet (0.781).
Nevertheless, it failed to reach the outcome of
XLM-R (f; score = 0.854), which outdoes all the
models.

The results show that XLM-R outperformed
ML, DL, and other transformer-based models for
all three languages. The ability of cross-lingual
understanding at different linguistic levels might be
the reason for this superior performance of XLM-
R.

5.1 Error Analysis

It is evident from the Table 3 that XLM-R is the
best performing model to detect hope speech for
English, Tamil and Malayalam languages. A detail
error analysis is carried out using the confusion
matrix to investigate more insights concerning the
individual class performance (Figure 2). From
the Figure 2(a), it is noticed that among 250 HS
instances, 93 are misclassified as NHS. However,
the model ultimately failed to detect any of the
not-English data and incorrectly classified them as
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NHS. Similarly, 81 (out of 815) HS and 76 (out of
946) NHS are misclassified as a not-Tamil class in
the Tamil language. However, the misclassification
rate is comparatively low for nT class. Figure 2(c)
shows that the model correctly classified 143 HS
(out of 194) instances. Moreover, it wrongly
classified 47 samples (as NHS) and 4 samples
(as nM). Likewise, among 101 instances of NM,
the model misclassified 20 texts while correctly
identifying 81 instances. On the other hand, the
NHS class received 668 correct classification out of
756 instances, and only misclassified 88 instances
as other classes.

We noticed that the model mostly gets confused
with HS and NHS class in all languages from the
error analysis. The possible reason is that there
may be plenty of code-mixed words common in
both classes. Thus the system could not apprehend
the inherent meaning of the sentences. The high-
class imbalance may be another likely reason why
the model gives the most priority to the not hope
speech class and therefore incorrectly classified
hope speech as not hope speech. Increasing the
number of instances in the NHS class may mitigate
the chance of excessive misclassification.

6 Conclusion

This paper describes and analyses the several ML,
DL, and transformer-based methods that we have
adopted to participate in the hope speech detection
shared task at EACL 2021. Employing TF-
IDF, embedding features initially, we performed
experiments with ML (LR, SVM, ensemble) and
DL (CNN+BiLSTM) approaches. The outcome
shows that the ensemble technique achieved
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Figure 2: Confusion matrix of XLM-R technique for (a) English, (b) Tamil and (c) Malayalam languages.

higher performance compared to other ML/DL
models. Further, transformer-based techniques
are employed to improve the overall performance.
The XML-R model outperformed all the models’
performance by achieving the highest weighted
fi1-score of 0.931, 0.854, and 0.602 respectively
for English, Tamil Malayalam language. In the
future, contextualized embeddings (such as ELMO,
FLAIR) and transformers ensemble might explore
to investigate the system’s performance.
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