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Abstract

When evaluating the performance of auto-
matic speech recognition models, usually
word error rate within a certain dataset is used.
Special care must be taken in understanding
the dataset in order to report realistic perfor-
mance numbers. We argue that many perfor-
mance numbers reported probably underesti-
mate the expected error rate. We conduct ex-
periments controlling for selection bias, gen-
der as well as overlap (between training and
test data) in content, voices, and recording
conditions. We find that content overlap has
the biggest impact, but other factors like gen-
der also play a role.

1 Introduction

Automatic Speech Recognition (ASR) has made
striking progress in recent years with the deploy-
ment of increasingly large deep neural networks
(Zhang et al., 2017; Sperber et al., 2018; Chang
et al., 2019; Zhang et al., 2020). Now when you
see a shiny new model with an error rate reported
to be below 10%, are you likely to get the same er-
ror rate on your data? Many reported results prob-
ably underestimate the word error rate (WER) to
be expected when a model is applied outside of
its exact training conditions (Likhomanenko et al.,
2020)

For example, in many datasets, there is a large
imbalance between male and female voices (usu-
ally not enough female data). When evaluating
only within such a dataset and not controlling for
gender, the model can optimize overall WER by
performing worse for females (Tatman, 2017). If
the model is eventually applied in a setting where
males and females are equally likely to use the sys-
tem, WER will be much higher.

Other issues that might lead to underestimating
error rate are overlaps between the train and test

sets regarding content, voices or recording condi-
tions. Another issue to be considered is selection
bias when the training process can select samples
for training and testing.

A really robust model should generalize be-
yond these factors, but we find that current mod-
els trained on the available datasets do not. We
argue that this is partly due to the focus on report-
ing improvements in a within-dataset setting. It
just sounds better to report a 4.3% WER on the
standard dataset instead of a more realistic num-
ber (which we show can be several times higher).
However, as most real-world applications are un-
likely to directly reflect the properties of a specific
dataset, most users would be better off with more
robust models and a realistic estimate.

Most of the end-to-end speech recognition sys-
tems for English use the Librispeech (Panayotov
et al., 2015) corpus, which has pre-defined data
splits trying to avoid the issues discussed above.1

For German data, standard splits are not fully es-
tablished leading to large differences in WER be-
tween datasets, e.g. Agarwal and Zesch (2019) re-
port WER in the range between 15 and 79.

We argue that this is also a challenge for other
languages, where standard data splits are not de-
fined, including Arabic (Menacer et al., 2017),
Kazak (Mamyrbayev et al., 2019), Bengali (Islam
et al., 2019), and Russian (Adams et al., 2019).

We thus perform experiments investigating the
relative impact of dataset properties in order to
give practical advice on how to train the models.
This might also have consequences for the way
speech datasets are collected. For data-rich lan-
guages like English, these issues can somewhat be
offset by using more training data, so that a model
might still be able to generalize well across differ-
ent conditions. We thus perform our experiments

1However, note that over time fixed data splits lead to
overfitting the methods on the dataset.



on German, which –at least when it comes to the
amount of publicly available, transcribed speech
data– has to be counted as an under-resourced lan-
guage. We perform our experiments using the end-
to-end speech recognition toolkit Mozilla Deep-
Speech.2 Our results probably generalize to other
neural architecture similar to DeepSpeech.

We make our experimental setup publicly avail-
able (URL removed for review).

2 Dataset Properties

As we argue that dataset properties play such a big
role, we will first have a look at the available train-
ing data collections. While for English or Chinese
quite large datasets are publicly available, all Ger-
man datasets are of limited size (see Table 1).

However, only focusing on the overall size is
misleading anyway as e.g. even one million hours
of one person reading the same sentence over and
over again would not result in a usable model. We
thus also look at other properties. A dataset like
M-AILABS with very few voices is unlikely to
generalize well to new voices. On the other hand,
a dataset like Mozilla Common Voice (MCV) with
thousands of voices easily reaches the largest over-
all size in our set, but as most voices repeat the
same sentences, the dataset does not capture the
same breadth of lexical material. As a conse-
quence, the size of unique content in the MCV
dataset is rather small, but not as small as the
TUDA-De dataset where each sample is recorded
by 5 different microphones bringing the unique
size down to 7 hours (from 184 hours in total).

We thus argue that the question Can I train a
robust model with [XYZ] hours of data? cannot be
answered without estimating the relative influence
that each of these factors is going to have on the
training process.

2.1 Voice Gender

As we are not aware that the gender balance of
the available German datasets has been analyzed
in detail before, we provide the statistics in Ta-
ble 2. We found that across almost all the datasets,
except M-Ailabs, the number of male voices is
predominantly high. For example, in TUDA-De,
male to female ratio is 3:1 and in MCV it is 9:1.
This means that male voices form the majority of
the corpora. Thus such corpora might not be able
to generalise well in realistic settings. Projects

2https://github.com/mozilla/DeepSpeech

Figure 1: Visualization of data split issue

Figure 2: Distribution of sample length

collecting speech samples from volunteers should
try to recruit more women and in general a more
diverse set of dialects etc. When designing a
speech corpus, keeping diversity (not only regard-
ing gender) in mind would be beneficial.

2.2 Data Splits

Having a dataset with multiple voices, varied
recording conditions, and little content redun-
dancy does not automatically guarantee a robust
model. Care has to be taken to separate cases be-
tween train, validation and test. Figure 1 visual-
izes the issue in a general way. A fixed data split
(left) should separate dimensions are as much as
possible, e.g. not have the same voices or the same
content in train and test (right).

Of course, the severity of the issue depends on
the usage scenario. If all one wants to do is rec-
ognizing spoken digits from 0 to 10, there is no
harm with having samples of all digits in train and
in the test, as in the application scenario those dig-
its are all to care about. However, if the goal is
a robust, domain-independent model, we need to
control for overlap in sentences between train and
test in order to obtain a realistic error rate estimate.

2.3 Selection Bias

An issue indirectly related to dataset properties
is that frameworks often perform some kind of
preprocessing and might filter out some samples
in the process. For example, in Figure 2 we

https://github.com/mozilla/DeepSpeech


Number of [h]

Dataset Domain Mics Voices Total Unique

TUDA-De (v2) Wikipedia, Europarl, Commands 5 179 184 7

Mozilla Common Voice (MCV) v3 Wikipedia many 4850 321 24

M-AILABS Audiobooks (LibriVox, Project Gutenberg),
Speeches, Interviews ? ~5 233 233

Table 1: German datasets used in this study

TUDA-De MCV M-AILABS

Gender # [h] # [h] # [h]

Male 129 123 1555 215 1 40
Female 50 61 173 33 4 147
Unknown - - 3122 73 ? 46

male:female 3:1 2:1 9:1 7:1 1:4 1:4

Table 2: Dataset analysis regarding gender of voices

show the length distribution of samples in each
dataset. Without looking at other dataset proper-
ties it might look useful to get rid of very short or
very long samples and to only train (and test!) a
model using samples close to the peak of the distri-
bution. However, this might introduce a selection
bias, where we reduce WER by simply discarding
all the hard cases. This leads to excellent within-
dataset results, but poor cross-dataset results.

3 Experiments & Results

For our experiments, we used the latest released
version of Mozilla DeepSpeech (v0.6.0).3 We
choose the best hyperparameters4 as described
in (Agarwal and Zesch, 2019). The models are
trained and tested on a compute server having 56
Intel(R) Xeon(R) Gold 5120 CPUs @ 2.20GHz,
3 Nvidia Quadro RTX 6000 with 24GB of RAM
each. The typical training time on a single dataset
under this setup was in the range of 2 hours. We
ran our experiments for approximately 200 hours,
which is equivalent to about 50 kg of CO2.

5

3.1 Baseline: All data, random split

As a baseline, we simply take all data and ran-
domly split the data into train/dev/test, i.e. we do
not take any of the dataset properties discussed
above into account. This is the setup that is most
likely used whenever not discussed differently in

3https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0
4Batch Size - 24, Dropout - 0.25, Learning Rate - 0.0001
5https://www.rensmart.com/Calculators/KWH-to-CO2

Train Test WER

TUDA-De

TUDA-De (v2) 14.9
MCV (v3) 79.3
M-AILABS 79.7

MCV

MCV (v3) 26.8
TUDA-De (v2) 54.6
M-AILABS 43.7

M-AILABS

M-AILABS 17.5
TUDA-De (v2) 84.9
MCV (v3) 68.3

Table 3: Cross-domain results

Dataset [h] Baseline No content

TUDA-De 184 14.9 66.9
MCV 321 26.8 43.9
M-AILABS 233 17.5 17.1

Table 4: WER without content overlap

a paper. Table 3 gives an overview of the WER
obtained in that way (rows in italics). Given the
limited amount of training data, the results are in
the expected range and generally similar to previ-
ously reported results (Agarwal and Zesch, 2019).
However, as noted above, those numbers are prob-
ably underestimating the true error rate.

We thus also conduct cross-domain experi-
ments, as testing on a dataset different from train-
ing is a natural way of checking the model ro-
bustness without any overlap at all. If the WER
reported on the dataset itself is a realistic mea-
sure of performance, we should see cross-domain
results that are similar. However Table 3 shows
that WER always dramatically rises – mostly to
the point that the model is not being useful any-
more. MCV seems to generalize somewhat better
than TUDA-De or M-AILABS, which indicates
that many voices are more important for model ro-
bustness than more unique training samples.

In the remainder of this section, we explore
which other factors are influencing results the
most.

https://github.com/mozilla/DeepSpeech/releases/tag/v0.6.0
https://www.rensmart.com/Calculators/KWH-to-CO2


Number of Voices WER

Dataset Total Size [h] Train Dev, Test (each) No Content No Voice No Content & Voice

TUDA-De 184 145 15 66.9 37.2 74.1
M-AILABS 186 3 1 17.8 72.1 75.2

Table 5: Results with No Voice and No Sentence Overlap

3.2 Content overlap

Table 4 compares the baseline results with the
setup when there is no content overlap (i.e. exact
same utterance) between the data splits. Note that
we use the same amount of data in both conditions,
only the splits are different.

M-AILABS is not affected, as there is no con-
tent overlap to begin with.6 This nicely shows that
the results obtained for a specific dataset are repli-
cable in general. The other datasets are heavily
effected showing that content overlap is the main
reason for underestimating the true error rate. As
the MCV dataset has many voices and micro-
phones, the 43.9 WER is probably already a robust
estimate (cf. cross-domain results in Table 3).

3.3 Voice overlap

Table 5 first shows the results without content
overlap (these are the same numbers as in Ta-
ble 4) and then the results without voice overlap.
The WER on M-AILABS, that only has very few
voices, goes up to over 70% well into the unus-
able range. Results for TUDA-De go down, but
only as we are not controlling for content overlap
anymore. This is another piece of evidence that
content is actually more important than voices, as
it has a relatively larger impact. If we control for
both (last column), all models perform approxi-
mately on the same abysmal level.

3.4 Recording conditions

TUDA-De is the only dataset where we can easily
control recording conditions in the form of micro-
phones used.7 We can use 88h for this experiment
and use 3 mics for training and 1 for dev and test
each. Without content overlap, we obtain a WER
of 73.8, while without mic overlap it is 53.1. Con-
tent overlap is thus the much more important fac-
tor. Consequently removing content and mic over-
lap only slightly increases WER to 77.4.

6The small difference is due to the independent random-
ization when re-running an experiment.

7Actually ‘recording conditions’ is a much wider variable,
but not present as meta-data in most datasets.

3.5 Gender
As we have shown, the influence of content over-
lap is rather strong and likely to overshadow any
gender effect to be found in the data. We thus iso-
late the gender variable by creating a sub-corpus
where there is not content overlap between train
and test and where the test set for male and fe-
male voices contains the same sentences. We find
that training on male yields 63.5 WER for males
and 87.4 for females showing the expected gender
gap. If we train only on female voices, we get 55.2
WER for females and 88.3 for males.

4 Summary

Our study shows that the robustness of end-to-
end speech recognition models heavily depends on
dataset splits. Content overlap is the main reason
for underestimating the true error rate. Especially
in datasets that are collected in a crowd-sourced
fashion, where many voices read the same sen-
tences, or when multiple microphones are used,
extra care has to be taken to avoid information
leakage from train to test. However, other fac-
tors like gender balance or recording conditions
are also contributing to the effect.
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