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Abstract
We implemented a neural machine translation
system that uses automatic sequence tagging
to improve the quality of translation. Instead
of operating on unannotated sentence pairs,
our system uses pre-trained tagging systems
to add linguistic features to source and target
sentences. Our proposed neural architecture
learns a combined embedding of tokens and
tags in the encoder, and simultaneous token
and tag prediction in the decoder. Compared
to a baseline with unannotated training, this
architecture increased the BLEU score of Ger-
man to English film subtitle translation outputs
by 1.61 points using named entity tags; how-
ever, the BLEU score decreased by 0.38 points
using part-of-speech tags. This demonstrates
that certain token-level tag outputs from off-the-
shelf tagging systems can improve the output
of neural translation systems using our com-
bined embedding and simultaneous decoding
extensions.

1 Introduction

Neural machine translation (NMT) uses neural
networks to translate unannotated text between a
source and target language, but without additional
linguistic information certain ambiguous inputs
may be translated incorrectly. Consider the fol-
lowing examples:

1) Titanic struggles between good and evil.
3 선과악사이의엄청난투쟁.

big fight between good and evil
7 타이타닉은선과악사이에서투쟁중이다.

The Titanic is fighting between good and evil

2) Titanic struggles to stay afloat.
3 타이타닉은침몰하지않도록고군분투

중이다.
The Titanic is struggling not to sink

7 침몰하지않기위한엄청난투쟁.
big fight not to sink

In (1), “Titanic” is best translated as a common
adjective; in (2), it most likely refers to a named
entity, the famous ship. In addition to the bare
token sequences, part-of-speech or named entity
annotation of each token, provided manually or
automatically, could provide additional information
to improve the quality of translation.

Natural language processing (NLP) tools have
benefited from the same explosion in deep learning
and neural network developments that has spurred
NMT. NLP tools include part-of-speech (POS) tag-
gers, identifying the syntactic function of each in-
put token, and named entity recognition systems.
Named entity recognition (NER) identifies which
tokens refer to named entities, including proper
nouns such as people, place names, organizations,
or dates. Recently, automatic named entity recog-
nition (NER) systems have seen much develop-
ment and refinement with the same deep learning
tools used for NMT (Li et al., 2020). Automatic
neural NER systems have achieved accuracy ex-
ceeding 92% F1 scores in many languages and do-
mains (Wang et al., 2019; Akbik et al., 2018). NER
tags produced by these systems are useful in many
other natural language processing contexts, such
as coreference resolution, entity linking, or entity
extraction (Ferreira Cruz et al., 2020). POS tag-
gers have also achieved very high accuracy exceed-
ing 98% on public treebank datasets (Akbik et al.,
2018). We aim to use tags from publicly available
pre-trained tagging systems as additional features
to improve NMT training and output.

Tag assisted NMT requires modifications to the
neural architecture to accommodate a tag at each
token position. The encoder must learn an embed-
ding that combines information from each token
and its tag, then compute a hidden state from these
embeddings. The decoder must learn to predict
tokens and their tags simultaneously from the de-
coder state. Adding tag information to the predic-
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tion and corresponding training loss encourages the
model to incorporate this information into its latent
representations to improve outputs.

Compared to an untagged baseline system on
word-tokenized data, our tagged translation system
improved the BLEU score by 1.61 points on Ger-
man to English parallel film subtitles data tagged
with publicly available pre-trained named entity
recognition systems, while part-of-speech tagging
decreased the score by 0.38 BLEU points. Sub-
word tokenization reduced these effects to +0.22
points and –0.22 points respectively. Nonetheless,
this demonstrates the feasibility of using certain
pre-trained tagging outputs to improve translation
quality.

2 Related Work

Very early work addressed named entity transla-
tion by treating automatically identified named en-
tities with a special translation system, usually a
transliterator (Babych and Hartley, 2003). This
work did not attempt to integrate the translation
models for one to benefit from information learned
by the other.

Later, especially with neural machine transla-
tion (NMT) systems, source-side feature augmen-
tation research studied the inclusion of linguistic
feature information into the source-side token em-
beddings, usually by adding in or concatenating
additional learned feature vectors to the token em-
bedding vectors, as we do in this work (Sennrich
and Haddow, 2016; Hoang et al., 2016b; Ugawa
et al., 2018; Modrzejewski et al., 2020; Modrze-
jewski, 2020; Armengol-Estapé et al., 2020). This
approach can also be adopted on the target-side,
as presented here or in (Hoang et al., 2016a, 2018;
Nguyen et al., 2018). However, these methods only
add linguistic feature information to the input, with-
out encouraging the system to model that informa-
tion in any particular way.

Factored translation systems, under both statisti-
cal and neural machine translation, instead explore
the addition of externally supplied linguistic fea-
tures to the raw text at both input and output. These
features include part-of-speech (POS) tags, word
lemmatizations, morphological analysis, and se-
mantic analysis (Koehn and Hoang, 2007; Garcia-
Martinez et al., 2016, 2017; Tan et al., 2020). Fac-
tored translation models map feature-augmented
input into feature-augmented output, however out-
puts include only an underlying lemma together
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Figure 1: Tagged seq2seq

with the predicted features. These systems also use
a rule-based morphology toolkit in post-processing
to generate the output surface forms from predicted
output features, requiring knowledge of appropriate
rule systems for the output language. An additional
tagged architecture (Nădejde et al., 2017) predicted
syntax-tagged surface forms, but did so by append-
ing the tags to the surface form tokens directly,
rather than predicting separate factors. In general,
the focus of factored models has been to increase
vocabulary coverage, for example of highly agglu-
titanative languages with rich morphologies, rather
than our goal of disambiguating polysemous of
polysyntactic words or otherwise handling named
entities in a more nuanced way.

Finally, one previous work does consider a fully
tagged (both source and target) factored neural
model predicting tags with surface forms with inde-
pendent layers in much the same way as presented
here (Wagner, 2017). This work showed negative
results for various syntactic tag types on IWSLT’14
shared task data (Cettolo et al., 2014), whereas this
work presents NER and POS tags on film subtitles
data.

3 Tagged seq2seq

We implemented two extensions to the standard
seq2seq encoder-decoder architecture for neural
machine translation to use token-level tags to im-
prove translation results.1 By combining token and
tag embeddings in the input and simultaneously
predicting tokens and tags in the output, the NMT

1Code at https://github.com/compwiztobe/
tagged-seq2seq

https://github.com/compwiztobe/tagged-seq2seq
https://github.com/compwiztobe/tagged-seq2seq
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system learned to translate tagged source sentences
to tagged target sentences (Figure 1). We used
a Transformer encoder and decoder for the base
seq2seq model (Vaswani et al., 2017). Tags are
added to the data as a preprocessing step.

3.1 Combined embedding
Learning an embedding for every possible token
and tag combination would enormously increase
the model’s learnable parameter count. Further-
more, training data is likely to be sparse in its cov-
erage of all possible pairs, but not in its coverage
of the token and tag vocabularies separately. There-
fore, we instead learn a separate embedding vector
for each possible token and each possible tag, effec-
tively concatenating these two vocabularies (rather
than taking the product space). The embedding
vectors for the token and tag at each position are
then added to combine information from both chan-
nels into a single vector, so as not to increase the
size of subsequent model layers and the capacity of
the model, apart from the additional tag embedding
vectors.

3.2 Simultaneous prediction
The decoder state di at each step is conditioned
on the target prefix and the encoded source sen-
tence (3).

di = Decoder(prefix, src) (3)

This shared decoder state is used to predict both
the next token and the next tag, with token and tag
feature projections T and τ (4 and 5).

P (token k | prefix; src) = softmaxk(T
>di) (4)

P (tag k | prefix; src) = softmaxk(τ>di) (5)

We model these probabilities independently (6) for
the same data sparsity and model size reasons as
the embeddings, and we can compute each pair
probability and loss accordingly (7).

P (token, tag | prefix; src)

= P (token | pre.; src) · P (tag | pre.; src)
(6)

L = − logP (token | prefix; src)

− logP (tag | prefix; src)
(7)

This combined loss encourages the shared decoder
state di to model the correct tag identity so that it
can be used by the token prediction layer to im-
prove translation.

4 Data Preparation

4.1 Subtitles corpus

Our experiments focused on film subtitles in Ger-
man and English. The Opus project provided a
parallel German to English subtitles corpus from
OpenSubtitles (Tiedemann, 2012; Aulamo et al.,
2020). This data was cleaned with some rudimen-
tary sentence length filtering, and randomly divided
into a 3 million sentence-pair training split (about
49 million tokens), along with 100,000 pair valida-
tion and test splits (about 1.6 million tokens each).

4.2 Tagging “off the shelf”

Flair NLP tools systems have achieved state-of-the-
art results on the sequence labeling tasks such as
the CoNLL’03 NER dataset and universal part-of-
speech tagging from Universal Dependency tree-
banks (Akbik et al., 2018; Tjong Kim Sang and
De Meulder, 2003; Nivre et al., 2020). We used
the publicly available pre-trained multilingual NER
and universal POS taggers.2 NER tags followed the
BIOES system with four entity classes: PER, per-
son; LOC, location; ORG, organization; and MISC,
miscellaneous. Four classes with four span mark-
ers, plus the null span marker O, gave the same
17-tag vocabulary for NER on both German and
English. Meanwhile, POS tags came from the same
17-tag universal POS tag set for both languages.

Around 3% of words in the OpenSubtitles corpus
were tagged as named entities (non O). We further
divided the test split based on whether any named
entities were found in either the source or the target
sentence. Out of 100,000 test pairs, 79,201 had no
named entities, and 20,799 had some.

4.3 Tokenization

Word tokenization, as used by the tagging systems,
is most straightforward for maintaining one-to-one
alignments between tokens and their assigned tags.
For word tokenization experiments, vocabularies
of size 35,012 for German and 17,196 for English
were selected, resulting in an unknown word re-
placement rate of 3%.

This unknown word replacement was consider-
ably higher on rare word categories, for example
named entities saw a 25 – 30% rate of unknown
words outside the selected word vocabulary. To
alleviate this it is also possible to consider subword

2Models at https://huggingface.co/flair/
{ner,upos}-multi

https://huggingface.co/flair/{ner,upos}-multi
https://huggingface.co/flair/{ner,upos}-multi


258

Table 1: BLEU scores on word-tokenized sentences
with or without named entities, for models with or with-
out NER tags.

BLEU (%)

NER tags no NEs some NEs all

−src, −tgt3 34.70 32.43 34.15

+src, −tgt4 34.89 32.14 34.22
−src, +tgt5 35.69 35.03 35.53

+src, +tgt 35.84 35.50 35.76

improvement ↑ 1.14 ↑ 3.07 ↑ 1.61

tokenization, so additional experiments were con-
ducted with a shared SentencePiece (Kudo, 2018)
vocabulary of 32,000 subwords, built from the train-
ing split and used to tokenize both languages.

After subword tokenization, the BIOES struc-
ture of named entity spans was propagated across
subword tokens in the natural way to maintain
spans. For POS tags, subwords received the same
tag as their parent word.

5 Experiments

We used a Transformer encoder and de-
coder (Vaswani et al., 2017) for the base
seq2seq system, each with 6 layers and 8 attention
heads, and layer and embedding dimensions 512.
Training was done for 40 epochs at half precision
with the optimizer known as Adam (Kingma and
Ba, 2015) with β = (0.9, 0.98) and an inverse
square root learning schedule with maximum
learning rate 5× 10−4 after 500 updates and decay
1× 10−4. Parameter updates occurred after every
8,192 token-tag pairs at most (rounding off to
complete sentences), with 30% dropout and label
smoothing of 0.1 on the training loss.

At inference time, a beam of 5 candidates was
maintained, and the models were evaluated with
their BLEU score on the token sequence only (tag-
ging accuracy was not evaluated due to the diffi-
culty of establishing alignment).

6 Results

BLEU scores from untagged and tagged transla-
tion experiments show an improvement from the
use of NER tags (Table 1). Adding NER tags, the

3baseline
4enhanced baseline / ablation study
5ablation study

Table 2: BLEU scores for word models with POS tags.

POS tags BLEU (%)

−src, −tgt 34.15

+src, −tgt 34.21
−src, +tgt 33.70

+src, +tgt 33.77

improvement ↓ 0.38

BLEU score on sentences containing some named
entities improved by a larger margin, 3.07 points,
presumably due to the tags’ assistance with trans-
lating those named entities. We also note an im-
provement in the BLEU score on sentences con-
taining no named entities, which increased by 1.14
points. This suggests that given O tag information
the model can also treat common words with confi-
dence that they are not named entities and should
not be translated as such. These improvements av-
eraged out to a net gain of 1.61 BLEU points on
the entire test split.

We also evaluated a model trained with POS
tags, but found a decrease in BLEU score (Table 2).
Translation scores with POS tags decreased by 0.38
BLEU points. There are two ways to understand
this in comparison with NER tags. First, POS tags
carry a significant amount of information about the
sentence, not only helping to disambiguate between
different word senses by part-of-speech, but also
assisting the model with encoding the sentence’s
syntactic structure. Compared to NER tags, this
amount of structural information might be diffi-
cult to model with the same decoder architecture
used for token prediction. Second, POS tags tend
to carry the same amount of information for each
tag at each position, compared to NER tags only
conveying most of their information at the named
entity spans which are few and far between. This
also lends itself to the idea that POS tags have a
higher information content that is less easily mod-
eled by the decoder, leading to worse results than
NER tagging.

6.1 Enhanced baselines and ablation study

For both NER and POS tagged results, the base-
line was the same Transformer architecture trained
only on untagged data (without adding tag embed-
dings or predicting tags from the decoder). Adding
in only source-side tag embeddings could be con-
sidered an enhanced baseline, since this kind of
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Table 3: BLEU scores on subword-tokenized sentences
with or without named entities, for models with or with-
out NER tags.

BLEU (%)

NER tags no NEs some NEs all

−src, −tgt 35.77 36.51 35.96

+src, −tgt 35.83 36.75 36.06
−src, +tgt 35.88 36.82 36.12

+src, +tgt 35.94 36.92 36.19

improvement ↑ 0.17 ↑ 0.41 ↑ 0.22

feature augmentation has already been studied in
depth (Sennrich and Haddow, 2016; Hoang et al.,
2016b). Our results show that this source-only tag-
ging does not provide significant benefits compared
to training on untagged data (Table 1), although for
POS tagging this remains the best result.

On the other hand, adding in target-side tags
while also predicting them from the decoder, with-
out adding in source-side tag embeddings could
be considered an ablation test to isolate the effects
of our main contribution: target-side tag decoding.
Our results show that this target tagging provides
the same benefit as the fully tagged training regime,
demonstrating that it is the simultaneous tag decod-
ing that accounts for the entire effect observed. For
NER tagging this was an improvement in BLEU
scores, but for POS tagging scores decreased when
adding target tagging.

Whereas source-side tag information is added
into the embeddings without any modification to
the training objective, target-side tag predictions
are a part of the modified training loss, so that
it is the target-side tag prediction that pushes the
model to incorporate accurate knowledge of the
tags into its learning representations. That NER tag
modeling improved results while POS tag modeling
did not is consistent with our earlier observation
that POS tag modeling seems to be more difficult
than NER tag modeling, and is not done effectively
by the current architecture.

6.2 Subword tokenization experiments

Experiments with subword tokenized data showed
similar effects, but of a significantly reduced size.
Adding NER tags improved the results, adding
0.22 points to the BLEU score, with the improve-
ment again coming largely from the target side
tagging, and again showing a larger improvement

Table 4: BLEU scores for subword models with or
without POS tags.

POS tags BLEU (%)

−src, −tgt 35.96

+src, −tgt 36.20
−src, +tgt 35.69

+src, +tgt 35.74

improvement ↓ 0.22

on sentences with named entities than on those
without (Table 3). Adding POS tags hurt results,
decreasing the score by 0.22, and again we see
that source-only tagging is best case for POS tag-
ging (Table 4). However, the reduced magnitude of
these deltas to the range of 0.1 – 0.4 BLEU points
suggests these are not significant changes to the
translation performance, in the subword tokeniza-
tion case.

It would appear that subword tokenization inter-
feres with the benefits of tagging the data. Since
tags are aligned one-to-one with the input words,
subword tokenization destroys this alignment, and
copying tags across a word’s constituent subwords
may interfere with the model’s ability to make
sense the of tag information. In particular for
named entities, rare words are likely to tokenized
into a larger number of subword tokens, exacer-
bating this effect. The set of embeddings for the
subwords in a word may not be as useful to the
model for translating a named entity or other rare
category as the single embedding learned specifi-
cally for the full word in a word tokenization set-
ting, and further these subword embeddings may
be affected by other contexts unrelated to the larger
word. Specifically for the named entity case, sub-
word tokenization algorithms might prioritize the
atomicity of certain rare words tagged as named
entities in order to counteract this.

6.3 Token prediction and tagging loss

Due to the conditional independence assumption,
the cross-entropy loss (7) conveniently decomposes
into separate terms for tokens and tags (8), allowing
us to measure the relative information content of
each channel (Table 5).

L = − logP (token | prefix; src)

− logP (tag | prefix; src)

= Ltoken + Ltag

(8)
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Table 5: Token prediction and tagging loss.

↓ cross entropy (bits)

Ltoken Ltag L

no tags −src, −tgt 2.000 — 2.000

+src, −tgt 2.006 — 2.006
NER −src, +tgt 2.001 0.183 2.184

+src, +tgt 1.985 0.183 2.168

+src, −tgt 2.007 — 2.007
POS −src, +tgt 1.995 0.697 2.692

+src, +tgt 1.972 0.695 2.673

While adding tag information naturally increases
the overall cross-entropy, as there are more possibil-
ities to account for and to be predicted, restricting
our attention only to the token loss shows that the
token-level cross-entropy is consistently reduced
from 2.000 (base-2) to 1.985 with NER tags or
1.972 for POS tags. This shows how both tag types
can add disambiguating information to the token
prediction process, with POS tags naturally add
more of such information, since they carry syntac-
tic information.

Looking only at tag-level cross-entropy, it’s inter-
esting to notice that the POS tagging loss is signifi-
cantly higher than the NER tagging loss. While this
could be simply because the lower-bound inherent
entropy is higher (POS tags naturally contain more
information, being more uniformly distributed than
NER tags), this could also be consistent with the
idea that POS tag modeling is more difficult, ex-
plaining the decreased translation scores observed
with POS tag prediction.

7 Model Limitations

It should not go unnoticed that the typical infer-
ence algorithms for sequence labeling, particularly
the BiLSTM-CRF inference employed by most
NER systems, are incompatible with the autore-
gressive sequence decoding algorithms (greedy de-
coding and beam search) used for inference by
seq2seq models. That the beam decoding algo-
rithm (and autoregressive likelihood model) used
here for tags was unable to account for (be condi-
tioned on) the as-yet uncomputed right context was
cause for much apprehension before experimental
results became available. These positive results
notwithstanding, future work could explore how to
better incorporate the full tagging context in tag de-

coding, perhaps, for example, by predicting the se-
quence more wholistically with non-autoregressive
decoding (Gu et al., 2018).

We also imagine that the design of the under-
lying seq2seq architecture may lend itself to cer-
tain types of sequence labeling. For example, the
bidirectional context modeled by a BiLSTM-based
translation model may be more suitable for certain
types of sequence labeling tasks than the Trans-
former’s attentional activations. Because our con-
tributions are agnostic to the type of sequence la-
beling (NER or part-of-speech tagging or any other
kind) as well as to the design of the encoder and
decoder, future experiments should also explore
these possibilities.

8 Conclusion

We implemented extensions to existing neural ma-
chine translation models that allow the use of off-
the-shelf token-level tagging systems to improve
translation accuracy. Translation inputs and train-
ing outputs were tagged with pre-trained sequence
labeling systems. A standard encoder-decoder ar-
chitecture was extended to include tag embeddings
and tag prediction at each token position. At model
input, token and tag embedding vectors were added
to produce a combined embedding. At model out-
put, the final decoder layer used separate softmax
layers to predict tokens and tags. During training,
a combined loss function encouraged the model to
learn token and tag information jointly.

This tag assisted translation system was tested
against baseline token-only systems on a German
to English film subtitle corpus with both word and
subword tokenization. Subword tokenization re-
duced the size of the effect, suggesting the need for
specialized subword tokenization to prioritize the
integrity of important word categories. However,
on word tokenized data, the 1.61 point increase in
BLEU score using named entity tags demonstrates
that the proposed architecture is useful for improv-
ing translation outputs with automatic named en-
tity recognition, while the 0.38 point decrease us-
ing part-of-speech tags indicates more difficulty in
utilizing that tag information. Further examination
of the cross-entropy showed that adding tags re-
duced the token cross-entropy thereby improving
token modeling. Future experiments can explore
the use of other types of tag data as well as other
decoding paradigms.
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los Escolano. 2020. Enriching the transformer with
linguistic factors for low-resource machine transla-
tion. arXiv preprint arXiv:2004.08053.

Mikko Aulamo, Umut Sulubacak, Sami Virpioja, and
Jörg Tiedemann. 2020. OpusTools and parallel cor-
pus diagnostics. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
3782–3789, Marseille, France. European Language
Resources Association.

Bogdan Babych and Anthony Hartley. 2003. Improving
machine translation quality with automatic named
entity recognition. In Proceedings of the 7th Interna-
tional EAMT workshop on MT and other language
technology tools, Improving MT through other lan-
guage technology tools, Resource and tools for build-
ing MT at EACL 2003.

M. Cettolo, J. Niehues, S. Stüker, L Bentivogli, and
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