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Abstract

In supervised learning, a well-trained model
should be able to recover ground truth ac-
curately, i.e. the predicted labels are ex-
pected to resemble the ground truth labels as
much as possible. Inspired by this, we for-
mulate a difficulty criterion based on the re-
covery degrees of training examples. Mo-
tivated by the intuition that after skimming
through the training corpus, the neural ma-
chine translation (NMT) model “knows” how
to schedule a suitable curriculum according to
learning difficulty, we propose a self-guided
curriculum learning strategy that encourages
the NMT model to learn from easy to hard
on the basis of recovery degrees. Specifi-
cally, we adopt sentence-level BLEU score
as the proxy of recovery degree. Experimen-
tal results on translation benchmarks includ-
ing WMT14 English=-German and WMT17
Chinese=-English demonstrate that our pro-
posed method considerably improves the re-
covery degree, thus consistently improving the
translation performance.

1 Introduction

Inspired by the learning behavior of humans, Cur-
riculum Learning (CL) for neural network training
starts from a basic idea of “starting small”, namely
better to start from easier aspects of a task and
then progress towards aspects with increasing level
of difficulty (Elman, 1993). Bengio et al. (2009)
achieves significant performance boost on several
tasks by forcing models to learn training examples
following an order from “easy” to “difficult”. They
further explain CL method with two important con-
stituents: how fo rank training examples by learn-
ing difficulty and how to schedule the presentation
of training examples based on that rank.

*Part of this work was done when the first author visited
CLSP, JHU.
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Figure 1: The NMT model is well-trained on parallel
corpus D, {(z1,y1), (z2,y2)} € D. ¢; is translated
from x;. The distance between the ground truth y;
and the NMT generated hypothesis y; represents the
recovery degree (dashed arrows), which is computed
by sentence-level BLEU in our case. Blue- and -
colored examples represent the NMT learned distribu-
tion and the empirical distribution, respectively. Taking
x1 and x5 as the input, the training example (z1,y1)
shows a better recovery degree, which means it’s easier
to be mastered than (z2, y2).

In the field of neural machine translation (NMT),
empirical studies have shown that CL strategies
contribute to both convergence speed and model
performance (Zhang et al., 2018; Platanios et al.,
2019; Zhang et al., 2019; Liu et al., 2020; Zhan
et al., 2021; Ruiter et al., 2020). These CL strate-
gies vary by difficulty criteria and curriculum
schedules. Early difficulty criterion depends on
manually crafted features and prior knowledge such
as sentence length and word rarity (Kocmi and
Bojar, 2017). The drawback lies in the fact that
humans understand learning difficulty differently
from NMT models. Recent works choose to de-
rive difficulty criteria based on the probability dis-
tribution of training examples to approximate the
perspective of NMT models. For instance, Platan-
ios et al. (2019) turn discrete numerical difficulty
scores into relative probabilities and then construct
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the difficulty criterion, while others derive diffi-
culty criterion from independently trained language
model (Zhang et al., 2019; Dou et al., 2020; Liu
et al., 2020) and word embedding model (Zhou
et al., 2020b). Xu et al. (2020) derive difficulty
criterion from the NMT model in the training pro-
cess. And these difficulty criteria are applied to
either fixed curriculum schedule (Cirik et al., 2016)
or dynamic one (Platanios et al., 2019; Liu et al.,
2020; Xu et al., 2020; Zhou et al., 2020Db).

A well-trained NMT model estimates the op-
timal probability distribution mapping from the
source language to the target language, which is
assumed to be able to recover the ground truth trans-
lations accurately (Liu et al., 2021). However, if
we perform inference on the training set, many of
the predictions are inconsistent with the references.
It reflects the distribution shift between the NMT
model leaned distribution and the empirical distri-
bution of training corpus, as Figure 1 illustrated.
For a training example, a high recovery degree be-
tween prediction and ground-truth target sentence
means it’s easier to be mastered by the NMT model
while a lower recovery degree means it’s more dif-
ficult (Ding and Tao, 2019; Wu et al., 2020b). To
this end, we employ this recovery degree as the
difficulty criterion, where the recovery degree is
computed by the sentence-level BLEU. We put for-
ward an analogy of this method that humans can
schedule a personal and effective curriculum af-
ter skimming over a textbook, namely self-guided
curriculum.

In this work, we cast the recovery degree of each
training example as its learning difficulty, enforcing
the NMT model to learn from examples with higher
recovery degrees to those with lower degrees. Also,
we implement our proposed recovery-based dif-
ficulty criterion with fixed and dynamic curricu-
lum schedules. Experimental results on two ma-
chine translation benchmarks, i.e., WMT14 En-De
and WMT17 Zh-En, demonstrate that our proposed
self-guided CL can alleviate the distribution shift
problem in vanilla NMT models, thus consistently
boosting the performance.

2 Problem Definition

For a better interpretation of curriculum learning
for neural machine translation, we put the discus-
sion of various CL strategies into a probabilistic
perspective. Such perspective also motivates us to
derive this recovery-based difficulty criterion.
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2.1 Neural Machine Translation

Let S and T represent the probability distributions
over all possible sequences of tokens in source and
target languages, respectively. We denote the dis-
tribution of a random source sentence x and y as
Ps(x) and Py (y). NMT model is to learn a condi-
tional distribution Ps 7(y|x) with a probabilistic
model P(y|x;0) parameterized by 6, where 6 is
estimated by minimizing the objective:

J(Q) = _Ez,yNngT(x,y) IOgP(y‘iﬁ, 0) (1)

2.2 Curriculum Learning for Neural
Machine Translation

CL methods decompose the NMT model training
into K phases, enforcing the optimization trajec-
tory in parameter space to visit a series of points
',...,0% . Each training phase can be viewed as
a sub-optimal process, optimized on a subset Dy, of
the training corpus D:

J(0%) = —E log P(ylz;0%)  (2)

z,y~Pp,
where Jf’Dk is the empirical distribution of Dy. Ac-
cording to the definition of curriculum learning,
the optimization difficulty increases from .J (')
to J(0%) (Bengio et al., 2009). In practice, it’s
achieved by grouping training examples into sub-
sets in ascending order of learning difficulty. The
process splitting D into K subsets can be formu-
lated as follows:

* score <— d(z"), 2" € D, where d(-) is a diffi-
culty criterion

eFor £ = 1,...,K do; D <+
{#z"|Constraint(d(z"), k)}

z represents examples in D, D = {2} | 2" =

(™, y™). Training corpus D is split into K subsets

{Dl, . . ,]D)K}, that U Dy = D.
keK
With these notations, we review the DIFFICULTY

CRITERIA in existing CL methods from a prob-
abilistic perspective as these methods generally
derive difficulty criteria from a probabilistic dis-
tribution. For example:

Explicit Feature d(z") = Pp(Feature(z")),
where Feature(-) is handcrafted features and lin-
guistic prior knowledge such as sentence length
and word rarity. With the cumulative density func-
tion (CDF), numerical scores are mapped into a
relative probability distribution over all training



examples (Platanios et al., 2019). Only features
of source sentences are taken into consideration in
their practice.

Language Model d(z") =
—% log Prav(w?y, ..., w}), where a language
model is adopted to estimate the perplexity of
each sentence r = wy, ..., w;. Language models
trained on source and target side can be used
jointly, e.g., d(z™) + d(y™) (Zhou et al., 2020Db).
In other works (Zhang et al., 2019; Dou et al.,
2020), language models in different domains are
adopted to compute the cross-entropy difference of
each sentence, indicating its difficulty for domain
adaptation.

Word Embedding d(z") = L (w7,
where w1, ..., wy is a distributed representation of
source sentence x mapped through a independent
word embedding model. In the case of Liu et al.
(2020), the norm of word vector on the source side
is used as the difficulty criterion. They also use
the CDF function to assure the difficulty scores are
within [0, 1].

NMT Model d(zn,ak) _ l(zn;?(kz);é(kzjl;?kfl),
I(z50%) = —log P(y"|";0%), where 0" repre-

sents the NMT model parameters at the kth train-
ing phase. The decline of loss is defined as the
difficulty criterion in Xu et al. (2020). Besides,
the score of cross-lingual patterns may also be a
proper difficulty criterion for NMT (Ding et al.,
2020a; Zhou et al., 2020a; Wu et al., 2021), which
we leave as the future work.

We now turn to CURRICULUM SCHEDULING.
There are two controlling factors, extraction of
training set and training phase duration. In other
words, how to split training corpus into subsets
and when to load them. Given K mutual exclusive
subsets {D1,...,Dg} C D, there are two general
regimens loading them as training progresses: one
pass and baby steps. In one pass regimen, k sub-
sets Dy, are loaded as training set one by one, while
in baby steps regimen, these subsets are merged
into the current training set one by one (Cirik et al.,
2016). According to Cirik et al. (2016), baby steps
outperforms one pass. Later approaches generally
take the idea of baby steps in that easy examples
are not cast aside while the probability increases
for difficulty examples to be batched.

On top of baby steps, we can summarize exist-
ing works into two schedule settings: fixed sched-
ule and dynamic schedule. In fixed schedule, both

208

training set extraction and training phase duration
are fixed (Cirik et al., 2016; Zhang et al., 2019).
The size of the training set scales up by a certain
proportion of the total training examples, usually
|Dx| = N/K at the beginning of a new training
phase. And each training phase spends a fixed num-
ber of training steps. In dynamic schedule, either
training set extraction or training phase duration is
dynamic. Depending on which controlling factor
is dynamic, we group existing dynamic schedules
into two types: the competence type and the self-
paced type. Competence-based CL method is pro-
posed by (Platanios et al., 2019). In competence
type of dynamic schedule, training set extraction
is dynamic while the training phase duration is
fixed. At the beginning of a training phase, the
CL algorithm compute the model competence ¢
at the moment, then extract examples with diffi-
culty scores lower than c as the training set for the
current phase, {z"|d(z") < ¢,2" € D}. For K
training phases, the competence-based schedule is
to determine (K — 1) upper limits with a scale fac-
tor within range of d(z"), which is [0, 1]. Platanios
et al. (2019) take training steps 1,...,¢,...,T as
the scale factor, thus the general form of compe-

_ P
tence function is : ¢(t) = min (1, ¢/t 0+ cg)

Recent works develop model competence by in-
troducing different scale factors, such as the norm
of the source embedding of the NMT model (Liu
et al., 2020) and BLEU score on validation set (Xu
et al., 2020). Another type of dynamic schedule is
the self-paced one (Jiang et al., 2015; Zhou et al.,
2020b), in which training set extraction is fixed
while the training phase duration is dynamic. Af-
ter a training phase begins, it goes on until con-
vergence or until meeting certain conditions. For
example in Zhou et al. (2020b), model training will
progress to the next phase if the model uncertainty
stops decline.

3 Methodology

As mentioned above, due to the distribution shift
problem, predictions made by a well-trained vanilla
NMT model can be inconsistent with the refer-
ences when performing inference on the training
set. Training examples with higher recovery de-
grees are easier to be masted by the NMT model
while those with lower recovery degrees are likely
to be more difficult. Table 1 shows a comparison
of two training examples with distant recovery de-



High Recovery Degree (BLEU 77.01)

Source

If the motion for division is carried, those parts of the proposal or of the amendment

ZEIANBOE T, 1R R EUEIER T 5 PR AR R S SR A A =R -

which are subsequently approved shall be put to the vote as a whole.

If the motion for division is carried , those parts of fm draft resolution or of the

Prediction

amendment that are subsequently approved shall be put to the vote as a whole.

Low Recovery Degree (BLEU 5.19)

Source
TR EERAIE T — TR .
“Reference  Slowly, very slowly, it raised its head
It winked.
Prediction  Slowly and very slowly — thinking his

H B8, JEF REMIE LA E RIBRES E4 7T LUE R R A AL E [ 1

Slowly, very slowly, it raised its head until its eyes were on a level with Harry’s.

Slowly and very slowly — thinking his head up, still adding to poster him gladly stare to

stopped Harry’s face alone, and then blurted it out to Harry like a stop.

Table 1: Examples from WMT17 Chinese=-English with distant recovery degrees measured by sentence-level
BLEU score. We mark prediction errors with red underline.

Source Target

Source Prediction  Target BLEU

BLEU Source Target ) H

Curriculum '

27.3 "

2L ol 3 -

101 2 ]
0.2 =T 4

Figure 2: Workflow of self-guided CL strategy

grees.

In this section, we first introduce our recovery-
based difficulty criterion and then propose to im-
plement this criterion with fixed and dynamic cur-
riculum schedules. The workflow of our proposed
self-guided curriculum learning strategy is illus-
trated in Figure 2.

3.1 Difficulty Criterion

The objective function of the vanilla model can be
written as an average distribution over the training
corpus D:

J(p) = Er,yNﬁDL(f($n§ ©),y") 3)

where f(x"; ¢) represents model’s prediction and
L is the loss function. As noted in Section 2, cur-
riculum learning minimizes the objective J () with

a set of sub-optimal processes from easy to difficult.
Examples that better fit into the average distribu-
tion learned by the vanilla model with parameter ¢
get higher recovery degrees. Starting curriculum
learning on a set of examples with higher recovery
degrees is to start optimizing J(6) from a smaller
parameter space in the neighborhood of parameter
@. In the machine translation scenario, we care
more about model performance in terms of trans-
lation quality. So we choose BLEU score, the de
facto automatic metric for M T, to measure the re-
covery degree. The difficulty criterion based on
sentence-level BLEU score is as follows:

d(z") = —BLEU(f(2"; ¢),y") “4)

Other reference-based automatic metrics for MT
are applicable in this difficulty criterion as well.

3.2 Curriculum Scheduling

Following basic operations of the baby steps regi-
men, we first split training corpus D into /X mutual
exclusive subsets {Dy, ..., Dx}, corresponding to
K training phases. With difficulty criterion d(-),
we define the corpus splitting function g:

g(d(*)) : D — {Dy,...,Dg},

5
‘ Va € Dy, Vb € Dg1, d(a) < d(b) )

Then we explore both fixed and dynamic schedules:

Fixed In fixed schedule, the training duration of
each training phase is predefined. At the beginning
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Algorithm 1: Fixed Scheduling

Algorithm 2: Dynamic Scheduling

N
n=1°

Input: Parallel corpus D = {2"
2" = (a",y")
1 Train vanilla model ¢ on D
2 Compute difficulty score d(z"), 2" € D
with ¢ by Eq. 4
3 Split D into subsets {Dy, ..
4 Dirain = @
sfork=1,..., Kdo
6 Dirain = Dirain U Dy
7 for training stepst =1,...,T do
8 L Train CL model 6% on Dyyaiy,

Output: Trained CL model 8

., Dk} byEq. 5

of the kth training phase, subset Dy, is merged into
the current training set. After finished with 7" steps,
the training progresses to the next phase k + 1, see
Algorithm 1:

Dynamic We follow the self-paced type of dy-
namic schedule as described in Section 2, in which
training duration is dynamic while training set ex-
traction is done before training starts. We define
the condition of training phase progressing by the
model recovery degree. In training phase k, if the
CL model constantly demonstrates recovery de-
grees higher than the vanilla model on the newly
merged subset Dy, the CL model training will ad-
vance to the training phase k£ + 1. For easier op-
eration, we randomly sub-sample I, from D, for
model recovery validation. Based on the perfor-
mance on {z",y"} € I}, which is measured by
corpus-level BLEU score, we compute model re-
covery degree of the CL model at current training
phase k by:

oc(k) = BLEU(f(z";0"%),y") (6)

Similarly, with the same additional validation set
., we compute model recovery degree of the
vanilla model by:

oy (k) = BLEU(f(2";¢),y") (7)

If o, > o,, training phase will progress to the next
one. Otherwise, the current training phase will go
on until it reaches the predefined maximum time
steps T', and then moves to the next phase. The
training process is as described in Algorithm 2.

Input: Parallel corpus D = {2"}Y_,

1 Train vanilla model ¢ on D
2 Compute difficulty score d(2"), 2" € D
with ¢ Eq. 4

3 Split D into subsets {Dy,...,Dx} by Eq. 5

4 Dirain = @

sfork=1,...,Kdo

6 Dirain = Dirain U Dy

7 for training stepst =1,...,T do

8 Train CL model 6% on Dyyin

9 Compute model recovery degree o,
and o,, Eq.6,7

10 if o. > o, then

11 L Stop and move to the next phase

Oiltput: Trained CL model #

4 Experiments

4.1 Datasets

We conduct experiments on two machine trans-
lation benchmarks: WMT’14 English=-German
(En-De) and WMT’ 17 Chinese=-English (Zh-En).
For En-De, the training set consists of 4.5 million
sentence pairs. We use newstest2012 as the valida-
tion set and report test results on both newstest2014
and newtest2016 for fair comparison with existing
approaches. For Zh-En, we follow (Hassan et al.,
2018) to extract 20 million sentence pairs as the
training set. We use newsdev2017 as the valida-
tion set and newstest2017 as the test set. Chinese
sentences are segmented with a word segmenta-
tion toolkit Jieba'. Sentences in other languages
are tokenized with Moses®>. We learn Byte-Pair
Encoding(BPE) (Sennrich et al., 2016) with 32k
merge operations. And we learn BPE with a shared
vocabulary for En-De. We use BLEU (Papineni
et al., 2002) as the automatic metrics for com-
puting recovery degree and evaluating model per-
formance with statistical significance test (Collins
et al., 2005).

4.2 Model Settings

We perform proposed CL method with the
FAIRSEQ? (Ott et al., 2019) implementation of the

]https://github.com/fxshy/jieba
https://github.com/mosesdecoder
*https://github.com/pytorch/fairseq
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% Systems WMT14 EnDe WMT16 EnDe WMT17 ZhEn
BLEU A BLEU A BLEU A

1 Transformer BASE 27.30 - 32.76* - 23.697 -

2 w/ Competence-based CL ~ 28.19f - 32.84% - 24.30f -

3w/ Norm-based CL 28.817 - - - 25.25T -

4 w/ Uncertainty-aware CL - - 33.93% - 25.02¢ -

This work

5 Transformer BASE 27.63 - 33.03 - 23.78 -

6  w/ SGCL Fixed 28.16"7 053 3355T 052 24.65" 0.87

7 w/ SGCL Dynamic 28.62"  0.99 34.07" 1.04 25.34" 156

Table 2: Experiment results on WMT14 En=-De with newstest2014 and newstest2016, and WMT17 Zh=-En. For
baseline and existing CL methods, Row 1-4, «t* marks the results from Liu et al. (2020), and “4» marks the results
from Zhou et al. (2020b). Since Platanios et al. (2019) only report their results on En=-De newstest2016, up to
30.16, which is lower than later implementations, we show the implemented results of the Competence-based CL
method from Liu et al. (2020) and Zhou et al. (2020b) instead. For the results of our proposed methods, “fh/1
indicates significant difference (p < 0.01/0.05) from Transformer BASE.

Transformer BASE (Vaswani et al., 2017). For regu-
larization, we use the dropout of 0.3 and 0.1 for En-
De and Zh-En respectively, with label smoothing e
=0.1. We train the model with a batch size of ap-
proximately 128K tokens. We use Adam (Kingma
and Ba, 2015) optimizer. The learning rate warms
up to 5x 10~% in the first 16K steps and then decays
with the inverse square-root schedule. We evaluate
the translation performance on an ensemble of the
top 5 checkpoints to avoid stochasticity. We use
shared embeddings for En-De experiments. All our
experiments are conducted with 4 NVIDIA Quadro
GV100 GPUs.

4.3 Curriculum Learning Settings

The vanilla model and the CL model share the same
Transformer BASE setting. For the recovery degree,
we let the trained vanilla model make predictions of
source sentences in the training corpus with beam
size set to 1 for we only need to reveal the recovery
feature at the moment. Then we evaluate the predic-
tions with sentence-level BLEU score. Specifically,
we use fairseg-score to get sentence-level
BLEU score, which implements smoothing method
3, i.e., NIST smoothing method (Chen and Cherry,
2014) by default. According to Zhou et al. (2020b),
4 baby steps is superior to those with larger baby
steps, so we choose to decompose the CL training
into 4 training phases. Implementing the proposed
difficulty criterion, we investigate the performance
of two curriculum schedules:

* SGCL Fixed represents self-guided curricu-
lum learning with fixed schedule.
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* SGCL Dynamic represents self-guided cur-
riculum learning with dynamic schedule.

5 Results

Table 2 summarises our experimental results to-
gether with existing CL methods. Row 1 shows the
results of the standard Transformer BASE on these
benchmarks. Row 2-4 demonstrate results from
existing curriculum learning approaches. Row 5
shows the results of our Transformer BASE im-
plementation, and row 6-7 are the results of our
proposed CL models. For En-De, if existing works
report results on one of newstest2014 and new-
stest2017, then only the reported one is shown. We
report results on them both for fair comparison.

We train our implemented baseline of Trans-
former BASE and proposed CL models for 300k
steps. For both SGCL Fixed and SGCL Dynamic
methods, we observe superior performances over
the strong baseline on all three test sets of two
benchmarks, which agree with existing approaches
that curriculum learning can facilitate the NMT
model. And if we compare the two schedul-
ing methods, SGCL Dynamic outperforms SGCL
Fixed. A possible reason is that the dynamic sched-
ule encourages the CL model to spend more steps
on the more difficult subset. Encouragingly, we
observe considerable gains over other curriculum
learning counterparts.
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Figure 3: Recovery degree (sentence-level BLEU) dis-
tribution of the training set.

Subset Range Average
Dy 17.72 - 100.00 35.62
Dy 9.18-17.72 12.77
D3 5.16-9.18 6.97
Dy 0.00-5.16 3.35

Table 3: Range and average of recovery degree
(sentence-level BLEU) in subsets {Dy, Dy, D3, Dy}

6 Analysis

6.1 Recovery Degree

We conduct experiments on En-De for further anal-
ysis of the proposed CL methods.

As described in Section 3, we adopt sentence-
level BLEU score to measure the recovery degrees
of all examples in the training corpus with a vanilla
NMT model. When making predictions with the
vanilla model, we set the beam size to 1 for sim-
plicity. So the recovery degrees could be lower
than test results of a strong baseline. If we look
at the distribution in terms of BLEU score on all
training examples, as Figure 3 illustrated, the distri-
bution is very dense in the region with lower scores.
Specifically, more than 53.9% training examples
get a recovery degree lower than 10. It reflects the
distribution shift problem of well-trained vanilla
NMT mode, that the model learned distribution
and empirical distribution on training corpus are
inconsistent.

In our case, the training corpus is split into 4
subsets with about equal size, {1, Dy, D3, Dy}.
Table 3 is the range and average of recovery de-
grees of each subset, revealing the learning diffi-
culty of each subset merges into training set as
training phase progress. We also look at the aver-
age lengths of source sentences in these 4 subsets,
which are 22.40, 23.84, 25.33, 29.35, reflecting a
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(a) Baseline vs. SGCL Fixed

21.75

BLEU
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— Baseline
SGCL Dynamic
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(b) Baseline vs. SGCL Dynamic

Figure 4: Learning curves w.r.t BLEU scores.

gentle increase. As a comparison, if we sort the
training examples by lengths of source sentences
and split them into 4 subsets, the average lengths
become 10.96, 18.66, 27.00, 44.30. So we can infer
that the recovery degree is related to but not fully
depend on sentence length, indicating that shorter
sentences are not always easier to be masted by the
NMT model.

6.2 Learning Curves

Figure 4 demonstrates the learning curves of base-
line vs. SGCL Fixed and baseline vs. SGCL Dy-
namic. As illustrated, the baseline converges faster
at the beginning but stays at a lower level as train-
ing progresses, while proposed CL methods show
constant improvements and outperform the base-
line in the later training process. A possible reason
that the CL models don’t outperform the baseline
at the beginning might be, they boost their perfor-
mance after all training examples are merged into
the training set. After all training examples are
included, CL models are able to maintain better
growth momentum than the baseline.

We also observe that the SGCL Dynamic gains
more significant improvements over the baseline
than the SGCL Fixed. Given 300k training steps,
different curriculum schedules suggest different
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Source

INTT, WAL RHR 7> ELEK M BE Y7 Ab b 35 LAE ARR BB AR Rl % % RO RF 2%,
AL Gt R e A AT REIR 1%

BEAIAE -

However, just as the majority of internet medical companies struggle on the way of

a round or b round of financing, several segment-leading enterprises can still be

favored by investors.

However, even as most internet healthcare companies struggle to raise money in a or

b rounds, a few of the leading segments still enjoy the capital boom.

However, even as most internet health companies struggle with a round or b round of

(27.45)

financing, several segments leading business still enjoy the capital boom.

Table 4: Predictions made by the Vanilla model and the SGCL Dynamic model with a same input sentence. We
mark the errors with red underline. The number in parentheses, e.g. (8.61) are sentence-level BLEU scores.

ways of splitting the training steps. For the SGCL
Fixed, we empirically define the training steps
spent on phase 1 to phase 4 as 30k, 30k, 30k, 210k.
That is to say, after 90k steps, the model is train-
ing with all examples in the training corpus. For
SGCL Dynamic, as mentioned in Section 3, if the
CL model outperforms the vanilla model on the
newly merged subset, training progresses to the
next phase. In practice, after new examples merge
into the training set, we first train for 20k steps and
then check the performance of the CL model every
10k steps. As a result, the model starts to train with
all training examples after 120k steps and tends
to spend more time steps in later training phases,
consistent with other existing dynamic scheduling
methods.

6.3 Case Study

Figure 4 presents a case study in Zh-En. It indi-
cates that our approach achieves a performance
boost because of better lexical choice. To better
understand how our approach alleviates the low-
recovery problem, we conduct statistic analysis
on the sentence-level BLEU scores of predictions
made by the vanilla model and the CL model on
the test set. It shows that the proportion of predic-
tions with a BLEU score under 10 is 10.0% with
the vanilla model and is down to 8.1% with the CL
one.

7 Conclusion

In this work, we propose a self-guided CL strategy
for neural machine translation. The intuition be-
hind it is that after skimming through all training
examples, the NMT model naturally learns how to
schedule a curriculum for itself. We discuss exist-

ing difficulty criteria for curriculum learning from
a probabilistic perspective, which also explains
our motivation for deriving a difficulty criterion
based on recovery degree. Moreover, we corporate
this recovery-based difficulty criterion with both
fixed and dynamic curriculum schedules. Empir-
ical results show that with a self-guided CL strat-
egy, the NMT model achieves better performance
over the strong baseline on translation benchmarks.
In the future, we will corporate recovery-based
difficulty criterion with other dynamic scheduling
methods. Also, it will be interesting to apply our
proposed CL strategy to different scenarios, e.g.,
non-autoregressive generation (Gu et al., 2018; Wu
et al., 2020a; Ding et al., 2020b).
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