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Abstract

Recent studies argue that knowledge distilla-
tion is promising for speech translation (ST)
using end-to-end models. In this work, we in-
vestigate the effect of knowledge distillation
with a cascade ST using automatic speech
recognition (ASR) and machine translation
(MT) models. We distill knowledge from a
teacher model based on human transcripts to
a student model based on erroneous transcrip-
tions. Our experimental results demonstrated
that knowledge distillation is beneficial for a
cascade ST. Further investigation that com-
bined knowledge distillation and fine-tuning
revealed that the combination consistently im-
proved two language pairs: English-Italian
and Spanish-English.

1 Introduction

Speech translation (ST) converts utterances in a
source language into text in another language. Con-
ventional ST systems called cascade or pipeline
ST consist of two components: automatic speech
recognition (ASR) and machine translation (MT).
In the cascade ST, the error propagation from ASR
to MT seriously degrades the ST performance. On
the other hand, a new ST system called end-to-end
or direct ST uses a single model to directly trans-
late the source language speech into target language
text (Bérard et al., 2016). Such an end-to-end ap-
proach is a new paradigm in ST and is attracting
much research attention. However, a naive end-to-
end ST without additional training, such as ASR
tasks, remains inferior to a cascade ST (Liu et al.,
2018; Salesky and Black, 2020). Additionally, it
requires parallel data of the source language speech
and the target language text, which cannot be ob-
tained easily in practice.

Recent ST studies have incorporated the tech-
niques of cascade ST to end-to-end STs. Multi-
task training with an ASR subtask has been used

successfully in end-to-end ST (Weiss et al., 2017;
Anastasopoulos and Chiang, 2018; Sperber et al.,
2019). Initializing an end-to-end ST with a pre-
trained ASR or MT has also become a common
approach (Bérard et al., 2018; Bansal et al., 2019;
Inaguma et al., 2020; Wang et al., 2020; Bahar
et al., 2021).

In this work, we focus on the cascade approach
due to its performance advantage against end-to-
end STs. Another reason is that cascade ST models
can be incorporated into end-to-end STs, as shown
in previous studies.

During the training of an MT model for a cas-
cade ST, we can use clean human transcripts for the
source language speech as input. However, since
the MT in a cascade ST always receives ASR out-
put during inferences, ASR errors should be propa-
gated to the MT model to cause translation errors.
What if we use erroneous speech transcriptions by
ASR for training? That approach means the MT
model is trained to translate erroneous transcrip-
tions into correct text, which would not generally
be appropriate. One possible solution is to use both
types of input (clean and erroneous transcriptions)
for training, not just one. The question is how to
use them. What is the proper training strategy for
cascade STs? This is what we want to learn.

In this work, we address such problems by ap-
plying knowledge distillation to cascade STs. We
distill the knowledge of a teacher model based on
clean transcriptions to a student model based on
erroneous transcriptions. We also investigate the
joint use of knowledge distillation and fine-tuning.
Experimental results revealed that the knowledge
distillation improved the robustness against ASR
errors and that the knowledge distillation after
the fine-tuning provided more significant improve-
ment.
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2 Related work

Some ST studies have tackled the problem of
ASR error propagation. N-best hypotheses (Zhang
et al., 2004; Quan et al., 2005), confusion networks
(Bertoldi and Federico, 2005; Bertoldi et al., 2007),
and lattices (Matusov and Ney, 2010; Sperber et al.,
2017a) were used to include ASR ambiguity in the
ST process.

Osamura et al. (2018) used the weighted sum
of embedding vectors for ASR word hypotheses
based on their posterior probabilities. Sperber et al.
(2017b) and Xue et al. (2020) showed that transla-
tion accuracy against erroneous speech transcrip-
tions can be improved by introducing pseudo ASR
errors in the training data of MT.

Knowledge distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015) is a method of transfer-
ring knowledge from a teacher to a student model.
Typically, the student model is trained by mini-
mizing the KL-divergence (Kullback and Leibler,
1951) loss between the output probability distri-
butions of the teacher and student models (word-
level KD). Sequence-level knowledge distillation
(sequence-level KD) (Kim and Rush, 2016a) tar-
gets the token-sequence generated by the teacher
model using beam search. In our experiments,
sequence-level KD outperformed word-level one,
and Kim and Rush (2016b) showed similar trends.
Therefore, in our experiments, we call it KD.

The KD technique is prevalent in many ap-
plications of machine learning, including MT
(non-autoregressive machine translation (Gu et al.,
2017), simultaneous translation (Ren et al., 2020),
etc.). Typically, it is used to distill knowledge from
a larger teacher model to a smaller or faster student
model. Recent works (Furlanello et al., 2018; Yang
et al., 2018) have shown that the student model’s
accuracy exceeds that of the teacher model, even if
its size is identical as the student model. KD has
also been applied to ST. Gaido et al. (2020) applied
KD to an end-to-end ST using an MT model based
on clean transcriptions as the teacher of the end-to-
end ST model. Our work focuses on the application
of KD to a cascade ST using a teacher model based
on clean transcripts for the student model that takes
erroneous inputs.

Dakwale and Monz (2019) proposed distillation
as a remedy for the effective use of noisy parallel
data for machine translation. They first trained
the teacher model only on high-quality, clean data.
Then they fed the source-side of the noisy parallel
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Figure 1: Overview of key concepts of methods

data into the teacher model and trained the student
model to translate from the noisy source to the
teacher’s output. The main difference between their
work and ours is that we have loosely equivalent
source sentences (clean or erroneous transcription),
which can be paired with the same target sentence.
Therefore, the student model can be trained with
more reliable objectives obtained by feeding clean
transcriptions to the teacher model.

3 Cascade ST

Suppose triplet W = (w1, ..., wJ), X =
(x1, ..., xK), and Y = (y1, ..., yL), where W (1 ≤
j ≤ J),X(1 ≤ k ≤ K), and Y (1 ≤ l ≤ L) are se-
quences of the speech features in a source language,
the corresponding transcribed source language to-
kens, and translated target language tokens.

In a cascade ST, first the ASR model is trained by
the W and X pair. Then the MT model is trained
to translate from X to Y . The loss function of MT
model LMT is defined using cross entropy:

LMT = −
L∑
l=1

|V |∑
v∈V

logP (yl = v), (1)

where P (yl = v) is the posterior probability of
candidate v in target language vocabulary V at
time l in Y :

P (yl = v) = p(v|X, y<l; θ). (2)

4 Proposed method

When training an MT model, we can also use X̂
instead of X , which is the output of the ASR
model. We call the model trained with clean in-
put X MTclean (Fig. 1(a)) and the one trained with
ASR-based input X̂ MTasr (Fig. 1(b)).
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4.1 Joint use of KD and FT

To most effectively exploit both clean input X and
ASR-based input X̂ , we introduce two training
techniques: KD and fine-tuning. In KD, the student
model is trained using X̂ by minimizing loss LKD.
As shown in Fig. 1, LKD is the loss between Y ′ =
(y

′
1, ..., y

′
M ) and Ŷ = (ŷ1, ..., ŷN ), where Y ′(1 ≤

m ≤ M) and Ŷ (1 ≤ n ≤ N) are the outputs
of the teacher and student models. We use the
sequence-level KD so that LKD is calculated by
replacing L with M and l with m in Eq. 1.

On the other hand, fine-tuning (FT) has been
widely used for domain adaptation in MT (Sennrich
et al., 2016a). Di Gangi et al. (2019c) showed that
a model fine-tuned with ASR-based input becomes
robust to erroneous ASR input while maintaining
high performance for clean input. Following this
finding, we employ FT for MT training. In FT, the
student model with X̂ , which inherits the param-
eters of the teacher model with X , is trained by
minimizing LMT (Fig. 1).

In addition to the independent use of KD and FT,
we examined their possible combinations:

• FT+KD. Apply these techniques at the same
time. Unlike regular FT, we use loss LKD

instead of LMT .
Specifically, (1) the teacher model is trained
with clean input X and loss LMT . Then (2)
the student model is trained with ASR-based
input X̂ and loss LKD, inheriting the parame-
ters of the teacher model.

• KD→FT. Perform additional training with
LMT to the model trained by KD.
Specifically, (1) the student model is trained
with X̂ and LKD. Then (2) fine-tune the
model with X̂ and LMT .

• FT→KD. Perform additional training with
LKD to the model trained by FT.
Specifically, (1) the student model is trained
with X̂ and LMT , inheriting the parameters
of the teacher model. Then (2) fine-tune the
model with X̂ and LKD.

5 Experiments

5.1 Dataset

We conducted experiments for English to Italian
and Spanish to English NMT. For English-Italian,

we used MuST-C (Di Gangi et al., 2019a), a mul-
tilingual ST corpus built from TED talks. It con-
tains triplets of about 250K segments of English
speeches, transcripts, and Italian translations. We
used audio and transcript pairs to train the ASR. To
train the MT model, we used transcripts as clean
input and ASR outputs as noisy input.

For Spanish-English, we used LDC Fisher Span-
ish speech with new English translations (Post et al.,
2013; Salesky et al., 2018). It has the following
roughly 140K segments of multi-way parallel data:

1. Spanish disfluent speech

2. Spanish clean transcriptions

3. Spanish erroneous transcriptions
(ASR output)

4. English disfluent translations

5. English fluent translations

When we train the MT model, we used (5) as output.
For the sake of reproducibility we used (2) or (3)
as clean or noisy input included in the dataset.

We preprocessed the text data with Byte Pair
Encoding (BPE) (Sennrich et al., 2016b) to split the
sentences into subwords. The vocabulary size was
set to 8,000 in all the languages. For the English
audio, we extracted 80-channel log mel filterbank
features (25-ms window size and 10-ms shift) and
applied an utterance-level CMVN.

To evaluate the performance, we calculated the
case-sensitive BLEU with sacreBLEU.1 We mea-
sured BLEU for both the ASR-based and clean
input to evaluate the ASR error robustness and the
topline performance in an ideal situation without
ASR errors.

5.2 Model
We used the Transformer (Vaswani et al., 2017)
implementation of Fairseq2 to construct both the
ASR and the MT. The hyper-parameters of the
model generally follow the Transformer Base set-
tings (Vaswani et al., 2017). Each encoder and
decoder has 6 sub-layers. We set the word em-
bedding dimensions, the hidden state dimensions,
and the feed-forward dimensions to 512, 512, and
2,048. We performed the sub-layer’s dropout with
a probability of 0.1 and employed 8 attention heads
for both the encoder and the decoder. The model
is trained using Adam with an initial learning rate

1https://github.com/mjpost/sacreBLEU
2https://github.com/pytorch/fairseq
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ST Type System ASR-based input Clean input

End-to-end

ST + ASR-PT (Di Gangi et al., 2019b)1 16.8
ST + ASR-PT (ESPnet)2 21.5
ST 17.0
ST + ASR-PT 21.4

Cascade

MTclean (Di Gangi et al., 2019b)1 18.9 -
MTclean 22.4 29.7
MTasr 22.1 27.2
MTasr + FT 23.2 29.8
MTasr +KD 22.5 28.2
MTasr + FT+KD 23.4 29.9
MTasr +KD→ FT 23.1 29.3
MTasr + FT→ KD 23.5 30.2

Table 1: ST systems on MuST-C English-Italian. Test BLEU reported. 1End-to-end (above)
or cascade ST (below) systems using Fairseq’s Transformer Base model, which resembles our con-
ditions. 2End-to-end ST system using ESPnet resembles our conditions chosen from a report
(https://github.com/espnet/espnet/blob/master/egs/must c/st1/RESULTS.md).

of 0.0007, β1 = 0.9, and β2 = 0.98, following
Vaswani et al. (2017). We used 4,096 tokens per
mini-batch and eight iterations of forward-passes,
accumulated gradients, and back-propagated them.
Validation was performed every 1,000 updates, and
the test checkpoint with the best loss was stored.

For English-Italian, we also built several end-to-
end ST variants using Fairseq for comparison with
the cascade models. All the settings are identical
as in MT: using Transformer described above and
trained with label-smoothed cross entropy loss.

6 Results

6.1 English-Italian

Table 1 shows the BLEU results for the English
to Italian NMT. In the end-to-end systems, a naive
model (ST) without any additional technique, such
as an ASR subtask, was significantly lower than
the others and was significantly improved by pre-
training the ASR encoder (ST + ASR-PT).

The cascade methods worked better than the
end-to-end methods. In the cascade ST, the per-
formance of a system trained using only ASR input
(MTasr) was worse (0.3-BLEU drop for the ASR-
based test data and 2.5-BLEU drop for the clean
test data) than the clean input (MTclean). The ASR-
based training data contained erroneous transcrip-
tions of WER 14.49, leading to degradation. On the
other hand, some systems trained using both ASR
input and clean input were better than MTclean

when translating clean input. This indicates that
the training with ASR errors may contribute to reg-

ularize the model, which yields improvements.
The FT for the ASR-based input (MTasr + FT)

showed improvements for the ASR-based input
(+1.1 BLEU). Compared to FT, KD (MTasr+KD)
produced a small improvement with the ASR-based
input (+0.4 BLEU). In the KD, a teacher model got
a BLEU score of 41.6 on the reference for training
data.

With respect to the joint use of FT and KD, si-
multaneously applying these techniques (MTasr +
FT+KD) shows only slight improvements (+0.2
BLEU for ASR-based test data and +0.1 BLEU
for clean test data), compared to FT only (MTasr +
FT). Applying FT after KD (MTasr+KD→ FT)
was inferior to the other combinations, especially
for clean data, probably because the MT was not
trained with clean input. Distilling knowledge after
FT (MTasr + FT → KD) gave the best score for
both the ASR-based and the clean test data. FT
enables the student model to learn good parameter
values, and KD provides the student model with its
upper bounds from the teacher model.

6.2 Spanish-English
Table 2 shows the overall results for the Spanish
to English cascade ST. They are similar to those
in English-to-Italian; FT and KD improved BLEU,
and combining them yielded more significant im-
provements. However, the gap was larger for the
clean test data between systems only trained on the
ASR-based input (MTasr) and only on the clean
input (MTclean). The ASR-based training data con-
tained many erroneous transcriptions of WER 36.5,
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System Fisher/Test 0 Fisher/Test 1
ASR-based input Clean input ASR-based input Clean input

MTclean 17.5 26.8 17.0 26.1
MTasr 17.5 17.6 16.9 17.2
MTasr + FT 18.3 24.9 17.5 24.5
MTasr +KD 18.5 16.5 17.9 16.2
MTasr + FT+KD 18.8 25.2 18.0 24.9
MTasr +KD→ FT 17.8 15.7 17.1 15.3
MTasr + FT→ KD 19.0 25.2 18.4 25.2

Table 2: ST systems on Fisher Spanish-English. Test BLEU for two fluent references reported.

causing more serious degradation. It also differs
from the English-to-Italian experiments in that KD
(MTasr +KD) was superior to FT (MTasr + FT)
for the ASR-based test data when it was used alone.
In KD, BLEU using the teacher model as train-
ing data was 48.0, which is higher than 41.6 for
English-Italian. One possible reason is that there
was a higher upper bound that can be trained by
KD. Another difference was a gap between the
clean and ASR-based inputs, which have many er-
roneous transcriptions of WER 36.5. In such a
case, parameter initialization by FT may not be
very helpful.

In spite of the differences between the two ex-
periments, we achieved consistent improvement by
combining FT and KD.

7 Discussion

We analyzed the results with the Spanish to English
models to discuss how erroneous transcriptions af-
fect translation results and how KD and FT work.

Erroneous transcription The example below
shows the problem of error propagation:

• (Clean input) uno super, super nuevo que salio

• (ASR output) en un sur super nuevo que salio

• (Reference) One super new that came out

• (MTasr with ASR-based input) In the South,
it came out

• (MTasr + KD with ASR-based input) In a
super new one that came out.

Here the Spanish word super was misrecognized
as sur by the ASR. This error was propagated to
MT, and MTasr translated it as South. Although
the word’s translation itself from sur to South was
not wrong, but it is not what we wanted. The model

trained by KD ignored this error and generated a
more proper sentence.

We found such ASR error correction phenomena
in the results, although KD and FT did not directly
address this issue.

Effect of Knowledge Distillation Spoken lan-
guage parallel data have translations of colloquial
spoken utterances. They increase the difficulty of
training MT. For instance:

• (Clean input) le ayuda si si, no es, no es intere-
sante pero entonces, a ba- entonces ya des-
pues cuando eso termino, tiene que escribir
varios asi, ensayos, hacer un analisis

• (Reference) You have to write some essays
like that, to make an analysis

• (KD teacher) It helps her yes, it’s not interest-
ing but then, when I finish, you have to write
several, you have to make an analysis

A human translator ignored many disfluent utter-
ances from the original text, resulting in low fidelity.
Here are some other examples:

• Inconsistent translations: “De Venezuela” was
translated into “From Venezuela” at one time
and “Venezuela?” at another time.

• All-caps: “donde hay problemas” was capital-
ized and translated into “WHEN TROUBLE
ARISES.”

• Omission of a part of speech: “Porque, tengo
el, el bodysuit, pero” was translated into “I
have the bodysuit..” The conjunction “pero
(but)” was removed for fluency.

The MT model can be confused by such transla-
tions. KD forces the student model to mimic literal
teacher translations that may include some errors
instead of reproducing translations of colloquial
spoken utterances.
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Effect of Fine-tuning Sometimes the fine-tuned
MT model corrected the ASR errors:

• (Clean input) Eh, para mi pues, eh, tengo
como diez mil canciones en, en el, en la Ipod

• (ASR output) eh para mi pues eh tengo como
diez mil canciones en en la epod

• (Reference) I have ten thousand songs in the
Ipod.

• (MTclean with ASR-based input) To me, I
have about ten thousand songs in the ethics

• (MTasr + FT with ASR-based input) I have
about ten thousand songs in the Ipod

The ASR misrecognized “Ipod” as “epod,” and
the model before FT, which was only trained with
clean inputs, incorrectly translated it as “ethics.”
As a result of the FT with ASR-based inputs, the
model successfully translated it as “Ipod.” The FT
for the erroneous ASR outputs may have provided
robustness against common errors.

8 Conclusion

We presented and discussed the benefits of using
two machine learning techniques in cascade ST:
knowledge distillation and fine-tuning. Our ex-
perimental results showed the advantages of the
proposed method in two different conditions. Our
results also suggest that combining knowledge dis-
tillation and fine-tuning is more beneficial than
using either one because they have different roles.

In future work, we will incorporate our findings
into an end-to-end ST to grow speech translation.
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