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Abstract
Data augmentation, which refers to manipu-
lating the inputs (e.g., adding random noise,
masking specific parts) to enlarge the dataset,
has been widely adopted in machine learn-
ing. Most data augmentation techniques op-
erate on a single input, which limits the di-
versity of the training corpus. In this paper,
we propose a simple yet effective data aug-
mentation technique for neural machine trans-
lation, mixSeq, which operates on multiple in-
puts and their corresponding targets. Specifi-
cally, we randomly select two input sequences,
concatenate them together as a longer input as
well as their corresponding target sequences
as an enlarged target, and train models on the
augmented dataset. Experiments on nine ma-
chine translation tasks demonstrate that such a
simple method boosts the baselines by a non-
trivial margin. Our method can be further com-
bined with single-input based data augmenta-
tion methods to obtain further improvements.

1 Introduction

Data augmentation, which enlarges the training cor-
pus by manipulating the inputs through given rules,
has been widely used in machine learning tasks.
For image classification, there are various data
augmentation methods, including cropping, flip-
ping, rotating,cut-out (DeVries and Taylor, 2017),
etc. For natural language processing (briefly, NLP),
similar data augmentation methods also exist, like
randomly swapping words (Lample et al., 2018a),
dropping words (Iyyer et al., 2015), and masking
specific words (Xie et al., 2017). With data aug-
mentation, the main content of the input is not af-
fected but the noise is introduced so as to increase
the diversity of the training set. The effectiveness
of above data augmentation methods has been ver-
ified by their strong performance improvements
in both image processing and NLP tasks. For ex-
ample, with the combination of data augmentation

and meta-learning, state-of-the-art result of image
classification is achieved (Cubuk et al., 2019).

Most existing data augmentation methods take
one sample from the training set as input, which
might limit the scope and diversity of the train-
ing corpus. Mixup (Zhang et al., 2018) is a re-
cently proposed data augmentation method, where
two samples from the training corpus are lever-
aged to build a synthetic sample. Specifically, let
x1, x2 denote two images from the training set, and
y1, y2 denote their corresponding labels. The syn-
thetic data (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)
is introduced to the augmented dataset, where λ
is randomly generated. Such a strategy is further
enhanced in follow-up works (Zhang et al., 2019;
Berthelot et al., 2019). Pair sampling (Inoue, 2018)
is another data augmentation method where the
synthetic sample is built as (0.5x1 + 0.5x2, y1).
In comparison, according to our knowledge, such
ideas are not leveraged in NLP tasks (e.g., machine
translation). Therefore, in this work, we explore
along this direction to see whether augmenting data
through mixing multiple sentences is helpful.

In sequence learning tasks, two inputs x1 and
x2 might contain different numbers of units (e.g.,
words or subwords). Besides, for sequence gener-
ation tasks, their labels y1 and y2 are of different
lengths. Therefore, it is not practical to sum them
up directly. Instead, we choose to concatenate two
inputs and the two labels to get the synthetic data.
We find that it is important to use a special token to
separate the two sentences in a synthetic data. We
name our proposed method as mixSeq.

mixSeq is a simple yet very efficient and effec-
tive data augmentation method. We conduct exper-
iments on 9 machine translation tasks and find that
mixSeq can boost the baseline by 0.66 BLEU on av-
erage. Specifically, on FLORES Sinhala↔English,
our method can improve the baseline by 1.03 points.
mixSeq can be further combined with data augmen-
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tation methods working on a single input, e.g., ran-
domly dropping, swapping or masking words, to
further improve the performance (see Table 3).

Normally, mixSeq randomly samples the two
concatenated sequences. However, if the two con-
catenated sequences are contextually related, we
can enhance our mixSeq to a context-aware version:
ctxMixSeq, which will result in better performance
(see Table 4).

2 Our Method

Notations: Let X and Y denote two language
spaces, which are collections of sentences in the
corresponding languages. The target of neural
machine translation (briefly, NMT) is to learn a
mapping from X to Y . Let D = {(xi, yi)}Ni=1

denote the bilingual NMT training corpus, where
xi ∈ X , yi ∈ Y , and N is the number of training
samples. Let concat(· · ·) denote the concate-
nation operation, where the input sequences are
merged into a longer one, and each input is seg-
mented by a space.
Training Algorithm: We propose mixSeq, a sim-
ple yet effective data augmentation method, which
generates new samples by operating on two existing
samples. The algorithm is shown in Algorithm 1.

Algorithm 1: mixSeq

1 Input: D = {(xi, yi)}Ni=1, augmented size
N̂ ; sentence border label <sep>;

2 Initialize D̂ = {};
3 for k ← 1 to N̂ do
4 Sample two indices i and j from

SamplingFunc(N);
5 x̃k = concat(xi,<sep>, xj);

ỹk = concat(yi,<sep>, yj);
6 D̂ = D̂ ∪ {(x̃k, ỹk)};
7 end
8 Upsample or downsample D to size N̂ and

get a new dataset D̃; train an NMT model
on D̃ ∪ D̂, which is of size 2N̂ .

In mixSeq, the most important step is to build
an augmented dataset D̂. As shown from line 3 to
line 7 in Algorithm 1, we first sample two aligned
sequence pairs (xi, yi) and (xj , yj) (the design of
sampling rule SamplingFunc is left to the next
part). Then we concatenate their source sentences
and the target sentences respectively with a special
label <sep> separating two samples, and get two

longer sequences, x̃k and ỹk (line 5 in Algorithm 1).
We eventually obtain the augmented dataset D̂ with
size N̂ . After that, we upsample or downsample
D to the same size as N̂ and obtain D̃. Finally, we
train our translation models on D̃ ∪ D̂.
Design of SamplingFunc: We have two forms
of SamplingFunc, which corresponds to two
variants of our algorithm:
(1) In general cases, SamplingFunc randomly
samples i and j from {1, 2, · · · , N}. For ease of
reference, we still use mixSeq to denote this variant.
(2) When contextual information is available, i.e.,
the parallel data is extracted from a pair of aligned
document, SamplingFunc only samples consec-
utive sequences in a given document. Assume
xi/yi represent the i-th sentence in the document,
then SamplingFunc only samples (i, i + 1) in-
dex pairs.We use ctxMixSeq to denote this vari-
ant. ctxMixSeq is related to context-aware machine
translation (Tiedemann and Scherrer, 2017). The
difference is that, during inference, ctxMixSeq uses
a single sequence as the input, while Tiedemann
and Scherrer (2017) uses multiple sequences in-
cluding the contextual information.
Discussions: mixSeq operates on two sequences,
while previous data augmentation methods like ran-
domly dropping, swapping or masking words usu-
ally operate on a single sequence. These methods
can be combined with mixSeq to bring further im-
provements (see Table 3).

3 Experiments

We conduct experiments on the following
machine translation tasks to evaluate our
method: IWSLT’14 German↔English and
Spanish↔English; FLORES English↔Nepali
and English↔Sinhala; and WMT’14
English→German. We abbreviate English,
German, Spanish, Nepali and Sinhala as En, De,
Es, Ne and Si.

3.1 Setup
Datasets: For IWSLT’14 De↔En, follow-
ing Edunov et al. (2018), we lowercase all words,
tokenize them, and apply BPE with 10k merge op-
erations (Sennrich et al., 2016) to obtain of the
subword representations1. The validation set is
split from the training set and the test set is the con-
catenation of tst2010, tst2011, tst2012, dev2010

1Preprocessing script: https://github.com/
pytorch/fairseq/blob/master/examples/
translation/prepare-iwslt14.sh.

https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/master/examples/translation/prepare-iwslt14.sh
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and dev2012. For IWSLT’14 Es↔En, the prepro-
cessing is the same as that for De↔En without low-
ercasing the words. We use tst2013 and tst2014 as
the validation and test sets respectively. For FLO-
RES En↔Ne and En↔Si datasets, we used the
BPE version of dataset provided by Guzmán et al.
(2019). For WMT’14 En→De, we concatenate
newstest2012 and newstest2013 as the validation
set and use newstest2014 as the test set. The statis-
tics of the datasets are shown in Table 1. On all
tasks, the vocabulary is shared between the source
language and the target language.

Task Training Validation Test

De↔En 160k 7.3k 6.8k
Es↔En 184k 1.2k 1.3k
En↔Ne 563k 2.6k 2.8k
En↔Si 405k 2.9k 2.8k
WMT 4.5M 3k 3k

Table 1: The number of sentences in the training, vali-
dation and test sets of IWSLT De↔En, Es↔En, FLO-
RES En↔Ne, En↔Si, and WMT datasets.

Models and Training Strategy: For mixSeq, we
set N̂ as 5N ; for ctxMixSeq, we set N̂ as N . We
choose Transformer (Vaswani et al., 2017) as our
translation model. For IWSLT tasks, the dimen-
sions of the embedding, feed-forward network and
number of layers of the Transformer models are
256, 1024 and 6 respectively. The dropout rate is
0.3. The batch size is 6000 tokens, and we train
the models for 300k steps. For FLORES tasks,
we use exact the same architecture and training
strategy as those in (Guzmán et al., 2019) for fair
comparison. The model is a 5-layer Transformer
with embedding dimension and feed-forward net-
work dimension 512 and 2048. The batch size is
16k. The baseline model is trained for 100 epochs,
while mixSeq is trained for 10 epochs considering
our enlarged dataset is 10 times larger than the orig-
inal dataset. For WMT task, the dimensions of the
embedding, feed-forward network and number of
layers of the Transformer models are 1024, 4096
and 6 respectively. The batch size is 4096 tokens
per GPU. We train on eight V100 GPUs and accu-
mulate the gradients for 16 times before updating.
For all models, we use Adam with learning rate
5 × 10−4 and the inverse sqrt learning rate
scheduler to optimize the models. All models are
trained until convergence.
Evaluation: We use beam search with beam width

of 5 and length penalty of 1.0 to generate sequences.
The generation quality is evaluated by BLEU score.

3.2 Results
The results of standard Transformer and mixSeq
on small-scale datasets are shown in the first sec-
tion of Table 2. We adopt another baseline, pair
sampling (Inoue, 2018) into NMT for compari-
son, which can produce a synthetic dataset D̃ps

made up of pairs (concat(x1,<sep>, x2), y1),
(x1, y1) ∈ D, (x2, y2) ∈ D. The results of pair
sampling (briefly, PS) are in the third column of
Table 2. mixSeq generally brings good improve-
ments and significantly outperforms the baseline
on all tasks except for two (En→De and En→Si).
The pair sampling baseline performs poorly on all
tasks. This is because pair sampling requires the
translation model to translate the first part of the
input (i.e., x1) while ignoring the second part (i.e.,
x2), which is against the goal of NMT. It is also
worth noting that the time and number of steps re-
quired to converge on the augmented dataset and
the original dataset are similar.

Task Transformer mixSeq PS

En→De 29.18 29.46 29.09
De→En 34.96 35.78‡ 35.22
En→Es 39.61 40.30† 38.95
Es→En 40.94 41.39† 40.80
En→Ne 4.28 5.26‡ 4.20
Ne→En 7.68 8.38‡ 7.51
En→Si 1.21 1.49 0.88
Si→En 6.68 7.71‡ 6.02

WMT 29.15 29.61 -

Table 2: BLEU scores of IWSLT De↔En, Es↔En,
FLORES En↔Ne, En↔Si, and WMT En→De. ‡ and
† indicate that mixSeq outperforms Transformer in the
significance test with p < 0.01 and p < 0.05, respec-
tively.

We also evaluate mixSeq on a large-scale dataset,
WMT’14 En→De, and the results are shown in the
second section of Table 2. Due to resource limita-
tion, we do not try pair sampling. Our method im-
proves the BLEU score by 0.46, which shows that
mixSeq is a generally effective method for NMT.

We further compare and combine our method
with data augmentation methods on one sequence,
including randomly dropping, masking and swap-
ping words. We conduct experiments on IWSLT’14
De↔En. As shown in Table 3, our method brings
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further improvement when combined with existing
data augmentation method on a single sequence.
The baseline is improved by up to 0.82 BLEU.

Method De→En En→ De

Transformer 34.96 29.18
mixSeq 35.78 29.46
Drop 35.30 29.03
Drop + mixSeq 36.01 29.22
Swap 34.52 28.73
Swap + mixSeq 34.73 28.98
Mask 35.78 29.49
Mask + mixSeq 36.63 30.00

Table 3: Comparison and combination with data aug-
mentation on single sequences.

To verify the effectiveness of ctxMixSeq, we con-
duct experiments on IWSLT’14 En↔De, where
contextual information is available. As discussed
in Section 2, Tiedemann and Scherrer (2017) is
similar with ctxMixSeq, except that it takes two
sequences concat(xt−1,<sep>, xt) as the in-
put during inference. We denote this inference
method as 2in (two inputs). Another baseline pro-
posed in Tiedemann and Scherrer (2017) is that the
NMT model is trained on dataset D ∪ D̃a, where
D̃a = {concat(xt−1,<sep>, xt), yt}Nt=2. This
can be seen as a context-aware version of pair sam-
pling and we briefly denote it as ctxPS. The re-
sults are in Table 4. ctxMixSeq outperforms all
baselines proposed by Tiedemann and Scherrer
(2017). Compared to mixSeq, ctxMixSeq brings
consistent improvements, especially when com-
bined with mixSeq.

Method En→De De→En

mixSeq 29.46 35.78
ctxMixSeq 29.65 35.96
ctxMixSeq + 2in 29.50 35.79
ctxPS 29.26 35.48
ctxPS + 2in 29.29 35.78
ctxMixSeq + mixSeq 29.74 36.09

Table 4: Results of context-aware versions of
mixSeq on IWSLT’14 En↔De.

With mixSeq, we find that the alignment is
enhanced. We visualize the source-target at-
tention maps obtained by our method. Given
(xi,<sep>, xj) and the corresponding translation
(yi,<sep>, yj), we find that most attention weight

En→Es Es→En En→Ne Ne→En

mixSeq 40.3 41.4 5.26 8.28
No <sep> 38.9 41.1 4.83 8.10

Table 5: Result of mixSeq with/without <sep>.

of yi is assigned to xi, with little assigned to xj .
Similar phenomena is observed for yj . In this way,
the attention mechanism is enhanced, which might
explain the performance improvements.

3.3 Analysis

In this section, we conduct ablation study on the
usage of <sep> and the effect of concatenating
more than two sequences.

Ablation Study of the Usage of <sep>
To evaluate the effect of <sep> token, we re-

move the <sep> from sequences as another base-
line. We conduct the experiments on IWSLT
En↔Es and FLORES En↔Ne datasets, and re-
port the results in Table 5. We find that our method
performs poorly without <sep>, sometimes even
worse than the Transformer. Our conjecture is that
<sep> helps the model learn to align each part of
the input to the corresponding part of the output,
which can improve the representation learning.

Concatenating More Sequences
We wonder whether the BLEU scores can be

further boosted by concatenating more sequences.
We move a step forward by randomly concatenating
three sequences, and build a synthetic dataset D̂3

with N̂3 examples. Experiments are conducted on
FLORES En↔{Ne, Si} datasets, and results are
shown in Table 6. In the third and fourth rows,
N̂ = N̂3 = 5N . In the last row, we set N̂ =
N̂3 = 2.5N to ensure the number of synthetic data
remains the same.

Dataset En→Ne Ne→En En→Si Si→En

D 4.28 7.68 1.21 6.68

D ∪ D̂ 5.26 8.38 1.49 7.71

D ∪ D̂3 5.39 8.88 2.08 7.50

D ∪ D̂ ∪ D̂3 5.43 8.25 2.21 7.47

Table 6: Results of concatenating various numbers of
sequences.

The results show that, although bothD∪D̂3 and
D∪D̂∪D̂3 settings can bring some improvements,
the improvements are not consistent among differ-
ent datasets. Further work is needed on how to use
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more samples for data augmentation.

4 Related Work

Most existing data augmentation methods in NMT
operate on one single input. Fadaee et al. (2017)
replaced common words with rare words under
the guidance of language models to improve the
translation of rare words. In unsupervised learning,
Lample et al. (2018b) proposed to randomly drop,
swap, or mask words. Gao et al. (2019) verifies the
effectiveness of such methods in supervised NMT.
RAML (Norouzi et al., 2016) randomly inserted,
deleted or substituted words in the target sequence
with probability exponentially decreasing with the
edit distance. SwitchOut (Wang et al., 2018) ex-
tended RAML by both manipulating on the source
side and the target side. Gao et al. (2019) proposed
to “softly replace” words by replacing the one-hot
representation of words with a distribution on the
vocabulary. A concurrent work similar to ours is
(Kondo et al., 2021), where <sep> is not lever-
aged. In other fields, data augmentation methods
operating on multiple samples have been proposed.
Mixup (Zhang et al., 2018) generated a synthetic
sample by averaging two inputs and the two labels.
It is further applied to semi-supervised learning to
enlarge the dataset (Berthelot et al., 2019). Pair
sampling (Inoue, 2018) only averaged the two in-
puts but not the labels.

5 Conclusion and Future Work

In this work, we proposed a simple yet effective
data augmentation method for NMT, which ran-
domly concatenates two training samples to enlarge
the datasets. Experiments on nine machine trans-
lation tasks demonstrate the effectiveness of our
method. For future work, there are a few directions
to explore. First, we will apply our method to more
NLP tasks. Second, we will theoretically analyze
when and why it works. Third, we will study and
design more effective data augmentation methods.
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