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Abstract

This paper describes the University of Syd-
ney & JD’s joint submission of the IWSLT
2021 low resource speech translation task.
We participated in the Swahili→English direc-
tion and got the best scareBLEU (25.3) score
among all the participants. Our constrained
system is based on a pipeline framework, i.e.
ASR and NMT. We trained our models with
the officially provided ASR and MT datasets.
The ASR system is based on the open-sourced
tool Kaldi and this work mainly explores how
to make the most of the NMT models. To re-
duce the punctuation errors generated by ASR
model, we employ our previous work SlotRe-
fine to train a punctuation correction model.
To achieve better translation performance, we
explored the most recent effective strategies,
including back translation, knowledge distilla-
tion, multi-feature reranking and transductive
finetuning. For model structure, we tried auto-
regressive and non-autoregressive models, re-
spectively. In addition, we proposed two novel
pre-train approaches, i.e. de-noising training
and bidirectional training to fully exploit the
data. Extensive experiments show that adding
the above techniques consistently improves
the BLEU scores, and the final submission sys-
tem outperforms the baseline (Transformer en-
semble model trained with the original paral-
lel data) by approximately 10.8 BLEU score,
achieving the SOTA performance.

1 Introduction

Recent years have seen a surge of interest in speech
translation (ST, Ney 1999) task, that translates the
source-side speech to the target-side text directly.
The ST task contains two major components, Au-
tomatic Speech Recognition (ASR, Jelinek 1997)
and Machine Translation (MT, Koehn 2009). In
this year’s IWSLT low-resource speech translation

∗Work was done when Di Wu was visiting at JD.

task, our USYD-JD translation team participated in
the Swahili to English track. We break the speech
translation task into “ASR→NMT” pipeline, and
mainly focus on the NMT component.

For model frameworks, we tried autoregressive
neural machine translation, including Transformer-
BASE and -BIG (Vaswani et al., 2017), and non-
autoregressive translation models (Gu et al., 2018).
Also, we employ our previous work SlotRefine (Wu
et al., 2020a) to tackle the case and punctuation
problems after ASR. To make the most of the par-
allel and monolingual data, we proposed two pre-
train strategies, i.e. BIDIRECTIONAL PRETRAIN-
ING §2.2 and DENOISING PRETRAINING §2.3,
and employed two data augmentation strategies,
i.e. BIDIRECTIONAL SELF-TRAINING §2.5 and
TAGGED BACK TRANSLATION §2.7. Where the
data used for tagged back translation are care-
fully selected with our proposed multi-feature
in-domain selection approach in §2.6. For post
finetune/ process, we employed TRANSDUCTIVE

FINE-TUNE §2.8 and a simple postprocessing ap-
proach §2.10.

This paper is structured as follows: Section 2 de-
scribes the major approaches we used. We present
the data descriptions in Section 3. The experiments
settings and main results are shown in Section 4.
Finnaly, we conclude our work in Section 5.

2 Approaches

2.1 Autoregressive Translation

Given a source sentence x, an NMT model gener-
ates each target word yt conditioned on previously
generated ones y<t. Accordingly, the probability
of generating y is computed as:

p(y|x) =

T∏
t=1

p(yt|x,y<t; θ) (1)
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where T is the length of the target sequence and
the parameters θ are trained to maximize the likeli-
hood of a set of training examples according to
L(θ) = arg maxθ log p(y|x; θ). Typically, we
choose Transformer (Vaswani et al., 2017) as its
SOTA performance. The training examples can be
formally defined as follows:

−→
B = {(xi,yi)}Ni=1 (2)

where N is the total number of sentence pairs in
the training data. Note that in standard MT training,
the x is feed to the encoder and y<t to the decoder
to finish the conditional estimation for yt, thus the
utilization of

−→
B is directional, i.e. xi→yi. In the

preliminary experiments, we utilized autoregres-
sive translation (AT) model for translation, case
correction and punctuation generation tasks as its
powerful modelling ability and generation accu-
racy.

2.2 Bidirectional Pretraining

Motivation The motivation is when human learn
foreign languages with translation examples, e.g.
xi and yi. Both directions of this example, i.e.
xi→yi and yi→xi, may help human easily master
the bilingual knowledge. Motivated by this, Levin-
boim et al. (2015); Liang et al. (2007) propose to
modelling the invertibility between bilingual lan-
guages. Cohn et al. (2016) introduce extra bidi-
rectional prior regularization to achieve symmetric
training from the point view of training objective.
He et al. (2018); Zheng et al. (2019) enhance the
coordination of bidirectional corpus with model
level modifications. Different from the above meth-
ods, we model both directions of a given training
example by a simple data manipulation strategy.

Our Implementation Many studies have shown
that pretraining could transfer the knowledge and
data distribution, hence improving the generaliza-
tion (Hendrycks et al., 2019; Mathis et al., 2021).
Here we want to transfer the bidirectional knowl-
edge among the corpus. Specifically, we propose
to first pretrain MT models on bidirectional corpus,
which can be defined as follows:

←→
B = {(xi,yi) ∪ (yi,xi)}Ni=1 (3)

such that the θ in Equation 1 can be updated by
both directions, then the bidirectional pretraining

(BiPT) objective can be formulated as:

LBiPT(θ) =

Forward:
−→
Lθ︷ ︸︸ ︷

arg max
θ

log p(y|x; θ) (4)

+ arg max
θ

log p(x|y; θ)︸ ︷︷ ︸
Backward:

←−
Lθ

(5)

where the forward
−→
Lθ and backward

←−
Lθ are op-

timized iteratively. From data perspective, we
achieve the bidirectional updating as follows: 1)
swapping the source and target sentences of a par-
allel corpus, and 2) appending the swapped version
to the original. Then the training data was doubled
to make better and full use of the costly bilingual
corpus. The pretraining can acquire general knowl-
edge from bidirectional data, which may help better
and faster learning further tasks. Thus, we early
stop bidirectional training at 1/3 of the total steps.
To ensure the proper training direction, we further
train the pretrained model on required direction

−→
B

with the rest of 2/3 training steps. Considering the
effectiveness of pretraining (Mathis et al., 2021)
and clean finetuning (Wu et al., 2019), we intro-
duce a combined pipeline:

←→
B → −→B as out best

training strategy.

2.3 Denoising Pretraining
Motivation The motivation is when human learn
one language, one of the best practices for lan-
guage acquisition is to correct the sentence errors,
e.g. noised(xi)→xi and noised(yi)→yi. Moti-
vated by this, Lewis et al. (2020) propose several
noise adding approaches and denoise them with
end-to-end pretraining. Liu et al. (2020b) introduce
this idea to the multilingual scenarios. Different
from above monolinugal denoising pretraining ap-
proaches, we proposed a simpler noise function
and apply them to each side of the parallel data.

Our Implementation Here we want the model
to understand the source- and target-side languages
well. For noise function noised(·), we apply the
common noise-injection practice, i.e. removing,
replacing, or nearby swapping one time for a ran-
dom word with a uniform distribution in a sen-
tence (Edunov et al., 2018; Ding et al., 2020a).
Then the size of the original parallel data doubled
as follows:

Ssrc = {noised(xi),xi}Ni=1 (6)

Stgt = {noised(yi),yi}Ni=1 (7)
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where Ssrc and Stgt can be combined to update the
end-to-end model to achieve denoising pretraining.
such that the θ in Equation 1 can be updated by
denoising both the source and target data, then
the denoisig pretraining (DPT) objective can be
formulated as:

LDPT(θ) =

Source Denoising:LSθ︷ ︸︸ ︷
arg max

θ
log p(x|noised(x); θ) (8)

+ arg max
θ

log p(y|noised(y); θ)︸ ︷︷ ︸
Target Denoising:LTθ

(9)

where the Source Denoising : LSθ and
Target Denoising : LTθ are optimized itera-
tively. The pretraining can store knowledge of the
source and target languages into the shared model
parameters, which may help better and faster
learning further tasks. Similar to bidirectional
pretraining in §2.2, we early stop denoising
training at 1/3 of the total steps, and tune the model
normally with the rest of 2/3 training steps. This
process can be formally denoted as such pipeline:
Ssrc + Stgt →

−→
B .

Note that Bidirectional Pretraining (BiPT) and
Denoising Pretraining (DPT) can be combined and
further enhance the model performance (The effect
of their complementary can be found in Table 7).
In particular, the combination order of BiPT and
DPT are empirically inspired by human learning
behavior, where a good interpreter will first master
at least one language (usually the mother tongue),
and then learn other languages and achieve bilin-
gual translation. Thus, the combined pretraining
process follows DPT → BiPT. In combined pre-
training setting, we will train longer until the model
converges completely.

2.4 Nonautoregressive Translation
Different from autoregressive translation (Bah-
danau et al., 2015; Vaswani et al., 2017, AT) models
that generate each target word conditioned on pre-
viously generated ones, non-autoregressive trans-
lation (Gu et al., 2018, NAT) models break the
autoregressive factorization and produce the target
words in parallel. Given a source sentence x, the
probability of generating its target sentence y with
length T is defined by NAT as:

p(y|x) = pL(T |x; θ)

T∏
t=1

p(yt|x; θ) (10)

where pL(·) is a separate conditional distribution
to predict the length of target sequence. Typicallly,
most NAT models are implemented upon the frame-
wok of Transformer (Vaswani et al., 2017). In the
preliminary experiments, we utilized NAT for trans-
lation, case correction and punctuation generation
tasks as NAT can well avoid the error accumula-
tion and exposure bias problems during generation.
Also, we employ several advanced structure (Gu
et al., 2019; Ding et al., 2020b) (Levenshtein with
source local context modelling) and our proposed
training strategies (Ding et al., 2021a,b,c) as default
settings.

2.5 Bidirectional Self-Training

Besides improving NMT at model level, many re-
searchers turn to data perspective, including ex-
ploiting the parallel and monolingual data. The
most representative approaches include: a) Back
Translation (BT, Sennrich et al. 2016) combines
the synthetic data generated with target-side mono-
lingual data and parallel data; b) Knowledge Distil-
lation (KD, Kim and Rush 2016) trains the model
with sequence-level distilled parallel data; c) data
diversification (DD, Nguyen et al. 2020) diversi-
fies the data by applying KD and BT on parallel
data. Clearly, self-training is at the core of above
approaches, that is, they generate the synthetic data
either from source to target or reversely, with either
monolingual or bilingual data.

To this end, we propose a bidirectional self-
training approach for both parallel and monolingual
data (including source and target, respectively).
Specifically, the base teacher models are trained
with original parallel data in the first iteration
(Round 1 in Table 6), and based on these forward-
and backward-teachers, all available Swahili & En-
glish sentences can be used to generate the corre-
sponding synthetic English & Swahili sentences.
After balanced-sampling between synthetic and au-
thentic data, the concatenated data can be used to
train the second iteration teachers (Round 2 in Ta-
ble 6).

To reveal why our approach works, we show the
results in Table 8 from the point view of data com-
plexity (Zhou et al., 2020). Self-training reduces
the data complexity, thus increasing the model de-
terministic and in turn enhancing the model perfor-
mance.
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Features

LM Features

BERT LM (Devlin et al., 2019)

Transformer LM (Bei et al.)

N-gram LM (Stolcke, 2002)

In-domain features Moore-Lewis (Moore and Lewis, 2010)

Rule-based features Illegal characters (Bei et al.)

Count Features Word count

Table 1: Features for back translation data selection.

2.6 Data Selection Features for Back
Translation

Inspired by Ding and Tao (2019), where their
cycle-translation strategy (generating high qual-
ity in-domain data) for back translation obtain
substantial gains, we carefully design criteria for
choosing monolingual in-domain corpus. First, we
employ rule-based features, language model fea-
tures. The feature types are described in Table 1.
Our BERT language model used here is trained
from scratch by the open-source tool1 with target
side data. The Moore-Lewis in-domain scoring
strategy (Moore and Lewis, 2010) is used where
the language model scores are trained with Trans-
former (Vaswani et al., 2017). We score all sen-
tences in non-autoregressive fashion2 to utilize con-
textualized information.

According to our observations, by using above
multiple data selection filters, issues like illegal
characters, unfluent and domain unmatched sen-
tences could be significantly reduced. The data
statistics for back translation monolingual data can
be found in Table 5.

2.7 Tagged Back Translation

Back-translation (Sennrich et al., 2016; Bojar et al.,
2018), translating the large scale monolingual cor-
pus to generate synthetic parallel data by Target-
to-Source pretrained model, has been widely uti-
lized to improve the translation quality. However,
recent studies find that back translation increase
the target-original test set performance rather than
source-original ones from the perspective of trans-
lationese3 (Zhang and Toral, 2019; Graham et al.,
2020). To eliminate such concerns, we leverage
tagged back translation (Caswell et al., 2019) to im-

1https://github.com/huggingface/
pytorch-pretrained-BERT

2https://github.com/alphadl/EasyScore
3Source-Original denotes the testing data originating in

the source language, while target-original denotes the data
translating from the target language.

src Msimu uliopita wa Siltala kwenye ligi
ilikuwa 2006-07

pred Siltala’s previous season in the league
was 2006 at 07

+post Siltala’s previous season in the league
was 2006-07

Table 2: Example of the effectiveness of post-
processing in handling inconsistent number translation.

prove the source-original testing performance. The
implementation is straightforward, that is, adding
a simple tag on the beginning of each source-side
synthetic sentence. The detailed reason why this
trick works can be found in Marie et al., 2020.

To ensure tagged back translation works well
for our task, we carefully selected the target side
in-domain monolingual data (§2.6). Final results
in Table 7 show the effectiveness of tagged back
translation #9 against competitive model #8 (+1.9
BLEU scores).

2.8 Transductive Fine-Tuning

The key idea of transductive finetune is that source
input sentences from the validation and test sets
are firstly translated to the target language space
with the best well-performed NMT model, which
results in a pretranslated synthetic dataset. Then
models are finetuned on the generated synthetic
dataset. We borrow this concept from previous
systems (Wu et al., 2020b; Wang et al.). We empir-
ically show that transductive finetune (#10− 11 in
Table 7) indeed improves the official validation per-
formance but harms the performance of our sam-
pled valid& test set that co-distributed with the
training set. Note that we randomly sampled 5K/
5K sentences from the training set as valid and test
sets, respectively, to avoid the sub-optimal prob-
lem caused by the distribution gap. Experimental
details can be found in §3 and 4.

2.9 Reranking N-best Hypotheses

As the NMT decoding being generally from left
to right, this leads to label bias problem (Laf-
ferty et al., 2001). To alleviate this problem, be-
sides using NAT (§2.4), we rerank the n-best hy-
potheses through training a k-best batch MIRA
ranker (Cherry and Foster, 2012) with multiple
features on validation set. The feature pool we
integrated include R2L (right-to-left) translation

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/alphadl/EasyScore
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model, T2S (target-to-source) translation model,
language model and IBM model 2 alignment score.
After multi-feature reranking, the best hypothesis
was retained.

Right-to-Left NMT Model The R2L NMT
model using the same training data but with in-
verted target sentences (i.e., reverse target side char-
acters “a b c d”→“d c b a”). Then, inverting the
hypothesis in the n-best list can obtain perplexity
score by R2L model.

Target-to-Source NMT Model The T2S model
was initially trained for back-translation, we can
employ this model to assess the translation ade-
quacy as well by adding the T2S feature to rerank-
ing feature pool.

Language Model Besides above features, we
employ language models as an auxiliary feature
to give the fluent sentences better scores such that
the results are easier to understand by human.

2.10 Post Processing
Besides general post-processing (i.e., de-BPE, de-
tokenization and de-truecase 4), we also used a
post-processing algorithm (Wang et al., 2018) for
inconsistent number, date translation, for example,
“2006-07” might be segmented as “2006 -@@ 07”
by BPE, resulting in the wrong translation “2006 at
07”. Our post-processing algorithm will search for
the best matching number string from the source
sentence to replace these types of errors, see Ta-
ble 2.

3 Data Preparation

For ASR task, we downloaded all available Swahili
speech-to-text data5, such as openslr6 and IARPA
Babel7 etc., as training corpus and employ all de-
fault settings in Kaldi8 to preprocess and train
them. To simplify the ASR task, we lowercased
all Swahili sentences and removed punctuation. To
rejuvenate these case and punctuation information,
we design two pipeline tasks after ASR: case cor-
rection task and punctuation generation. Also, it
is worth noting that we design some rules to per-
form the “voice activity detection” process for the

4https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

5https://iwslt.org/2021/low-resource
6https://www.openslr.org/25/
7https://catalog.ldc.upenn.edu/

LDC2017S05
8https://github.com/kaldi-asr/kaldi

Available Parallel Corpus #Sent.
CCAligned 2,044,993
Tanzil 138,253
ParaCrawl 132,517
WikiMatrix 51,387
GlobalVoices 32,307
TED2020 9,754
Gamayun 5,000
WikiMedia 771
Total 2,414,982

Table 3: Statistics of parallel data.

Sampled Mono. Corpus #Sent.
commoncrawl English 4,366,344
commoncrawl Swahili 38,928

+ upsampling (14×) 544,992

Table 4: Statistics of monolingual data.

official speech testset. Take a piece of speech in
Figure 1 for example, partial of speech in the red
box will be keep as the valid input.

For NMT task, the parallel datasets we
utilized are described at Table 3, including
CCAligned (El-Kishky et al., 2020), Tanzil (Tiede-
mann, 2012), ParaCrawl 9, WikiMatrix (Schwenk
et al., 2019), GlobalVoices (Tiedemann, 2012),
TED2020 (Reimers and Gurevych, 2020), Wiki-
Media (Tiedemann, 2012) and Gamayun 10. The
monolingual data we utilized are described in Ta-
ble 4 and Table 5, where the monolingual data in
Table 4 are used to train the system #1 − 8 in
Table 7, and data in Table 5 are used to train the
system #9 − 11 in Table 7, respectively. Table 6
denotes how the data used and generated by itera-
tive bidirectional self-training (§2.5). The total data
size after two round of bidirectional self-training is
50.4M, and after tagged back translation, the final
data volume is 60.4M.

To avoid the sub-optimal problem caused by
the distribution gap between official validation and
training data, we randomly sampled 5K/ 5K sen-
tences from the training set as valid and test sets, re-
spectively. The randomly sampled valid sentences
are used to optimize the hype-parameters.

9https://www.paracrawl.eu/index.php
10https://gamayun.translatorswb.org/

data/

https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://github.com/moses-smt/mosesdecoder/tree/master/scripts
https://iwslt.org/2021/low-resource
https://www.openslr.org/25/
https://catalog.ldc.upenn.edu/LDC2017S05
https://catalog.ldc.upenn.edu/LDC2017S05
https://github.com/kaldi-asr/kaldi
https://www.paracrawl.eu/index.php
https://gamayun.translatorswb.org/data/
https://gamayun.translatorswb.org/data/
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Figure 1: An example of how our rule-based voice activity detection model works on the waveform. Note that only
the part in the red box will be retained as a valid fragment.

Mono. Corpus for Tagged BT #Sent.
Totally collected corpus

commoncrawl English 30,513,498
Cleaned corpus with criteria in §2.6

in domain English 10,000,000

Table 5: Statistics of monolingual data for Tagged
Back-Translation.

4 Experiments

Settings For case correction and punctuation
generation tasks mentioned in §3, we tried Au-
toregressive Transformer-BASE (AT, §2.1), Non-
Autoregressive model (NAT, §2.4) and our previ-
ously designed SLOTREFINE (Wu et al., 2020a). In
our preliminary experiments, NAT and SlotRefine
work better on case correction and punctuation
generation tasks, respectively, thus leaving as the
default components in our final speech translation
pipeline.

For NMT task, we tried Autoregres-
sive Transformer-BIG (AT, §2.1) and Non-
Autoregressive model (NAT, §2.4) in preliminary
experiments, and found that AT performs robust
on all settings. Thus we employ Transformer-BIG

for all MT systems. Inspired by He et al. (2019),
we empirically adopt large batch strategy (Edunov
et al., 2018) (i.e. 458K tokens/batch) to optimize
the performance. The learning rate warms up to
1× 10−7 for 10K steps, and then decays for 30K
(data volumes range from 2M to 10M) / 50K (data
volumes large than 10M) steps with the cosine
schedule. For regularization, we tune the dropout
rate from [0.1, 0.2, 0.3] based on validation
performance, and apply weight decay with 0.01
and label smoothing with ε = 0.1. We use Adam
optimizer (Kingma and Ba, 2015) to train models.
We evaluate the performance on an ensemble of
last 10 checkpoints to avoid stochasticity.

For fair comparison, the metric we employed is
sacreBLEU (Post, 2018). Training set, validation
set and test set are processed consistently. Both
Swahili and English sentences are performed tok-

# Data Statistics #Sent.
Preparing for Self-Training

1 parallel English 2.4M
2 parallel Swahili 2.4M
3 monolingual English 4.4M
4 monolingual Swahili 0.4M

Self-Training Round 1
5 synthetic parallel 9.6M
6 authentic parallel 2.4M
7 + upsampling (4×) 9.6M
8 concat #5 and #7 19.2M

Self-Training Round 2
9 refined parallel #8 19.2M
10 concat #8 and #9 38.4M
11 upsampled authentic parallel #6 (5×) 12.0M
12 concat #10 and #11 50.4M

Table 6: Data statistics for bidirectional self-training.
Note that #5 “synthetic parall” comes from monolin-
gual English (#3 ), monolingual Swahili (#4), parallel
English (#1), and parallel Swahili (#2). In our prelim-
inary experiments, 4× (#7) and 5× (#11) upsampling
strategies perform best in their corresponding settings,
thus leaving as the default settings.

enization and truecasing with Moses scripts (Koehn
et al., 2007). In order to limit the size of vocab-
ulary of NMT models, we adopted byte pair en-
coding (BPE) (Sennrich et al., 2016) with 32k op-
erations. Larger beam size may worsen transla-
tion quality (Koehn and Knowles, 2017), thus we
set beam size=10 when performing n-best rerank-
ing (§2.9). All models were trained on 4 16GB
NVIDIA V100 GPUs.

Main results Our main experiment is shown in
Table 7, our baseline system is developed with the
original parallel corpus and last-10 ensemble strat-
egy. Unsurprisingly, the baseline system relatively
performs the worst.

The proposed Bidirectional Pretrain in §2.2
and Denoising Pretrain in §2.3 could consistently
and significanly improve the model performance,
showing their effectiveness in low resource sce-
narios (Zhang and Tao, 2020). Clearly, combin-
ing Bidirectional Pretrain and Denoising Pretrain
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# Models Valid Test ∆ave Off. Valid ∆

1 Baseline (w/ Para. Data) 47.1 48.5 − 31.8 −
2 +Bidrectional Pretrain 48.5 49.9
3 +Denoising Pretrain 48.6 49.6
4 +Combination of #2 and #3 48.9 50.1 +1.7

5 Bi. Self-Training (w/ Mono. & Para. Data) 49.4 50.8 +2.3
6 +Combination of #2 and #3 50.1 51.6 +3.1

7 Iterative Bi. Self-Training 49.7 50.9 +2.5
8 +Combination of #2 and #3 50.5 51.8 +3.4 38.2 +6.4

9 #8 + Tagged Back Translation 52.4 53.1 +5.0 40.1 +8.3

10 #9 + Transductive Finetune 51.8 53.0 +4.6 41.5 +9.7
11 +Iterative +#10 51.6 52.8 +4.4 41.9 +10.1

12 #11 + Reranking 52.1 53.5 +5.0 42.3 +10.5
13 #12 + Post Processing 52.5 54.0 +5.5 42.6 +10.8

SacreBLEU of Final Submission (#13) on official test set 25.3

Table 7: Sacrebleu of Sw→En on our randomly sampled “Valid/ Test” sets and official validation set “Off. Valid”,
where “∆” represents the performance gains compared with baseline #1. The submitted system is #13.

Data Compl. BLEU
Baseline 7.87 47.1
Bi. Self-Training 5.34 49.4
Iterative Bi. Self-Training 4.89 49.7

Table 8: Explanation of why Bidirectional Self-
Training works. The data complexity “Compl.” is mea-
sured on their corresponding training sets and align-
ment information is trained with fast-align (Dyer et al.,
2013). The BLEU scores are reported on our sampled
validation set.

could achieve better results (averaged +1.7 BLEU
scores), indicating their complementary.

As shown in #5 and #7, the proposed Bidirec-
tional Self-Training and its refined iterative ver-
sion, could consistently enhance the model. To
explore why self-training improves model perfor-
mance, we discuss it from the point view of data
complexity. As shown in Table 8, with the Bidirec-
tional Self-Training iteratively progresses, the data
complexity becomes lower, leading to the better
BLEU scores. Notably, the combination of our pro-
posed two pretraining approaches push the SOTA
performance up to higher points. We believe that
the effect of our proposed two pretrain strategies
are still under-investigated, which will leave as fu-
ture works. Overall, with strategies #2 − 8, the
model performance in terms of official validation
test achieves surprisingly +6.4 BLEU scores.

The Tagged Back Translation (§2.7) with in-

domain monolingual data significantly improves
the performance of both our sampled test set and
official valid set by +5.0 and +8.3 against baseline,
respectively.

We empirically show that Transductive FineTune
(§2.8) indeed improves the official validation per-
formance but harms the performance of our sam-
pled valid& test set that co-distributed with the
training set. This indicates that tranductive learn-
ing is a effective practice to transfer a well-trained
model across domains.

And the last two strategies Reranking (§2.9) and
Post Processing (§2.10) could further improve the
official validataion BLEU score from 41.9 to 42.6,
which substantially outperforms the baseline by
+10.8 BLEU score.

5 Conclusion and Future Work

This paper presents the University of Sydney
& JD’s speech machine translation system for
IWSLT2021 Swahili→English task. The whole
system is pipelined, containing ASR, case correc-
tion, punctuation generation and NMT tasks, and
we main focused on NMT task.

We leveraged multi-dimensional strategies and
frameworks to improve the translation qualities,
which achieves surprisingly +10.8 BLEU scores
improvement against baseline and ranks the 1st
among all the participants. We find that our pro-
posed BIDIRECTIONAL PRETRAINING (§2.2) and
DENOISING PRETRAINING (§2.3) can consistently
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improves the competitive baselines. Also, we em-
ploy BIDIRECTIONAL SELF-TRAINING in §2.5
and TAGGED BT in §2.7 make the most of the
existing parallel and monolingual data.

In the future, we would like to polish other com-
ponents in the pipeline to achieve better perfor-
mance. Also, it is worthy to try an end-to-end
approach with cross-modal structures to incorpo-
rate audio and vision knowledge (Xu et al., 2021).
For robust model training and data utilization, we
would explore better strategies, e.g. adversarial
training (Wu et al., 2021) and curriculum learn-
ing (Liu et al., 2020a; Zhou et al., 2021).
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