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Abstract

The evaluation campaign of the International
Conference on Spoken Language Translation
(IWSLT 2021) featured this year four shared
tasks: (i) Simultaneous speech translation, (ii)
Offline speech translation, (iii) Multilingual
speech translation, (iv) Low-resource speech
translation. A total of 22 teams participated
in at least one of the tasks. This paper de-
scribes each shared task, data and evaluation
metrics, and reports results of the received sub-
missions.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spo-
ken language translation. For 18 years running
(Akiba et al., 2004; Eck and Hori, 2005; Paul,
2006; Fordyce, 2007; Paul, 2008, 2009; Paul et al.,
2010; Federico et al., 2011, 2012; Cettolo et al.,
2013, 2014, 2015, 2016, 2017; Niehues et al.,
2018, 2019; Ansari et al., 2020), the conference or-
ganizes and sponsors open evaluation campaigns
around key challenges in simultaneous and con-
secutive translation, under real-time/low latency
or offline conditions and under low-resource or

multilingual constraints. System descriptions and
results from participants’ systems and scientific
papers related to key algorithmic advances and
best practice are published in proceedings and
presented at the conference. IWSLT is also the
venue of the SIGSLT, the Special Interest Group
on Spoken Language Translation of ACL, ISCA
and ELRA. With its long track record, IWSLT
benchmarks and proceedings serve as reference
for all researchers and practitioners working on
speech translation and related fields.

This paper reports on the evaluation campaign
organized by IWSLT 2021, which features four
shared tasks:

• Simultaneous speech translation, address-
ing low latency translation of talks, from En-
glish to German and English to Japanese, ei-
ther from a speech file into text, or from a
ground-truth transcript into text;

• Offline speech translation, proposing
speech translation of talks from English into
German, using either cascade architectures or
end-to-end models, able to directly translate
source speech into target text;

• Multilingual speech translation, focusing
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Team Organization
APPTEK AppTek, Germany (Bahar et al., 2021b)
BUT Brno University of Technology, Czech Republic (Vydana et al., 2021)
ESPNET-ST ESPnet-ST group, Johns Hopkins University, USA (Inaguma et al., 2021)
FBK Fondazione Bruno Kessler, Italy (Papi et al., 2021)
FAIR FAIR Speech Translation (Tang et al., 2021a)
HWN Huawei Noah’s Ark Lab, China (Zeng et al., 2021)
HW-TSC Huawei Translation Services Center, China
IMS University of Stuttgart, Germany (Denisov et al., 2021)
KIT Karlsruhe Institute of Technology, Germany (Nguyen et al., 2021; Pham et al., 2021)
LI Desheng Li
NAIST Nara Institute of Science and Technology, Nara, Japan (Fukuda et al., 2021)
NIUTRANS NiuTrans Research, Shenyang, China (Xu et al., 2021b)
ON-TRAC ON-TRAC Consortium, France (Le et al., 2021)
OPPO Beijing OPPO Telecommunications Co., Ltd., China
UEDIN University of Edinburgh, UK (Zhang and Sennrich, 2021; Sen et al., 2021)
UM-DKE Maastricht University, The Netherlands (Liu and Niehues, 2021)
UPC Universitat Politècnica de Catalunya, Spain (Gállego et al., 2021)
USTC-NESLIP USTC, iFlytek Research, China (Liu et al., 2021)
USYD-JD University of Sydney, Peking University, JD Explore Academy (Ding et al., 2021)
VOLCTRANS ByteDance AI Lab, China (Zhao et al., 2021)
VUS Voithru, Upstage, Seoul National University, South Korea (Jo et al., 2021)
ZJU Zhejiang University (Zhang, 2021)

Table 1: List of Participants

on the use of multiple languages to improve
supervised and zero-shot speech translation
between four Romance languages and En-
glish;

• Low-resource speech translation, focus-
ing on resource-scarce settings for translat-
ing two Swahili varieties (Congolese and
Coastal) into English and French.

The shared tasks were attended by 22 partic-
ipants (see Table 1), including teams from both
academic and industrial organizations. The fol-
lowing sections report on each shared task in de-
tail, in particular: the goal and automatic met-
rics adopted for the challenge, the data used for
training and testing data, the received submissions
and the summary of results. Detailed results for
each challenge are reported in a corresponding ap-
pendix.

2 Simultaneous Speech Translation

Simultaneous translation is the task of translat-
ing incrementally with partial text or speech in-
put only. Such capability enables multilingual live

communication and access to multilingual multi-
media content in real-time. The goal of this chal-
lenge, organized for the second consecutive year,
is to examine systems that translate text or audio
in a source language into text in a target language
from the perspective of both translation quality
and latency.

2.1 Challenge
Participants were given three parallel tracks to en-
ter and encouraged to enter all tracks:

• text-to-text: translating ground-truth tran-
scripts in real time from English to German
and English to Japanese.

• speech-to-text: translating speech into text in
real time from English to German.

For the speech-to-text track, participants were en-
couraged to submit systems either based on cas-
caded or end-to-end approaches. In addition,
the systems were run on a segmented and non-
segmented version of the test set, i.e. processing
one sound segment corresponding to an input sen-
tence at a time, or processing the whole speech
in one sound stream. Participants were required
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to upload their system as a Docker image so that
it could be evaluated by the organizers in a con-
trolled environment. We also provided an example
implementation and a baseline system.1

2.2 Data and Metrics

For tracks related to English-German, participants
were allowed to use the same training and devel-
opment data as in the Offline Speech Translation
track. More details are available in §3.2.

For the English-Japanese text-to-text track, par-
ticipants could use the parallel data and mono-
lingual data available for the English-Japanese
WMT20 news task (Barrault et al., 2020). For
development, participants could use the IWSLT
2017 development sets,2 the IWSLT 2021 devel-
opment set3 and the simultaneous interpretation
transcripts for the IWSLT 2021 development set.4

The simultaneous interpretation was recorded as
a part of NAIST Simultaneous Interpretation Cor-
pus (Doi et al., 2021).

Systems were evaluated with respect to quality
and latency. Quality was evaluated with the stan-
dard BLEU metric (Papineni et al., 2002a). La-
tency was evaluated with metrics developed for
simultaneous machine translation, including av-
erage proportion (AP), average lagging (AL) and
differentiable average lagging (DAL, Cherry and
Foster 2019), and later extended to the task of si-
multaneous speech translation (Ma et al., 2020b).

The evaluation was run with the SIMULEVAL

toolkit (Ma et al., 2020a). For the latency mea-
surement of speech input systems, we contrasted
computation-aware and non computation-aware
latency metrics. The latency was calculated at the
word level for English-German systems and at the
character level for English-Japanese systems.

The systems were ranked by the translation
quality (measured by BLEU) in different latency
regimes, low, medium and high. Each regime
was determined by a maximum latency threshold
measured by AL on the Must-C English-German
test set (tst-COMMON) for English-German or on
the IWSLT21 dev set for English-Japanese. The

1https://github.com/pytorch/fairseq/
blob/master/examples/speech_to_text/
docs/simulst_mustc_example.md

2https://wit3.fbk.eu/2017-01-c
3https://drive.google.com/drive/

folders/1uSkOT-XqbICMohnvfXdEFffKLdaQX0X7
4https://drive.google.com/drive/

folders/1bB1s9PKNoRoDFfc567J5zDMcYj_
lFFEB

thresholds were set to 3, 6 and 15 for the English-
German text track, to 1000, 2000 and 4000 for
the English-German speech track and to 8, 12 and
16 for English-Japanese text track, and were cali-
brated by the baseline system. Participants were
asked to submit at least one system per latency
regime and were encouraged to submit multiple
systems for each regime in order to provide more
data points for latency-quality trade-off analyses.
The organizers confirmed the latency regime by
running the systems on tst-COMMON and the
IWSLT21 dev set.

2.3 Differences with the First Edition
English-to-Japanese Task This year, we added
a new task of English-to-Japanese simultaneous
translation. English-Japanese is a challenging lan-
guage pair for simultaneous translation because of
the large word order differences; a simultaneous
machine translation model has to wait for the latter
part of an English sentence in Subject-Verb-Object
order to generate a Japanese sentence in Subject-
Object-Verb order.

SimulEval We standardized the latency evalua-
tion aspect of the task by leveraging the SIMULE-
VAL toolkit. In addition, speech input systems
were run in a controlled environment (a p3.2xlarge
AWS instance) in order to be able to fairly com-
pare computation-aware AL.

Unsegmented input Based on feedback from
the participants in the first edition of the task, for
the speech track, systems were run on both seg-
mented and unsegmented input. The latter setting
required participants to implement a segmentation
logic in their systems, which is closer to a real-
world setting.

2.4 Submissions
The simultaneous task received submissions from
5 teams: 4 teams entered the English-German text
track; 3 teams entered the English-Japanese text
track and 2 teams entered the English-German
speech track. Teams followed the suggestion to
submit multiple systems per regime, which re-
sulted in a total of 162 systems overall.

UEDIN (Sen et al., 2021) submitted systems to
the text-to-text English-German track. In order to
be able to reuse an offline system, UEDIN adapts
the re-translation strategy to the simultaneous task.
Re-translation is triggered based on a language
model applied to the source input. In addition, a

https://github.com/pytorch/fairseq/blob/master/examples/speech_to_text/docs/simulst_mustc_example.md
https://github.com/pytorch/fairseq/blob/master/examples/speech_to_text/docs/simulst_mustc_example.md
https://github.com/pytorch/fairseq/blob/master/examples/speech_to_text/docs/simulst_mustc_example.md
https://wit3.fbk.eu/2017-01-c
https://drive.google.com/drive/folders/1uSkOT-XqbICMohnvfXdEFffKLdaQX0X7
https://drive.google.com/drive/folders/1uSkOT-XqbICMohnvfXdEFffKLdaQX0X7
https://drive.google.com/drive/folders/1bB1s9PKNoRoDFfc567J5zDMcYj_lFFEB
https://drive.google.com/drive/folders/1bB1s9PKNoRoDFfc567J5zDMcYj_lFFEB
https://drive.google.com/drive/folders/1bB1s9PKNoRoDFfc567J5zDMcYj_lFFEB
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dynamic masking method is employed to stabilize
the output translation.

VOLCTRANS (Zhao et al., 2021) submit-
ted systems to the text-to-text English-German
and English-Japanese tracks. The participants
adopt the efficient wait-k strategy (Elbayad et al.,
2020). They augment the training data using back-
translation and knowledge distillation. During in-
ference, a look ahead beam search strategy is in-
vestigated but the final submission uses greedy
search.

USTC-NESLIP (Liu et al., 2021) submit-
ted systems to all tracks, including both end-to-
end and cascaded system for the speech tracks.
The participants design a novel model architec-
ture, Cross-Attention Augmented Transducer, that
modifies RNN-T in order to support reordering be-
tween languages. They augment the training data
using self-training, back-translation and by syn-
thesizing the source side of the parallel corpora.

APPTEK (Bahar et al., 2021b) submitted sys-
tems to the English-German speech and text
tracks, using a cascaded system for the speech
track. Chunks that preserve monotonicity are ex-
tracted from a statistical word aligner. A classi-
fier, part of the overall model, is trained on the
boundaries in order to control the policy. To bet-
ter control the latency quality tradeoff, consecutive
chunks can be merged according to a probability.

NAIST (Fukuda et al., 2021) submitted sys-
tems to the text English-Japanese track. The par-
ticipants employ the wait-k method and sequence-
level knowledge distillation. Because Japanese
does not have a strict word order, they randomly
shuffle chunks on the target side to augment the
training data. An alternative method, next con-
stituent label prediction, was investigated but not
submitted to the task.

2.5 Results

We discuss results for the text and speech tracks.
More details are available in Appendix A.1.

2.5.1 Text Track
Results for the text track are summarized
in the first two tables of Appendix A.1.
Four teams (USTC-NESLIP, VOLCTRANS,
APPTEK, UEDIN) submitted systems for English-
German and three teams (USTC-NESLIP,
VOLCTRANS, NAIST) for English-Japanese.
In the table, only the models with the best BLEU
score for a given latency regime are reported. In

Figure 1: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the English-German text track.

Figure 2: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the English-Japanese text track.

order to obtain a broader sense of latency-quality
tradeoffs, we also plot all submitted systems for
quality and latency.
English-German The ranking is consistent
over all the regimes: 1. USTC-NESLIP
2. VOLCTRANS 3. APPTEK 4. UEDIN. We
plot all the submitted English-German systems in
Figure 1.
Japanese-English The ranking is consistent over
all the regimes: 1. USTC-NESLIP 2. APPTEK

3. NAIST. We plot all the submitted English-
Japanese systems in Figure 2.

2.5.2 Speech Track (English-German Only)

Results for the speech track are summarized in
the third table of Appendix A.1. Two teams
(USTC-NESLIP, APPTEK) submitted systems,
with both segmented and unsegmented speech in-
put. Latency regimes were defined for segmented
input systems only. We plan to define latency
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Figure 3: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the speech track with segmented
input. AL is measured in seconds.

Figure 4: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with seg-
mented input. AL is considering the computation time
and measured in seconds.

regimes for unsegmented input in the next edi-
tion. The ranking is consistent over all the regimes
in segmented systems and unsegmented systems:
1. USTC 2. AppTek We also report four latency-
quality trade-off curves:

• Segmented input systems without consider-
ing computation time in Figure 3.

• Segmented input systems considering com-
putation time in Figure 4.

• Unsegmented input systems without consid-
ering computation time in Figure 5.

• Unsegmented input systems considering
computation time in Figure 6.

Figure 5: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with unseg-
mented input. AL is measured in seconds.

Figure 6: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with unseg-
mented input. AL is considering the computation time
and measured in seconds.

3 Offline Speech Translation

Offline speech translation, declined in various
forms over the years, is one of the speech tasks
with the longest tradition at the IWSLT campaign.
Like in the last two evaluation rounds, this year5

it focused on the translation of English audio data
extracted from TED talks6 into German.

3.1 Challenge

In recent years, offline speech translation (ST) has
seen a rapid evolution, characterized by the steady
advancement of direct end-to-end models (build-
ing on a single neural network that directly trans-
lates the input audio into target language text) that
were able to significantly reduce the performance

5http://iwslt.org/2021/offline
6http://www.ted.com

http://iwslt.org/2021/offline
http://www.ted.com
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gap with respect to the traditional cascade ap-
proach (integrating ASR and MT components in
a pipelined architecture). In light of last year’s
IWSLT results (Ansari et al., 2020) and of the find-
ings of recent works (Bentivogli et al., 2021) at-
testing that the gap between the two paradigms has
substantially closed, also this year a key element
of the evaluation was to set up a shared framework
for their comparison. For this reason, and to re-
liably measure progress with respect to the past
rounds, the general evaluation setting was kept un-
changed. This stability mainly concerns two as-
pects: the allowed architectures and the test set
provision.

On the architecture side, participation was al-
lowed both with cascade and end-to-end (also
known as direct) systems. In the latter case, valid
submissions had to be obtained by models that:
i) do not exploit intermediate symbolic represen-
tations (e.g., source language transcription or hy-
potheses fusion in the target language), and ii) rely
on parameters that are all jointly trained on the
end-to-end task.

On the test set provision side, also this year
participants could opt for processing either a pre-
computed automatic segmentation of the test set
or a version of the same test data segmented
with their own approach. This option was main-
tained not only to ease participation (by remov-
ing one of the obstacles in audio processing) but
also to gain further insights about the importance
of a proper segmentation of the input speech. As
highlighted in (Ansari et al., 2020), effective pre-
processing to reduce the mismatch between the
provided training material (often “clean” corpora
split into sentence-like segments) and the supplied
unsegmented test data is in fact a common trait of
top-performing systems.

Multiple submissions were allowed, but par-
ticipants had to explicitly indicate their “pri-
mary” (one at most) and “contrastive” runs,
together with the corresponding type of sys-
tem (cascade/end-to-end), training data condition
(constrained/unconstrained), and test set segmen-
tation (own/given).

3.2 Data and Metrics

Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT. The major novelty on the data front

is that a new TED-derived resource was added
to the training corpora usually allowed to sat-
isfy the “constrained” data condition. The new
data come from the English-German section of the
MuST-C V2 corpus7 and include training, dev, and
test (Test Common), in the same structure of the
MuST-C V1 corpus (Cattoni et al., 2021) used last
year. Since the 2021 test set was processed using
the same pipeline applied to create MuST-C V2,
the use of the new training resource was strongly
recommended. The main differences with respect
to MuST-C v1 are:

• More talks, which results in 20k more au-
dio/text segments;

• Improved cleaning strategies able to better
discard low-quality triplets (audio, transcript,
translation), in particular when the text is not
well-aligned with the audio and the audio is
shorter than 50 millisecs;

• The talks were downloaded from the
YouTube TED channel,8 where higher qual-
ity audio/videos are available with respect
to the TED website used for the previous
version of MuST-C. The downloading was
performed by means of youtube-dl,9 the
well-known open-source download manager,
specifying the “-f bestaudio option”. The au-
dios were finally converted from two (stereo)
to one (mono) channel and downsampled
from 48 to 16 kHz, using FFmpeg.10 Upon
inspection of the spectrograms of the same
talks in the two versions of MuST-C, it
clearly emerges that the upper limit band
in the audios used in MuST-C V1 is 5 kHz,
while it is at 8 kHz in the latest version,
coherently with the 16 kHz sample rate.
This difference does not guarantee the
fully compatibility between V1 and V2 of
MuST-C.

Besides MuST-C V2, also this year the allowed
training corpora include:

• MuST-C V1 (Di Gangi et al., 2019);

• CoVoST (Wang et al., 2020);

7http://ict.fbk.eu/must-c/
8http://www.youtube.com/c/TED/videos
9http://youtube-dl.org/

10http://ffmpeg.org/

http://ict.fbk.eu/must-c/
http://www.youtube.com/c/TED/videos
http://youtube-dl.org/
http://ffmpeg.org/
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• WIT3 (Cettolo et al., 2012) ;

• Speech-Translation TED corpus11;

• How2 (Sanabria et al., 2018)12;

• LibriVoxDeEn (Beilharz and Sun, 2019)13;

• Europarl-ST (Iranzo-Sánchez et al., 2020);

• TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018);

• WMT 201914 and 202015;

• OpenSubtitles 2018 (Lison et al., 2018);

• Augmented LibriSpeech (Kocabiyikoglu
et al., 2018)16

• Mozilla Common Voice17 ;

• LibriSpeech ASR corpus (Panayotov et al.,
2015).

The list of allowed development data includes
the dev set from IWSLT 2010, as well as the
test sets used for the 2010, 2013, 2014, 2015
and 2018 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as an “unconstrained” one.

Test data. This year’s new test set was built
from 17 TED talks that are not included yet in the
public release of the corpus. Similar to last year,
participants were presented with the option of pro-
cessing either an unsegmented version (to be split
with their preferred segmentation method) or an
automatically segmented version of the audio data.
For the segmented version, the resulting number of
segments is 2,336 (corresponding to about 4h15m
of translated speech from 17 talks). To measure
technology progress with respect to last year’s
round, participants were asked to process also the
undisclosed 2020 test set that, in the segmented
version, consists of 2,263 segments (correspond-
ing to about 4.1 hours of translated speech from
22 talks).

11http://i13pc106.ira.uka.de/˜mmueller/
iwslt-corpus.zip

12only English - Portuguese
13only German - English
14http://www.statmt.org/wmt19/
15http://www.statmt.org/wmt20/
16only English - French
17http://voice.mozilla.org/en/datasets –

English version en 1488h 2019-12-10

Metrics. Systems’ performance was evaluated
with respect to their capability to produce trans-
lations similar to the target-language references.
Differently from previous rounds, where such sim-
ilarity was measured in terms of multiple auto-
matic metrics,18 this year only the BLEU met-
ric (computed with SacreBLEU (Post, 2018) with
default settings) has been considered. Instead of
multiple metrics, the attention focused on consid-
ering two different types of target-language refer-
ences, namely:

• The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions to
adhere to the TED subtitling guidelines.19

This makes them less literal compared to
standard, unconstrained translations;

• Unconstrained translations. These references
were created from scratch20 by adhering to
the usual translation guidelines. They are
hence exact (more literal) translations, with-
out paraphrasing and with proper punctua-
tion.

Lang Sentences Words
EN 2,037 41,214

DE - Orig 2,037 33,925
DE - Uncon. 2,037 40,239

Table 2: Statistics of the official test set for the offline
speech translation task (tst2021).

As shown in Table 2, the different approaches
to generate the human translations lead to sig-
nificantly different references. While the uncon-
strained translation has a similar length (counted
in words) compared to the corresponding source
sentence, the original is ∼15% shorter in order to
fulfil the additional constraints for subtitling.

Besides considering separate scores for the two
types of references, results were also computed by
considering both of them in a multi-reference set-
ting. Similarly to last year, the submitted runs

18These were: case-sensitive/insensitive BLEU (Papineni
et al., 2002b), case-sensitive/insensitive TER (Snover et al.,
2006), BEER (Stanojevic and Sima'an, 2014), and Charac-
TER (Wang et al., 2016)

19http://www.ted.com/participate/
translate/subtitling-tips

20We would like to thank Facebook, and in particular Juan
Pino, for providing us with this new set of references.

http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
http://i13pc106.ira.uka.de/~mmueller/iwslt-corpus.zip
http://www.statmt.org/wmt19/
http://www.statmt.org/wmt20/
http://voice.mozilla.org/en/datasets
http://www.ted.com/participate/translate/subtitling-tips
http://www.ted.com/participate/translate/subtitling-tips
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were ranked based on case-sensitive BLEU cal-
culated on the test set by using automatic re-
segmentation of the hypotheses based on the ref-
erence translations by mwerSegmenter.21

3.3 Submissions
We received submissions from 12 teams, which is
a slight increase (+2) over last year’s round. Also
this year, participants come from the industry (the
majority), the academia and other research insti-
tutions. In terms of ST paradigms, though quite
evenly distributed, architectural choices show a
slight preference for the cascade approach, which
highlights a countertrend strategy with respect to
the 2020 round, in which half of the participants
opted for end-to-end submissions only. In detail:

• 5 teams (BUT, HW-TSC, LI, OPPO, VUS)
participated only with cascade systems;

• 3 teams (FBK, NIUTRANS, UPC) partici-
pated only with end-to-end systems;

• 4 teams (APPTEK, VOLCTRANS,
ESPNET-ST,KIT) participated with both
cascade and end-to-end systems.

In total, 55 runs were evaluated: 24 ob-
tained from cascade systems and 31 obtained
from end-to-end systems. Concerning the seg-
mentation of the test data (own/given), most of
the primary submissions (7 out of 12) were ob-
tained with “own” segmentation strategies aimed
to improve the given automatic audio splits pro-
vided to participants like in last year’s round of
the task. As regards the data condition (con-
strained/unconstrained), all participants but two
(BUT and UPC) opted for “constrained” submis-
sions obtained by building their ST models only
using the provided training resources.

In the following, we provide a bird’s-eye de-
scription of each participant’s approach.

APPTEK (Bahar et al., 2021b) participated with
both cascade and end-to-end speech translation
systems fed with “own” automatic segmentation
of the test data. The primary cascade system is
akin to the conventional cascade systems where
source transcriptions are generated as an interme-
diate representation. ASR exploits an attention-
based model (Bahdanau et al., 2015; Vaswani
et al., 2017) trained following Zeyer et al. (2018),

21http://www-i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz

while the MT component is based on the big
Transformer model model. Passing on the re-
normalized ASR posteriors into the MT model, the
model is trained in an end-to-end fashion (inspired
by the posterior tight integrated model by Bahar
et al. 2021a) using all ASR, MT, and ST available
training data. The system uses an improved auto-
matic segmentation based on voice activity detec-
tion (VAD) and endpoint detection (EP). The pri-
mary end-to-end system also processes the speech
input with “own” automatic segmentation. It is
based on an ensemble of 4 models combining an
LSTM speech encoder and a big Transformer de-
coder, as well as a pure Transformer model for
both the encoder and the decoder. The mod-
els are trained using CTC attention loss, spec-
trogram augmentation, pretraining, synthetic data
using forward translation, and fine-tuned on the
in-domain TED talks. Following Gaido et al.
(2020a), the direct model is also fine-tuned on au-
tomatically segmented data to increase its robust-
ness against sub-optimal non-homogeneous utter-
ances.

BUT (Vydana et al., 2021) participated with
a cascade system fed with the “given” automatic
segmentation of the test data. The primary sub-
mission is obtained from a system exploiting joint
training of the ASR and MT components, model
ensembling and tight ASR-MT coupling. Both
ASR and MT are pre-trained on pre-processed
clean data and rely on Transformer-based com-
ponents. Two different ASR models are respec-
tively trained to generate normalized and punctu-
ated text, the latter leading to better results. In the
proposed joint training procedure, the context vec-
tors from the final layer of the ASR-decoder are
used as inputs by the MT module, and both mod-
els are jointly optimized using a multi-task loss.
At inference time, beam search is used to obtain
the ASR hypotheses, and the corresponding con-
text vectors obtained from the ASR model are used
by the MT model for generating translations. The
MT model also uses a beam search to produce the
hypothesis and the final ST hypothesis is obtained
by a coupled search using the joint likelihood from
ASR and MT.

ESPNET-ST (Inaguma et al., 2021) participated
with both cascade and end-to-end speech transla-
tion systems, with primary focus on the direct ap-
proach. Both systems are fed with “own” auto-
matic segmentation of the test data. The primary

http://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
http://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
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cascade system exploits an ASR component based
on Conformer (Gulati et al., 2020a) and an MT
component built with Transformer-base trained
without case information and punctuation marks.
The primary end-to-end system is based on the
Conformer encoder, a stacked multi-block archi-
tecture including a multi-head self-attention mod-
ule, a convolution module, and a pair of position-
wise feed-forward modules in the Macaron-Net
style (Lu et al., 2019). The baseline conformer is
improved by training with sequence-level knowl-
edge distillation and by adopting a Multi-Decoder
architecture (which equips dedicated decoders for
speech recognition and translation tasks in a uni-
fied encoder-decoder model enabling search in
both source and target language spaces during in-
ference), model ensembling and improved VAD-
based audio segmentation (a “bottom-up” variant
of (Potapczyk and Przybysz, 2020; Gaido et al.,
2021)).

FBK (Papi et al., 2021) participated with an
end-to-end-system fed with “own” automatic seg-
mentation of the test data. The primary submis-
sion is obtained from a Transformer-based archi-
tecture trained with a pipeline involving data aug-
mentation (SpecAugment (Park et al., 2019) and
MT-based synthetic data) and characterized by
knowledge distillation and a two-step fine-tuning
procedure. Both knowledge distillation and the
first fine-tuning step (optimized by combining la-
bel smoothed cross entropy and the CTC scoring
function described in Gaido et al. 2020b) are car-
ried out on manually segmented real and synthetic
data. The second fine-tuning step is carried out on
a random segmentation of the MuST-C v2 En-De
dataset, aimed to make the system robust to auto-
matically segmented test audio data (Gaido et al.,
2020a). For the same purpose, a custom hybrid
segmentation procedure (Gaido et al., 2021) is ap-
plied to the test data before passing them to the
system.

HW-TSC participated with a cascade system
fed with “own” automatic segmentation of the test
data. The ASR component is a Transformer-large
model, which is trained on the combination of Lib-
riSpeech, MUST-C v2 and COVOST, where tran-
scriptions are pre-pended by a label indicating the
source corpus to make them distinguishable. Dur-
ing inference, the model is forced to decode in the
MUST-C alike style by setting the first token as the
MUST-C tag. The MT model is a Transformer-

large model trained on the WMT19 corpus and
fine-tuned on IWSLT-2017 text translation corpus.

KIT (Nguyen et al., 2021) participated with
both cascade and end-to-end speech translation
systems fed with “own” automatic segmentation
of the test data (obtained from the WerRTCVAD
toolkit22). The primary cascade system exploits
sequence-to-sequence ASR models trained with
three architectures (LSTM, Transformer and Con-
former). Before MT, a Transformer-based seg-
mentation module is in charge to (monolingually)
translate disfluent, broken, uncased ASR outputs
into more fluent, written-style text with punctua-
tion in order to match the data conditions of the
translation system. This is done in a shifting win-
dow manner, in which decisions are drawn by
means of a simple voting mechanism. For MT,
the systems relies on an ensemble of Transformer-
large models trained on both clean and noisy syn-
thetic (TED-derived) data. The primary end-to-
end system is an improved version of last year’s
Speech Relative Transformer architecture (Pham
et al., 2020c). Its encoder self-attention layer
uses Bidirectional relative attention (Pham et al.,
2020a) to model the relative distance between
one position and other positions in the sequence.
Three models, trained with SpecAugment (Park
et al., 2019) and different activation functions
(GeLU, SiLU and ReLU), are eventually com-
bined in an ensemble.

LI participated with a cascade system fed with
the “given” automatic segmentation of the test
data. Both the ASR (three models) and the MT
components (two models) are based on fairseq
(Ott et al., 2019)23 and were trained on MuST-C
data.

NIUTRANS (Xu et al., 2021b) participated with
an end-to-end-system fed with “own” automatic
segmentation of the test data. The primary sub-
mission relies on a deep Transformer model im-
plemented in fairseq and improved by adding the
CTC loss as auxiliary loss on the encoders. The
system is also enhanced with Conformer (used to
replace the Transformer blocks in the encoder),
relative position encoding (to improve acoustic
modeling and generalize better for unseen se-
quence lengths; Shaw et al., 2018), and stacked
acoustic and textual encoding (to better encode the

22http://github.com/wiseman/
py-webrtcvad

23http://github.com/pytorch/fairseq.git

http://github.com/wiseman/py-webrtcvad
http://github.com/wiseman/py-webrtcvad
http://github.com/pytorch/fairseq.git
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speech features; Xu et al., 2021a). Data augmenta-
tion is also applied via spectrogram augmentation,
speed perturbation and sequence-level knowledge
distillation, as well as by generating new synthetic
speech from MT data and by translating into Ger-
man the English transcriptions of ASR and ST
data. Finally, ensemble decoding is applied to in-
tegrate the predictions from several models trained
with the different datasets.

OPPO participated with a cascade system fed
with the “given” automatic segmentation of the
test data. The primary submission is based on
Transformer for both the ASR and MT compo-
nents, which are trained on part of allowed train-
ing datasets (MUSTC, LibriSpeech, CoVost, and
WMT20). Structured dropout is applied to in-
crease the differences between different models,
which are eventually combined via average en-
sembling.

UPC (Gállego et al., 2021) participated with an
end-to-end-system fed with “own” automatic seg-
mentation of the test data (inspired by (Potapczyk
et al., 2019)). The primary submission combines
a Wav2Vec 2.0 encoder and an mBART decoder,
which are respectively pre-trained on the ASR and
MT tasks. A length adaptor module, consisting
of a stack of convolutional layers, alleviates the
length discrepancy between the speech and text
modalities. Model fine-tuning to the ST task was
carried out following the LNA strategy proposed
in (Li et al., 2021). In addition, based on the ST
improvements reported in (Escolano et al., 2020),
an Adapter module was added to extract richer
representations from the output of the encoder
(Bapna and Firat, 2019). Data augmentation is
also performed via randomized on-the-fly pertur-
bations obtained by adding an echo effect and by
modifying tempo and pitch, as well as by apply-
ing masking to the output of the Wav2Vec 2.0 fea-
ture extraction module. Different approaches were
explored to combine the fine-tuning of the pre-
trained models and the training of the intermedi-
ate modules. The best performance was obtained
with a two-stage strategy, where: 1) the Wav2Vec
and mBART models are frozen and the interme-
diate modules are forced to learn how to couple
them; 2) model fine-tuning follows the LNA strat-
egy, starting from the solid initial point obtained
in the previous step.

VOLCTRANS (Zhao et al., 2021) participated
with both cascade and end-to-end speech transla-

tion systems fed with the “given” automatic seg-
mentation of the test data. The primary cascade
system exploits a Transformer-based ASR trained,
using spectrogram augmentation, on both clean
and filtered noisy data. MT processing relies on
Transformer-based models trained with data aug-
mentation (via back-translation, knowledge dis-
tillation and ASR output adaptation) and com-
bined with model ensemble techniques. The pri-
mary end-to-end system is trained by exploiting
knowledge distillation (leveraging ASR datasets
and four MT models) for data augmentation. The
encoder and the decoder are pre-trained in a pro-
gressive multi-task learning framework, also ex-
ploiting a fbank2vec network to learn contextual-
ized audio representations from log Mel-filterbank
features.

VUS (Jo et al., 2021) participated with a cas-
cade system fed with the “given” automatic seg-
mentation of the test data. For the ASR compo-
nent, a pretrained wav2vec 2.0 model (Baevski
et al., 2020) was used for the embeddings, and
the training was conducted with a Transformer
augmented on the output layer of the wav2vec
module. Following Potapczyk and Przybysz
(2020), data pre-processing was made to remove
training samples (laughters, applauses and erro-
neous scripts) that can lower the ASR perfor-
mance. ASR output post-processing was also car-
ried out to obtain an accurate sentence-level out-
put, such as setting the sentence boundary be-
tween the fragment texts and re-aggregating some
wrongly merged sentences. The MT compo-
nent, also based on Transformer, was trained on a
pre-processed version (language identification and
length-based filtering and written-to-spoken text
conversion through lowercasing, punctuation re-
moval and abbreviations’ expansion similar to Ba-
har et al., 2020) of the WMT 20 en-de news task
dataset.

3.4 Results

Detailed results for the offline ST task are pro-
vided in Appendix A.2. Specifically, two sep-
arate tables respectively show the BLEU scores
of participants’ primary submissions computed on
this year’s tst2021 and last year’s tst2020 test sets.
In each table, three BLEU scores are reported,
namely:

• BLEU NewRef – computed on the new (ex-
act, literal) translations described in Section
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3.2;

• BLEU TEDRef – computed on the original
(subtitle-like) TED translations;

• BLEU MultiRef – computed using both
references in a multi-reference setting.

Systems are ranked according to their
BLEU NewRef score. Background colours
are used to differentiate between cascade (white
background) and end-to-end architectures (gray
background). Additionally, the segmentation
strategy (Own vs Given) and the training data
condition (Constrained vs Unconstrained) char-
acterising each primary submission are shown in
separate columns.

Official results. In terms of this year’s
BLEU NewRef primary metric, the top-ranked
system achieved a BLEU score of 24.6, which
is slightly below the one obtained by last year’s
winning system (25.3). Also the average (19.8)
and median scores (21.7) are inferior compared
to last year’s round of the evaluation (average:
20.15; median: 21.81). These results, however,
are not comparable since they are computed on a
different test set (built from different TED talks),
which also comprises reference translations that
are not the original ones. The evaluation of this
year’s systems on tst2020, which is discussed
below, is hence more informative if we want
to get an idea about the actual evolution of ST
technology.

Computing BLEU on the original TED trans-
lations (BLEU TEDRef) results in overall scores
that are significantly lower (top submission: 20.3;
average: 16.6; median: 18.2). This large drop
indicates the difficulty for all systems to gener-
ate translations that are similar to the subtitle-like
ones characterising the recent TED talks included
in this year’s test set.

Unsurprisingly, the BLEU MultiRef results
are considerably higher due to the positive effect
of combining more references (top submission:
34.0; average: 27.7; median: 30.5). However, it is
worth remarking that, in this multi-reference set-
ting, 12 primary submissions out of 16 reached a
BLEU score above 30.0.

Cascade vs end-to-end. A major finding from
last year (Ansari et al., 2020) was about the com-
plete reduction of the performance gap between

cascade and end-to-end systems. In the same di-
rection, the analysis proposed in (Bentivogli et al.,
2021) has recently shown through manual analy-
ses and post-editing-based evaluations that the two
paradigms are now substantially on par. In appar-
ent contradiction, this year’s results depict a dif-
ferent situation: the two top ranked submissions
in the official ranking (based on BLEU NewRef)
are in fact produced with cascade systems (re-
spectively scoring 24.6 and 23.4 BLEU). The first
end-to-end submission (obtained under the same
segmentation and training data conditions) is two
BLEU points below (22.6) the top-ranked system.
However, it is interesting to note that the type of
reference translations used for evaluation makes a
big difference in terms of final results. While all
systems perform significantly worse when BLEU
is computed against the original TED translations,
some low-ranked submissions would climb the
rankings if BLEU TEDRef were used as primary
metric. Although this year’s winner would remain
the same, the 12th and 13th submission would
jump respectively to the 3rd and 2nd position. No-
tably, with a ranking based on BLEU TEDRef, 7
of the top 10 positions would be occupied by the
end-to-end submissions.24

All in all, in terms of performance distance be-
tween the two paradigms, our findings support
those of (Bentivogli et al., 2021) about relying on
automatic scores computed against independent
references. Across metrics, test sets and language
directions, they are less coherent than those com-
puted on human post-edits. Different from last
year, in this round the clear winner according to
all possible rankings is a cascade system. How-
ever, its distance from the other end-to-end sys-
tems varies considerably depending on the type
of reference translations used (down to 0.7 BLEU
points in the ranking based on BLEU TEDRef).
In light of this variability, manual analyses and
post-editing-based evaluations like the ones pre-
sented in (Bentivogli et al., 2021), would help to
precisely assess if the observed BLEU score dif-
ferences (marginal with BLEU TEDRef) actually
make one approach preferable to the other by final
users.

24System’s ranking based on BLEU NewRef would end
up similarly, with 6 end-to-end submissions in the top 10 po-
sitions (the top 2 still being the same cascade systems domi-
nating the official ranking).
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The importance of input segmentation. An-
other important finding from last year’s evaluation
concerned the importance of properly segmenting
the input speech at test time, so to feed the systems
with inputs that are closer to the sentence-like seg-
ments present in the clean corpora on which they
are trained. Also this year, the top five primary
runs submitted are all obtained by systems oper-
ating with “own” segmentation strategies, which
prove to be helpful independently of the under-
lying paradigm. This is confirmed by the fact
that the three lowest BLEU scores are achieved
by participants opting for the “given” segmen-
tation. Similar trends emerge with all possible
rankings (BLEU NewRef, BLEU TEDRef, and
BLEU MultiRef). The importance of a proper
segmentation of the input speech is even more ev-
ident if we look at the results computed on the
tst2020 test set, where the top seven runs are ob-
tained with custom segmentation and the worst
5 with the given one. These findings are in line
with last year’s observations and motivate further
efforts on improving this critical pre-processing
step.

Progress wrt 2020. Overall results computed on
tst2020 are higher compared to those obtained on
tst2021. However, being the two test sets differ-
ent as discussed above, the scores are not directly
comparable to draw reliable conclusions about the
ST technology evolution (which might wrongly
be considered as an involution by merely com-
paring raw BLEU scores on the two benchmarks).
Rather, more can be said if we only focus on how
this year’s systems behave on tst2020. The im-
provement is evident both if we look at the average
performance (increasing by more than 1 BLEU
point from 20.15 to 21.17) and if we concentrate
on the best systems. Specifically, with “own” test
data segmentation methods, three teams achieved
BLEU scores that are higher (up to 0.7 points) than
the one obtained by the 2020 winner under this
condition (25.3). With the “given” automatic au-
dio splits, two teams improved (up to 1.8 points)
the highest score obtained last year under this con-
dition (22.49). Interestingly, similar to last year,
the best system is an end-to-end one. The per-
formance distance with respect to the best cas-
cade result on tst2020 is even larger (0.6 BLEU
points) compared to the one observed last year
(0.24). On one side, these results confirm that, on
last year’s test data (and with BLEU scores com-

puted on the original TED translations), the end-
to-end paradigm has an edge on the cascade one.
On the other side, they confirm the above observa-
tions about the variability of automatic evaluation
outcomes, which are highly affected by the overall
testing conditions.

Final remarks. By inspecting this year’s results,
we can draw two final observations that, with an
eye at the future, provide us with possible indi-
cations for the next rounds of the IWSLT offline
ST task. One is about the training data condi-
tion: additional training resources did not yield
visible advantages. Unfortunately, having only
two “unconstrained” submissions makes it hard to
draw reliable conclusions on this aspect. How-
ever, one might wonder if differentiating between
constrained and unconstrained submissions still
makes sense if the general goal is to boost research
on a rapidly evolving technology. Is it a good
source of interesting observations or has it become
an irrelevant distinction? Reasoning on this ques-
tion might yield indications for future rounds of
the task.

The other observation is about how perfor-
mance is distributed with respect to the two ST
paradigms: while the results of cascade systems
are spread across the whole performance interval
(3.6 – 24.6 for BLEU NewRef), the scores ob-
tained by end-to-end models are concentrated in a
two-point interval (20.6 – 22.6). Such a close per-
formance of direct models should stimulate reflec-
tion on the fact that either the architectural restric-
tions posed to define the “end-to-end” setting (i.e.
bypass any intermediate symbolic representation),
or other limitations of current technology, result
in systems that are quite similar to each other. Is it
still reasonable, for the good of ST, limiting partic-
ipant’s freedom with arbitrary, pre-defined archi-
tectural constraints? Setting less restrictive con-
ditions to experiment with, thus opening to partic-
ipation with alternative approaches (e.g. by avoid-
ing explicit architectural constraints) is a possi-
ble direction to promote more innovation in future
rounds of the evaluation campaign.

4 Multilingual Speech Translation

While multilingual translation is an established
task, until recently, few parallel resources ex-
isted for speech translation and most remain only
for translation from English speech. Multilin-
gual models enable transfer from related tasks,
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which is particularly important for low-resource
languages; however, parallel data between two
otherwise high-resource languages can also often
be rare, making multilingual and zero-shot trans-
lation important for many resource settings.

In addition to parallel speech and translations,
many sources of data may be useful for speech
translation: monolingual speech and transcripts,
parallel text, and data from other languages or lan-
guage pairs. While cascades of separately trained
automatic speech recognition (ASR) and machine
translation (MT) models can leverage all of these
data sources, how to most effectively do so with
end-to-end models remains an open and exciting
research question.

Speech Target Languages
en es fr pt it

es Supervised Supervised Supervised Supervised Supervised
fr Supervised Supervised Supervised Supervised —
pt Supervised Zero-shot — Supervised —
it Zero-shot Zero-shot — — Supervised

Table 3: Multilingual task language pairs. Lan-
guages are represented by their ISO 639-1 code.
Speech, transcripts, and translations were provided for
all Supervised tasks; for Zero-shot ST tasks, only
speech and transcripts were provided during training,
though target language text may be seen with other
source languages. Participants were required to submit
translations for all official translation directions.

4.1 Challenge

Motivated by the above, the multilingual speech
translation task provided data for two condi-
tions: supervised, and zero-shot. We provided
speech and transcripts for four languages (Span-
ish, French, Portuguese, Italian) and translations
in a subset of five languages (English, Span-
ish, French, Portuguese, Italian) as shown in Ta-
ble 3. For zero-shot language pairs, data for
ASR (speech and transcripts) was released for
training, but not translations; the target languages
could be observed in other language pairs in train-
ing. Both translation directions for one source
language (Italian) and one of two translation di-
rections for another (Portuguese) were chosen to
be zero-shot to enable comparison between su-
pervised and zero-shot conditions with the same
source language, and to measure the impact of
having no supervised ST data at all. Participants
could use the provided resources in any way.

At evaluation time, we provided speech in the

four source languages and asked participants to
generate translations in both English and Spanish.
Both constrained submissions (using the provided
data only, e.g., no models pretrained on external
data) and unconstrained submissions were encour-
aged and evaluated separately. Submitting transla-
tions for additional optional language pairs as well
as generated transcripts (ASR) for evaluation was
not mandatory but encouraged as a useful point of
analysis.

4.2 Data and Metrics

For this task we use the Multilingual TEDx data
(mTEDx) (Salesky et al., 2021). The data is
derived from TEDx talks and translations. The
mTEDx data is segmented and aligned at the
sentence-level (using automatically generated seg-
mentations and alignments). mTEDx is publicly
available on OpenSLR.25 The data released dur-
ing the training period contained train, valida-
tion, and progress test sets. For the purposes of
this task, ST data for three language pairs was
withheld until after the evaluation period (Zero-
shot in Table 3). Use of any of resources be-
yond Multilingual TEDx made a submission un-
constrained. Any publicly available additional
data or pretrained models were permitted for train-
ing unconstrained systems.

We evaluated translation output using BLEU
as computed by SACREBLEU (Post, 2018) and
WER for ASR output. We computed all scores
using the provided utterance segmentations from
Multilingual TEDx. WER was computed on low-
ercased text with punctuation removed.

4.3 Submissions

We received 15 submissions from 7 teams.
FAIR (Tang et al., 2021a) submitted uncon-

strained end-to-end models which leverage pre-
trained multilingual wav2vec 2.0 and mBART
models, and finetune on the provided mTEDx MT
and ST data as well as additional corpora. They
compare different wav2vec 2.0 models trained
on different multilingual corpora and either text
(Baevski et al., 2020) or IPA targets (Wang et al.,
2021), and mBART with BPE (Liu et al., 2020)
or IPA representations (Tang et al., 2021b). They
combine different joint and speech-only finetun-
ing, and add an adaptor layer (Li et al., 2021)
between the two pretrained models for adapta-

25http://openslr.org/100/

http://openslr.org/100/
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tion and downsampling. They ultimately ensem-
ble three models for their final submission.

HWN (Zeng et al., 2021) used a unified
Transformer architecture in which audio and text
data can be featurized separately by a Conv-
Transformer (Huang et al., 2020) and text embed-
dings, before being fused and used as input to a
single encoder and decoder. They use curriculum
learning by first training the unified model for the
ASR and MT tasks, then continue training adding
the ST task and finally fine-tuning using the ST
task data only. They also use multiple data aug-
mentation techniques and model ensembling.

KIT (Pham et al., 2021) trained deep Trans-
former models with relative attention for ASR and
ST (Pham et al., 2019, 2020b) to create both cas-
caded and E2E models. They used additional tech-
niques such as distillation, Macaron feed-forward
layers, and the creation of synthetic data to signif-
icantly improve both models’ performance. Their
final submission is an ensemble of their cascade
and E2E systems.

UM-DKE (Liu and Niehues, 2021) trained
multilingual cascade and E2E models with a va-
riety of techniques to improve performance. They
start with a multilingual ASR model, which incor-
porates language embeddings, speed perturbation,
and ensembling. They improve their multilin-
gual MT by removing residual connections in the
Transformer architecture, and further ensembling.
Finally they train an E2E ST system which ben-
efits from joint training with ASR, pseudo-labels
for synthetic data to improve zero-shot pairs, and
‘multi-view ensembling,’ which ensembles prob-
abilities based on three different speed perturba-
tions.

ON-TRAC (Le et al., 2021) used a dual-
decoder Transformer architecture (Le et al., 2020),
which includes a single encoder for speech data
and separate decoders (that interact with each
other) for each of the ASR and ST tasks. They
trained ASR and MT models to initialize the ST
model and used SpecAugment augmentation. No
synthetic data was created for zero-shot transla-
tion.

UEDIN (Zhang and Sennrich, 2021) trained
multilingual Transformer models with adaptive
feature selection (Zhang et al., 2020) to reduce
data dimensionality by selecting the most informa-
tive speech features. They create pseudo-speech
translation data which provides significant im-

provements on all language pairs, not only zero-
shot. They additionally use sparsified linear at-
tention, RMSNorm, scheduling language-specific
modeling, and multi-task learning to improve their
models, and ensemble models of multiple sizes for
their final submission.

ZJU (Zhang, 2021) submitted an ensemble of
cascaded ST models, using a Conformer (Gulati
et al., 2020b) for ASR and a multilingual Trans-
former MT model. They use back-translation to
create data for zero-shot pairs, add noised data to
adapt their MT model to ASR output, and include
masked training. They additionally compared end-
to-end models with data augmentation and multi-
task training.

4.4 Results

Results for the Multilingual Task are shown in Ap-
pendix A.3. We calculated task results using the
average BLEU on all official ST language pairs:
all primary submissions are shown in Table 5.
The unconstrained submission from FAIR outper-
formed all other primary submissions on both su-
pervised and zero-shot language pairs. The KIT
submission was the strongest constrained system,
aided in part by strong ASR pretraining: ASR re-
sults are shown in Table 8. All but one primary
submission were ensembles of either multiple end-
to-end systems, or end-to-end and cascaded mod-
els. We saw a mix of end-to-end and cascaded sub-
missions across primary and constrastive submis-
sions (Table 6); in general, the end-to-end models
outperformed cascaded submissions, particularly
under zero-shot conditions. We discuss different
aspects of the task and submissions further below.

Constrained vs unconstrained. Use of addi-
tional data beyond mTEDx appeared to be a clear
benefit on all ST pairs, as the FAIR system per-
formed best on all language pairs. Interestingly,
the performance difference between the best un-
constrained and constrained systems across su-
pervised and zero-shot tasks was similar. When
we look at the constrastive submissions and ASR,
however, the underlying reason appears not to be
the additional data but rather how it is used. The
FAIR baseline is initialized from the multilingual
wav2vec2.0 model XLSR-53 and the mBART de-
coder, and is outperformed by many constrained
systems. The other FAIR submissions used co-
training with the text-to-text MT task and IPA rep-
resentations for ASR and/or MT models for sig-



15

nificant improvements.

Zero-shot performance. Overall we saw very
encouraging performance on the zero-shot pairs,
with very little degradation from the supervised
language pairs for many systems. Three lan-
guage pairs were zero-shot: pt-es, it-en, and it-
es. While Portuguese speech was observed in an-
other translation pair, Italian speech was only ob-
served for ASR. The Italian pairs proved more
challenging, but most systems nonetheless out-
perform the supervised end-to-end baselines in
Salesky et al. (2021) through some combination
of decoder pretraining, auto-encoding ASR data,
or back-translation. Comparing supervised and
zero-shot performance with the same source lan-
guage (pt), we saw stronger performance on the
zero-shot than supervised condition, likely indica-
tive of the relatedness of the source and target lan-
guages, facilitating zero-shot translation. Though
much more English target data has been seen (for
constrained systems), pt-es and it-es are both more
closely-related languages, and all but one system
show better results on these two zero-shot lan-
guage pairs than it-en. For teams which submit-
ted both end-to-end and cascaded models, there
were small but consistent improvements on zero-
shot with end-to-end; this may suggest that E2E
models more easily transfer from observed re-
lated languages and pairs, or perhaps that end-to-
end models were more optimized. The systems
with the greatest relative difference between su-
pervised and zero-shot pairs were FAIR, HWN,
and ON-TRAC. HWN had better performance
for languages with more ASR data, and ON-
TRAC struggled without e.g. auto-encoding text.

ASR performance impact. Interestingly, ASR
performance was not necessarily indicative of ST
performance; HWN and KIT ASR outperformed
the FAIR ASR without additional training data or
ensembling, with the exception of French where
both systems struggled, particularly KIT. This
was shown in ST performance; UEDIN outper-
formed KIT on language pairs where French was
the source language, precisely where UEDIN had
better ASR. All submitted ASR systems outper-
formed the end-to-end ASR in Salesky et al.
(2021), in part through better optimization and use
of multilingual models, and in particular use of
the CTC objective. Their hybrid LF-MMI mod-
els remain generally stronger for Portuguese and

French; not necessarily correlated with data size.

Ensembling. Most primary systems were en-
sembles of 2+ models, which provided improve-
ments of up to 2 BLEU compared with the indi-
vidual systems, some of which were submitted as
constrastive (Table 6). We saw different ensem-
bling techniques, using joint decoding or averag-
ing model output probabilities. Ensembled mod-
els were alternatively models of different sizes
(UEDIN), trained on different data (FAIR), dif-
ferent combinations of fine-tuning and knowledge
distillation (HWN), system with back-translations
and with ASR noise added (ZJU), speed perturba-
tions of the same input (UM-DKE), or cascaded
and end-to-end models (KIT).

Unofficial language pairs. The unofficial lan-
guage pairs (Table 7) have the same source lan-
guages as the official language pairs, but different
target languages. The test sets are parallel with
the official blind evaluation sets. The relative per-
formance between primary systems on these ad-
ditional targets remains similar. Performance on
more closely related languages (es-pt) was in fact
generally higher, and language pairs with less-
observed target languages (es-fr, es-it) were lower.
The exception was FAIR, where average perfor-
mance was almost exactly the same as on the offi-
cial supervised pairs; the additional datasets used
for pretraining likely erase some of these resource
differences, supported by the differences between
their constrastive submissions which use different
pretraining sources.

End-to-End vs Cascade. Three groups submit-
ted an end-to-end system and a cascaded sys-
tem. In all three cases, the end-to-end system out-
performs the cascaded approach. Since the ten-
dency in the offline translation task (section 3)
is different (there the cascaded approaches typi-
cally perform better than the end-to-end models),
this opens up several interesting research ques-
tions that should be investigated further. There
are several differences between the two tasks that
could influence the ranking between the end-to-
end and cascaded models: First of all, the amount
of ASR and MT training data that is available in
addition to end-to-end training data is different.
In the offline task, there is significantly more data
available for the auxiliary tasks (particularly MT),
which may benefit cascaded models more. Sec-
ondly, the multilingual task uses provided auto-
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matic sentence segmentation which is consistent
across train and test, while the offline task does
not provide segmentation at test time, requiring
teams to perform segmentation to translate, similar
to online or simultaneous conditions, which cas-
caded models may be more robust to. And finally,
the ability to facilitate multilingual and zero-shot
speech translation might be different in end-to-end
and cascaded models.

5 Low-Resource Speech Translation

The goal of the low-resource speech translation
task is to investigate pathways for developing
speech translation systems for currently under-
served languages. The majority of the world’s lan-
guages are predominantly oral, hence the need for
speech-based language tools (translation included)
is paramount for them to be of any use to the lan-
guage community. At the same time, most of these
languages are also under-resourced, with little to
no data being available for speech transcription
and translation.

While offline speech translation has a long-
standing tradition at the IWSLT campaign and
both monolingual and multilingual models of-
fer impressive promises for downstream model
deployment, the majority of recent advances in
speech translation both require large amounts of
data and are typically benchmarked on language
pairs with such data abundance. However, for the
vast majority of the world’s languages there exist
little speech-translation parallel data at the scale
needed to train modern speech translation mod-
els. Instead, in a real-world situation one will have
access to limited, disparate resources (e.g. word-
level translations, speech recognition, small par-
allel text data, monolingual text, raw audio, etc).
The low-resource track aims to fill this gap, by
encouraging and facilitating research on speech-
translation for data-scarce language pairs.

5.1 Challenge

As described above, the shared task focused
on the problem of developing speech transcrip-
tion and translation tools for under-resourced lan-
guages. This year’s iteration in particular focused
on speech translation tools that would match the
real-world needs of humanitarian organizations.

There were no restrictions on the type of mod-
els (e.g. end-to-end vs. cascade) or additional
data that were allowed, the goal for the partic-

ipants being producing the best possible system
under these challenging settings. In collaboration
with the Translators without Border, we provided
newly collected speech and transcripts in two lan-
guages, Coastal Swahili (ISO code: swh) and Con-
golese Swahili (ISO code: swc), as well as trans-
lations in English and French respectively. In ad-
dition, we provided pointers to other monolingual
speech datasets in the source Swahili varieties, as
well as textual parallel corpora between the source
and target languages.

5.2 Data and Metrics

The Swahili Varieties Speech Translation
Dataset For the purposes of the task we created
and released a new speech translation dataset for
the two Swahili varieties. The new dataset is pub-
licly available.26

The training data were derived from the
Gamayun minikits that the Translators without
Borders had released for Congolese and Coastal
Swahili text translation (Öktem et al., 2020),
which included sentence-level translations be-
tween Coastal Swahili and English as well as Con-
golese Swahili and French.27 We additionally col-
lected read versions for 5,000 sentences from this
dataset. For each variety the training set includes
voices from 6 speakers (3 male and 3 female). The
collection was carried out using mobile phones, as
opposed to clean studio settings, to better match
the real-world use-case scenarios the shared task
envisions.

The development and test data are derived from
the TICO-19 dataset (Anastasopoulos et al., 2020),
which is a multi-parallel evaluation benchmark on
the COVID-19 domain in more than 33 languages.
The original English sentences were translated
into Coastal Swahili and French, and the French
translations were then translated into Congolese
Swahili. All translations were performed by pro-
fessional translators and an extensive quality as-
surance process was followed. For the purposes of
the shared task we additionally collected read ut-
terances in the two Swahili varieties for all 3k sen-
tences. We follow the original dev and test splits.
The dev set utterances encompass 2 speakers (1

26https://drive.google.com/file/d/
1lhifoEY0Kzj6s11W_taKoVW_mAvzzZ04/view?
usp=sharing

27This dataset was previously used for developing text-
based translation systems for humanitarian response (Öktem
et al., 2021).

https://drive.google.com/file/d/1lhifoEY0Kzj6s11W_taKoVW_mAvzzZ04/view?usp=sharing
https://drive.google.com/file/d/1lhifoEY0Kzj6s11W_taKoVW_mAvzzZ04/view?usp=sharing
https://drive.google.com/file/d/1lhifoEY0Kzj6s11W_taKoVW_mAvzzZ04/view?usp=sharing


17

Language Train Dev Test
Pair #utt. #speakers #utt. #speakers #utt. #speakers

swh-eng 4599 6 (3M, 3F) 868 2 (1M, 1F) 1063 3 (2M, 1F)
swc-fra 5000 6 (3M, 3F) 868 2 (1M, 1F) 2124 6 (3M, 3F)

Table 4: Statistics of the newly-released Swahili varieties speech translation corpus.

male, 1 female) in each language, and the test set
includes 3 (2M, 1F) and 6 (3M, 3F) speakers for
swh and swc respectively.

Statistics on the whole dataset used for the
shared task following cleaning and preprocessing
are listed in Table 4. The final dataset is 4-way par-
allel; the English and French sides are translations
of each other, creating opportunities for the evalu-
ation of multilingual systems, as well as, in the fu-
ture, speech-to-speech translation between the two
Swahili varieties.

Additional Data Last, we reiterate that we al-
lowed the use of any other available data, such as
any data from the Offline and Multilingual Shared
Tasks, any speech recognition corpora like the
Swahili ALFFA dataset (Gelas et al., 2012) or
the Mozilla Common Voice datasets (Ardila et al.,
2020), as well as any text translation datasets like
the Gamayun minikits (Öktem et al., 2020). We
also allowed the use of pre-trained models like
wav2vec (Schneider et al., 2019; Baevski et al.,
2020) or mBART (Liu et al., 2020) (among oth-
ers).

Metrics Systems’ performance was evaluated
with respect to their capability to produce trans-
lations similar to the target-language references.
We used the BLEU metric computed with Sacre-
BLEU, in a case-insensitive setting. In addition,
we invited participants who produced speech tran-
scriptions in the Swahili variety as a by-product of
their system (e.g. if they use a ASR+MT cascade
approach) to also submit them. These were evalu-
ated using case-insensitive word error rate (WER).
The choice of case-insensitivity is due to our focus
on producing usable output that aids comprehen-
sion; we deem that the effect of proper casing is
largely minor in such challenging settings.

5.3 Submissions

The shared task received 4 submissions (9 total
runs across the {swh,swc}×{eng,fra} pairs) from
3 teams. All teams followed a cascade ASR→MT

approach in their primary submission – this indi-
cates that end-to-end learning is still very chal-
lenging in such data-scarce settings, and leaves a
lot of room for further future exploration.28

In the following, we provide an overview of
each submission.

USYD-JD (Ding et al., 2021) uses a pipeline
approach, focusing in the MT component and its
ability to handle ASR errors. The ASR compo-
nent is trained on the Swahili Varieties dataset,
the ALFFA corpus, and the IARPA Babel Swahili
Language Pack using the default settings in Kaldi,
also lowercasing all sentences and removing punc-
tuation. The final ASR is post-corrected with
the SlotRefine method (Wu et al., 2020). The
MT component is a Transformer (Vaswani et al.,
2017) that operates in a non-autoregressive man-
ner, trained on almost all available OPUS swa-
eng datasets, but additionally utilizing denoising
pre-training and bidirectional self-training, tagged
back-translation, transductive fine-tuning, output
reranking and output post-processing. This NMT
system is the only that explores extensive strate-
gies for denoising and pre-training, reaching a

IMS (Denisov et al., 2021) uses a pipeline ap-
proach. The ASR component for the primary
submission is a Conformer (Gulati et al., 2020b)
in its ESPnet implementation, trained by fine-
tuning a pretrained SPGISpeech model (O’Neill
et al., 2021) on both Swahili varieties using the
Swahili Varieties dataset, Gamayun samples, the
ALFFA corpus, and the IARPA Babel Swahili
Language Pack, also applying some preprocessing
steps like converting all numbers to words and re-
moving punctuation. The MT system is a Trans-
former (Vaswani et al., 2017) using multi-task
learning by tagging the input (to distinguish clean
text vs. ASR output). They also attempted an end-

28We note that the shared task received more than 20 initial
registrations. We suspect that the limited amount of received
submissions was exactly because of how challenging it can
be to create a system that produces decent outputs in these
extremely low-resource settings.



18

to-end ST system which however performed sig-
nificantly worse.

ON-TRAC (Le et al., 2021) used a pipeline
approach, using a hybrid HMM/TDNN au-
tomatic speech recognition system fed by
wav2vec (Schneider et al., 2019) features, with its
output then provided to a neural MT system. The
ASR system was trained on the Swahili Varieties
dataset, the ALFFA corpus, and the IARPA Babel
Swahili Language Pack. The NMT system uses
LSTMs with attention, with the swa-eng also us-
ing subwords, while the swc-fra system operates
at the word level. The swa-eng MT system was
trained on 2.2M sentence pairs, resulting from the
filtering through langID of all data available on
OPUS.29 The swc-fra NMT system was trained
on 1.1M parallel sentences.

5.4 Results
Out of the submitted systems, the USYD-JD sub-
mission that explored pre-training strategies was
the clear winner of the eng-swa task achieving a
BLEU score (case insensitive) of 25.3. Notably,
they only focused on the MT component of the
pipeline, making it robust to ASR errors and utiliz-
ing monolingual data effectively through denois-
ing and pre-training. For the swc-fra pair, the IMS
system was the best performing submission for
the swc-fra pair with a BLEU score of 13.5. The
evaluation of all submissions (including optional
language pairs and ASR transcription accuracy) is
provided in the Appendix.

The difference in accuracy between the two lan-
guage pairs could potentially be attributed to the
lack of data in Congolese Swahili (as most avail-
able datasets are in the Coastal variety). How-
ever, the pre-training approaches that the USYD-
JD submission uses seem very promising towards
building robust MT systems also for the Con-
golese variety. A clear path for future work to-
wards even better ST systems could explore a
pipeline of the improved ASR systems of the ON-
TRAC or IMS submissions with the NMT system
of the USYD-JD submission. The lack of end-to-
end approaches in the submissions (and the evi-
dence from the IMS contrastive submission) sug-
gest that additional research is needed in order to
achieve competitive results in such data-scarce set-
tings with end-to-end models.

29https://opus.nlpl.eu/
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Turchi, and Changhan Wang. 2020. Findings of the
IWSLT 2020 Evaluation Campaign. In Proceedings
of the 17th International Conference on Spoken Lan-
guage Translation (IWSLT 2020), Seattle, USA.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-
multilingual speech corpus. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 4218–4222.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A frame-
work for self-supervised learning of speech repre-
sentations. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 12449–12460.
Curran Associates, Inc.

Parnia Bahar, Tobias Bieschke, Ralf Schluter, and Her-
mann Ney. 2021a. Tight integrated end-to-end train-
ing for cascaded speech translation. In Proceedings
of the IEEE Spoken Language Technology Work-
shop, pages 950–957, Shenzhen, China.

Parnia Bahar, Patrick Wilken, Tamer Alkhouli, An-
dreas Guta, Pavel Golik, Evgeny Matusov, and
Christian Herold. 2020. Start-Before-End and End-
to-End: Neural Speech Translation by AppTek and
RWTH Aachen University. In Proceedings of the
17th International Conference on Spoken Language
Translation (IWSLT).

Parnia Bahar, Patrick Wilken, Mattia di Gangi, and
Evgeny Matusov. 2021b. Without Further Ado:
Direct and Simultaneous Speech Translation by
AppTek in 2021. In Proceedings of the 18th Interna-
tional Conference on Spoken Language Translation
(IWSLT).

Dzmitry Bahdanau, Kyung Hyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly

https://opus.nlpl.eu/
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf


19

learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations, ICLR 2015.

Ankur Bapna and Orhan Firat. 2019. Simple, scal-
able adaptation for neural machine translation. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1538–
1548, Hong Kong, China. Association for Computa-
tional Linguistics.

Loı̈c Barrault, Magdalena Biesialska, Ondřej Bojar,
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Appendix A. Evaluation Results and Details
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A.1. Simultaneous Speech Translation
⋅ Summary of the results of the simultaneous speech translation text track.
⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2 or IWSLT21 dev set)
⋅ Raw system logs are also provided on the task web site.30

English-German tst-COMMON v2 Blind Test Set

BLEU AL AP DAL BLEU AL AP DAL

Low Latency

USTC-NESLIP 33.16 2.66 0.64 4.38 26.89 2.81 0.63 4.72
VOLCTRANS 28.76 2.86 0.69 4.22 23.24 3.08 0.68 4.25
APPTEK 30.03 2.94 0.68 4.40 22.84 3.12 0.66 4.66
UEDIN 25.06 2.33 0.63 3.69 22.30 4.22 0.71 5.54

Medium Latency

USTC-NESLIP 34.82 5.80 0.80 8.89 29.40 5.94 0.78 9.29
VOLCTRANS 32.88 5.80 0.83 9.05 27.22 6.30 0.81 9.24
APPTEK 31.73 5.89 0.80 9.57 25.70 6.22 0.78 10.40
UEDIN 30.58 5.89 0.80 7.20 24.56 6.92 0.81 8.20

High Latency

USTC-NESLIP 35.47 12.21 0.95 15.18 30.03 12.35 0.93 16.33
VOLCTRANS 33.23 11.03 0.93 11.40 26.82 12.03 0.92 12.39
APPTEK 33.16 11.19 0.92 14.44 26.62 12.00 0.91 16.05
UEDIN 33.10 14.69 0.98 15.17 26.50 15.41 0.96 16.04

English-Japanese IWSLT 21 DEV Blind Test Set

BLEU AL AP DAL BLEU AL AP DAL

Low Latency

USTC-NESLIP 16.36 4.90 0.79 10.30 17.54 4.92 0.78 8.18
VOLCTRANS 15.80 6.34 0.89 13.57 16.91 6.54 0.89 11.26
NAIST 13.77 7.29 0.88 8.07 14.41 7.21 0.88 7.97

Medium Latency

USTC-NESLIP 17.53 8.42 0.92 11.81 18.30 7.61 0.90 10.59
VOLCTRANS 15.80 6.34 0.89 13.57 16.91 6.54 0.89 11.26
NAIST 15.22 11.48 0.97 11.98 16.20 11.54 0.97 11.98

High Latency

USTC-NESLIP 17.28 11.67 0.97 11.14 18.17 11.71 0.97 13.72
VOLCTRANS 15.85 11.19 0.97 0.97 16.97 11.27 0.97 11.90
NAIST 15.57 13.70 0.99 13.91 16.19 13.83 0.99 14.01

30https://iwslt.org/2021/simultaneous

https://iwslt.org/2021/simultaneous
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⋅ Summary of the results of the simultaneous speech translation (segmented and unsegmented) speech track
⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2, only segmented input.)
⋅ Raw logs are also provided on the task web site.

English-German tst-COMMON v2

BLEU AL AP DAL AL(CA) AP(CA) DAL(CA)

Low Latency

USTC-NESLIP 27.40 0.92 0.68 1.42 2.33 1.33 4.38

Medium Latency

USTC-NESLIP 29.68 1.86 0.82 2.65 3.66 1.48 5.36
APPTEK 24.88 1.96 0.88 3.08 3.37 1.17 4.10

High Latency

USTC-NESLIP 30.75 2.74 0.90 3.63 5.05 1.56 6.23
APPTEK 26.77 3.00 0.99 5.48 6.66 1.32 6.93

English-German Blind Test Set

BLEU AL AP DAL AL(CA) AP(CA) DAL(CA)

Low Latency

USTC-NESLIP 21.85 1.04 0.66 1.47 2.99 1.52 6.41

Medium Latency

USTC-NESLIP 24.83 1.96 0.80 2.79 4.49 1.63 7.15
APPTEK 16.60 1.95 0.80 2.73 2.86 1.06 3.86

High Latency

USTC-NESLIP 25.62 2.86 0.88 3.85 6.10 1.68 7.93
APPTEK 21.08 3.99 0.94 5.06 5.00 1.16 6.12

Unsegmented

USTC-NESLIP 25.31 30.91 0.51 26.47 264.28 1.10 536.54
APPTEK 15.03 107.11 0.44 32.92 149.52 0.63 175.79
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A.2. Offline Speech Translation

Speech Translation: TED English-German tst 2021
⋅ Systems are ordered according to BLEU NewRef: BLEU score computed on the NEW reference set (literal translations).

⋅ BLEU scores are given as percent figures (%).
⋅ End-to-end systems are indicated by gray background.

⋅ The “segm.” column indicates the segmentation strategy (Own vs Given).
⋅ The “data condition” indicates the training data condition (Constrained vs Unconstrained).

⋅ The † symbol indicates an end-to-end submission exploiting pre-trained models (not all parameters are jointly trained).

System segm. data condition BLEU NewRef BLEU TEDRef BLEU MultiRef
HW-TSC Own Constrained 24.6 20.3 34.0
KIT Own Constrained 23.4 19.0 32.0
APPTEK Own Constrained 22.6 18.3 31.0
KIT Own Constrained 22.0 18.1 30.3
APPTEK Own Constrained 21.9 18.1 30.4
VOLCTRANS Given Constrained 21.8 17.1 29.5
UPC† Own Unconstrained 21.8 18.3 30.6
VOLCTRANS Given Constrained 21.7 18.7 31.3
ESPNET-ST Own Constrained 21.7 18.2 30.6
FBK Own Constrained 21.6 18.4 30.6
OPPO Given Constrained 21.5 17.8 30.2
ESPNET-ST Own Constrained 21.2 19.3 31.4
NIUTRANS Own Constrained 20.6 19.6 30.3
VUS Given Constrained 15.3 12.4 20.9
BUT Given Unconstrained 11.7 9.8 16.1
LI Given Constrained 3.6 2.7 4.8

Speech Translation: TED English-German tst 2020
⋅ Systems are ordered according to BLEU TEDRef: BLEU score computed on the ORIGINAL reference set.

⋅ BLEU scores are given as percent figures (%).
⋅ End-to-end systems are indicated by gray background.

⋅ The “segm.” column indicates the segmentation strategy (Own vs Given).
⋅ The “data condition” indicates the training data condition (Constrained vs Unconstrained).

⋅ The † symbol indicates an end-to-end submission exploiting pre-trained models (not all parameters are jointly trained).

System segm. data condition BLEU TEDRef
ESPNET-ST Own Constrained 26.0
HW-TSC Own Constrained 25.4
KIT Own Constrained 25.4
ESPNET-ST Own Constrained 24.7
FBK Own Constrained 24.7
UPC† Own Unconstrained 24.6
APPTEK Own Constrained 24.5
VOLCTRANS Given Constrained 24.3
KIT Own Constrained 23.2
APPTEK Own Constrained 23.1
NIUTRANS Own Constrained 22.8
OPPO Given Constrained 22.6
VOLCTRANS Given Constrained 22.2
VUS Given Constrained 13.7
BUT Given Unconstrained 11.4
LI Given Constrained 0.2
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A.3. Multilingual Speech Translation
⋅ Submissions are ordered according to average ST performance across all official language pairs.
⋅ ST systems are scored using the BLEU↑ metric as computed by SACREBLEU (Post, 2018).
⋅ ASR systems are scored using WER↓ computed on lowercased text with punctuation removed.

Official Results:

Condition Supervised Zero-shot Avg

System Constrained E2E Ensemble es-en fr-en fr-es pt-en pt-es it-en it-es

FAIR ✓ ✓ 42.2 38.7 36.5 31.0 38.2 29.4 37.3 36.2

KIT ✓ ✓ 39.3 27.1 29.2 30.7 37.3 26.5 32.4 31.8
UEDIN ✓ ✓ ✓ 36.2 26.4 29.5 27.0 34.5 23.0 31.1 29.7

UM-DKE ✓ ✓ ✓ 33.9 25.4 27.6 25.7 33.7 22.8 29.4 28.4
ZJU ✓ ✓ 34.5 25.2 27.4 25.7 31.6 20.8 27.3 27.5

HWN ✓ ✓ ✓ 35.4 26.7 27.0 26.7 27.0 17.6 15.4 25.1
ON-TRAC ✓ ✓ 20.2 14.4 15.0 13.2 3.0 4.2 4.6 10.7

Table 5: Multilingual ST: Results of primary submissions on official language pairs in BLEU↑

All Submissions:

Condition Supervised Zero-shot Avg

System Constrained E2E Ensemble es-en fr-en fr-es pt-en pt-es it-en it-es

FAIR primary ✓ ✓ 42.2 38.7 36.5 31.0 38.2 29.4 37.3 36.2
FAIR joint U W ✓ 41.5 37.4 35.2 29.2 36.8 29.1 36.8 35.1
FAIR joint U ✓ 40.4 36.4 34.4 29.0 38.2 28.4 34.6 33.9
FAIR joint X ✓ 40.6 36.5 34.7 28.2 38.2 27.8 33.3 33.5
KIT contrastive ✓ ✓ 38.9 28.5 29.7 30.2 37.1 25.8 33.0 31.9
KIT primary ✓ ✓ 39.3 27.1 29.2 30.7 37.3 26.5 32.4 31.8

UEDIN primary ✓ ✓ ✓ 36.2 26.4 29.5 27.0 34.5 23.0 31.1 29.7
UEDIN contrastive ✓ ✓ 35.0 25.5 28.8 26.2 33.3 22.4 30.1 28.8

UM-DKE primary ✓ ✓ ✓ 33.9 25.4 27.6 25.7 33.7 22.8 29.4 28.4
ZJU primary ✓ ✓ 34.5 25.2 27.4 25.7 31.6 20.8 27.3 27.5

UEDIN contrastive ✓ 33.3 23.7 26.9 23.6 30.0 19.7 26.7 26.3
UM-DKE contrastive ✓ ✓ 34.5 21.9 24.3 24.3 29.3 21.7 26.8 26.1

FAIR baselines R ✓ 34.1 28.4 29.3 19.8 25.3 20.0 25.8 26.1
HWN primary ✓ ✓ ✓ 35.4 26.7 27.0 26.7 27.0 17.6 15.4 25.1

ON-TRAC primary ✓ ✓ 20.2 14.4 15.0 13.2 3.0 4.2 4.6 10.7

Table 6: Multilingual ST: Results of all submissions (primary and contrastive) on official language pairs in BLEU↑

Additional Results (Unofficial Language Pairs and ASR):

Condition Supervised

System Const. E2E Ens. es-fr es-it es-pt fr-pt

FAIR ✓ ✓ 33.7 33.0 46.5 35.5
KIT ✓ ✓ 32.4 32.3 46.6 28.8

UEDIN ✓ ✓ ✓ 30.3 32.9 44.5 30.1
HWN ✓ ✓ ✓ 27.0 30.8 43.2 26.9

ON-TRAC ✓ ✓ 8.2 11.1 25.6 14.9

Table 7: Multilingual ST: Results of primary submis-
sions on unofficial language pairs in BLEU↑ (optional)

Condition ASR Avg

System Const. E2E Ens. es fr it pt

HWN ✓ ✓ 11.1 22.2 16.2 23.8 18.3
KIT ✓ ✓ 10.0 26.5 15.5 22.1 18.5

FAIR ✓ ✓ 11.2 18.7 19.6 27.4 19.2
UEDIN ✓ ✓ 12.0 23.4 18.7 25.9 20.0

Table 8: ASR: Results of primary submissions on ASR
in WER↓ (optional), sorted by average WER
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A.4. Low-Resource Speech Translation

Official Results:

System swh-eng swc-fra swc-eng

IMS.primary 14.9 13.5 7.7
IMS.contrastive 6.7 2.7 3.9

ON-TRAC 12.9 9.1 –
USYD-JD 25.3 – –

Table 9: Low-Resource ST: Results of all speech translation submissions (case-insensitive BLEU↑). The swc-eng
and swa-fra pairs were optional.

System Coastal Swahili (swh) Congolese Swahili (swc)

ON-TRAC 31.2 36.8
USYD-JD 34.4 –

Table 10: ASR: Results of all (optional) speech transcriptions submissions (case-insensitive WER↓).


