
Proceedings of the 17th International Conference on Parsing Technologies (IWPT 2021), pages 50–57
Bangkok, Thailand (online), August 6, 2021. ©2021 Association for Computational Linguistics

50

Levi Graph AMR Parser using Heterogeneous Attention

Han He
Computer Science
Emory University

Atlanta GA 30322, USA
han.he@emory.edu

Jinho D. Choi
Computer Science
Emory University

Atlanta GA 30322, USA
jinho.choi@emory.edu

Abstract

Coupled with biaffine decoders, transformers
have been effectively adapted to text-to-graph
transduction and achieved state-of-the-art per-
formance on AMR parsing. Many prior works,
however, rely on the biaffine decoder for either
or both arc and label predictions although most
features used by the decoder may be learned by
the transformer already. This paper presents a
novel approach to AMR parsing by combining
heterogeneous data (tokens, concepts, labels)
as one input to a transformer to learn attention,
and use only attention matrices from the trans-
former to predict all elements in AMR graphs
(concepts, arcs, labels). Although our models 1

use significantly fewer parameters than the pre-
vious state-of-the-art graph parser, they show
similar or better accuracy on AMR 2.0 and 3.0.

1 Introduction

Abstract Meaning Representation (AMR) has re-
cently gained lots of interests due to its capability in
capturing abstract concepts (Banarescu et al., 2013).
In the form of directed acyclic graphs (DAGs),
an AMR graph consists of nodes as concepts and
edges as labeled relations. To build such a graph
from plain text, a parser needs to predict concepts
and relations in concord.

While significant research efforts have been con-
ducted to improve concept and arc predictions, la-
bel prediction has been relatively stagnated. Most
previous models have adapted the biaffine decoder
for label prediction (Lyu and Titov, 2018; Zhang
et al., 2019a; Cai and Lam, 2019; Zhou et al., 2020;
Lindemann et al., 2020). These models assign la-
bels from the biaffine decoder to arcs predicted by
another decoder, which can be misled by incorrect
arc predictions during decoding.

1Resources are publicly available at https://github.
com/emorynlp/levi-graph-amr-parser.

The enhancement of message passing between
decoders for arc and label predictions has shown
to be effective. Among these works, Cai and Lam
(2020) emerge with an iterative method to exchange
embeddings between concept and arc predictions
and feed the enhanced embeddings to the biaffine
decoder for label prediction. While this approach
greatly improves accuracy, it complicates the net-
work architecture without structurally avoiding the
error propagation from the arc prediction.

This paper presents an efficient transformer-
based (Vaswani et al., 2017) approach that takes a
mixture of tokens, concepts, and labels as inputs,
and performs concept generation, arc prediction,
and label prediction jointly using only attentions
from the transformer without using a biaffine de-
coder. Its compact structure (§3.3) enables cross-
attention between heterogeneous inputs, providing
a complete view of the partially built graph and a
better representation of the current parsing state. A
novel Levi graph decoder (§3.4) is also proposed
that reduces the number of decoder parameters by
45% (from 5.5 million to 3.0 million) yet gives sim-
ilar or better performance. To the best of our knowl-
edge, this is the first text-to-AMR graph parser that
operates on the heterogeneous data and adapts no
biaffine decoder.

2 Related Work

Recent AMR parsing approaches can be catego-
rized into four classes: (i) transition-based parsing
which casts the parsing process into a sequence of
transitions defined on an abstract machine (e.g.,
a transition system using a buffer and a stack)
(Wang et al., 2016; Damonte et al., 2017; Balles-
teros and Al-Onaizan, 2017; Peng et al., 2017;
Guo and Lu, 2018; Liu et al., 2018; Naseem et al.,
2019; Fernandez Astudillo et al., 2020; Lee et al.,

https://github.com/emorynlp/levi-graph-amr-parser
https://github.com/emorynlp/levi-graph-amr-parser

51

2020), (ii) seq2seq-based parsing 2 which trans-
duces raw sentences into linearized AMR graphs
in text form (Barzdins and Gosko, 2016; Konstas
et al., 2017; van Noord and Bos, 2017; Peng et al.,
2018; Xu et al., 2020; Bevilacqua et al., 2021),
(iii) seq2graph-based parsing which incrementally
and directly builds a semantic graph via expand-
ing graph nodes without resorting to any transition
system (Cai and Lam, 2019; Zhang et al., 2019b;
Lyu et al., 2020). (iv) graph algebra parsing which
translates an intermediate grammar structure into
AMR (Artzi et al., 2015; Groschwitz et al., 2018;
Lindemann et al., 2019, 2020).

Our work is most closely related to seq2graph
paradigm while we extend the definition of node
to accommodate relation labels in a Levi graph.
We generate a Levi graph which is a linearized
form originally used in seq2seq models for AMR-
to-text (Beck et al., 2018; Guo et al., 2019; Ribeiro
et al., 2019). Our Levi graph approach differs from
seq2seq approaches in its attention based arc pre-
diction, where arc is directly predicted by attention
heads instead of brackets in the target sequence.

3 Approach

3.1 Text-to-Graph Transducer

Figure 1 shows the overview of our Text-to-Graph
Transduction model. Let W = {w0, w1, . . . , wn}
be the input sequence where w0 is a special token
representing the target node andwi is the i’th token.
W is fed into a Text Encoder creating embeddings
{ew0 , ew1 , . . . , ewn }. In parallel, NLP Tools produce
several features for wi and pass them to a Feature
Encoder to generate {ef0 , e

f
1 , . . . , e

f
n}. Embeddings

{ewi ⊕e
f
i : i ∈ [0, n]} are put to a Text Transformer,

which generates Et = {et0, et1, . . . , etn}.3
Let V = {v0, v1, . . . , vm} be the output sequence
where v0 is a special token representing the root and
vi is the i’th predicted node. V is fed into a Graph
Encoder to create Ev = {ev0, ev1, . . . , evm}. Finally,

2Seq2seq-based parsing is sometimes categorized into
“translation-based methods” (Koller et al., 2019) possibly
due to the prevalence of seq2seq model in Neural Machine
Translation, while we believe that translation refers more to
the transduction between languages while AMR is neither a
language nor an interlingua.

3In our case, BERT (Devlin et al., 2019) is used as the Text
Encoder and ∀i.efi = eLEMMA

i ⊕ePOS
i ⊕eNER

i ⊕eCHAR
i is created

by the Feature Encoder using predictions (lemmas, part-
of-speech tags and named-entities) from the NLP Tools and
character level features from a Convolutional Neural Network.
In this work, we use CoreNLP (Manning et al., 2014) for a
fair comparison with existing approaches.

Text Encoder

NLP Tools

Feature Encoder

⋯w1 wnw0

⋯e f
1 e f

ne f
0⋯ew

1 ew
new

0

Text Transformer ⋯et
1 et

net
0

Graph Encoder

⋯v1 vmv0

⋯ev
1 ev

mev
0

Graph Transformer

Figure 1: Overview of our Text-to-Graph Transducer.

Et and Ev are fed into a Graph Transformer that
predicts the target node as well as its relations to all
nodes in V . The target node predicted by the Graph
Transformer gets appended to V afterwards.4

3.2 Concept + Arc-Biaffine + Rel-Biaffine
Our first graph transformer generates {v1, . . . , vm}
where vi is a concept in the target graph, and pre-
dicts both arcs and labels using a biaffine decoder.
Given Et and Ev (§3.1), three matrices are created,
Q = et0 ∈ R1×d,K|V = [et1, .., e

t
n, e

v
0, e

v
1, .., e

v
m]

∈ Rk×d (k = n+m+1). These matrices are put to
multiple layers of multi-head attention (MHA) pro-
ducing {αi : i ∈ [1, h]} and {βi : i ∈ [1, h]} from
the last layer, where h is the total number of heads
in MHA (WQ|K|Vi ∈ Rd×d,W⊕ ∈ R(h·d)×d):

αi = softmax(
(QWQi)(KWKi)

>
√
d

) ∈ R1×k

βi = αi · V ·WVi ∈ R1×d

α� = [α1
j : j ∈ [1, n]] ∈ R1×n

β⊕ = (β1 ⊕ . . .⊕ βh) ·W⊕ ∈ R1×d

α�j indicates the probability of wj being aligned to
the target node, and β⊕ is the embedding represent-
ing the node. Let C be the list of all concepts in
training data and L be the list of lemmas for tokens
in W such that |W | = |L|. Given X = C_W_L,
α� and β⊕ are fed into a Node Decoder estimating
the score of each xi ∈ X being the target node:

g(C|W |L) = softmax(β⊕ ·WC|W |L)

p(xi) = g(C) · [softmax(β⊕ ·WG)]i

+ g(W)
∑

j∈W (xi)

α�j + g(L)
∑

j∈L(xi)

α�j

g(C|W |L) is the gate probability of the target node
being in C|W |L, respectively (WC|W |L ∈ Rd×1).
4Graph Encoder creates ∀i.evi = transformer(eNODE

i ⊕ eCHAR
i).

52

p(xi) is estimated by measuring the probabilities of
xi being the target if xi ∈ C (WG ∈ Rd×|C|), and
if xi ∈ W |L where W |L(xi) = {j : (xi = yj) ∧
yj ∈W |L}, respectively. Finally, the output layer
onode = [p(xi) : xi ∈ X] ∈ R1×(|C|+|W |+|L|) gets
created and argmaxxi

(onode) is taken as the target.

⋯et
1 et

n ⋯ ev
mev

1ev
0et

0

Multi-Head Attention

Node DecoderBiaffine Decoder Arc Decoder

β⊕ α⊘ α⊗⋯ ev
mev

1

oarc orel oarconode

⋯et
1 et

n ⋯ ev
mev

1ev
0

Figure 2: Overview of our Graph Transformer models.
ND/BD/AD: node/biaffine/arc decoder. §3.2: ND for con-
cept generation and BD for arc and label predictions;
§3.3: ND for concept generation, AD for arc prediction,
and BD for label prediction; §3.4: ND for concept and
label generations and AD for arc prediction.

For arc and label predictions, the target embedding
β⊕ is used to represent a head and the embeddings
of previously predicted nodes, {ev1, . . . , evm}, are
used to represent dependents in a Biaffine Decoder,
which creates two output layers, oarc ∈ R1×m and
orel ∈ R1×m×|R|, to predict the target node being a
head of the other nodes, where |R| is the list of all
labels in training data (Dozat and Manning, 2017).

3.3 Concept + Arc-Attention + Rel-Biaffine

Our second graph transformer is similar to the one
in §3.2 except that it uses an Arc Decoder instead of
the Biaffine Decoder for arc prediction. Given A =
{α1, . . . , αh} in §3.2, α⊗ ∈ R1×(m+1) is created
by first applying dimension-wise maxpooling to A
and slicing the last m+ 1 dimensions as follows:

α⊗ = [max(α1
j , . . . , α

h
j) : j ∈ [n+1, n+m+1]]

Notice that values in α⊗ are derived from multiple
heads; thus, they are not normalized. Each head is
expected to learn different types of arcs. During de-
coding, any vi ∈ V whose α⊗i ≥ 0.5 is predicted to
be a dependent of the target node. During training,
the negative log-likelihood of α⊗ is optimized.5

5This model still uses the Biaffine Decoder for label prediction.

The target node, say vt, may need to be predicted
as a dependent of vi, in which case, the dependency
is reversed (so vt becomes the head of vi), and the
label is concatenated with the special tag _R (e.g.,
ARG0(vi, vt) becomes ARG0_R(vt, vi)).

3.4 Levi Graph + Arc-Attention
Our last graph transformer uses the Node Decoder
for both concept and label generations and the Arc
Decoder for arc prediction. In this model, vi ∈ V ′
can be either a concept or a label such that the orig-
inal AMR graph is transformed into the Levi graph
(Levi, 1942; Beck et al., 2018) (Figure 3).

want ARG1

believe

boygirl

ARG1

ARG0

ARG0 ARG1

want

believe

ARG0 ARG1

girl boy

ARG0

(a) AMR graph

want ARG1

believe

boygirl

ARG1

ARG0

ARG0 ARG1

want

believe

ARG0 ARG1

girl boy

ARG0

(b) Levi graph

Figure 3: AMR and Levi graphs for the input, “The boy
wants the girl to believe him”.

Unlike the node sequence containing only con-
cepts in the AMR graph ordered by breadth-first
traverse, used as the output sequence for the models
in §3.2 and §3.3, the node sequence in this model
is derived by inserting the label of each edge after
head concept during training. This concepts-labels
alternation has two advantages over a strict topo-
logical order: (i) it can handle erroneous cyclic
graphs, (ii) it is easier to restore relations as each
label is connected to its closest concept. The het-
erogeneous nature of node sequences from Levi
graphs allows our Graph Transformer to learn at-
tentions among 3 types of input, tokens, concepts,
and labels, leading to more informed predictions.

Let V ′ be the output sequence consisting of both
predicted concepts and labels. Let C ′ be the set of
all concepts and labels in training data. Compared
to V and C in §3.2, V ′ is about twice larger than V
because every concept has one or more associated
labels that indicate relations to its heads. However,
C ′ is not so much larger than C because the addi-
tion from the labels is insignificant to the number
of concepts that are already in C. By replacing
V |C with V ′|C ′ respectively, the Node Decoder in
§3.2 can generate both concepts and labels. α⊗ in
§3.3 then gives attention scores among concepts
and labels that can be used by the Arc Decoder to
find arcs among them.

53

SMATCH Fine-grained Evaluation
Labeled Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

Lindemann et al. (2019) 75.3 - - - - - - - -
Naseem et al. (2019) 75.5 80 76 86 72 56 67 83 80
Zhang et al. (2019a) 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8
Zhang et al. (2019b) 77.0 80 78 86 71 61 77 79 86
Cai and Lam (2020) 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3
Xu et al. (2020)† 80.2 83.7 80.8 87.4 78.9 66.5 71.5 85.4 75.1
Lee et al. (2020)‡ 81.3 85.3 81.8 88.7 88.7 66.3 79.2 71.9 79.4
Bevilacqua et al. (2021)§ 84.5 86.7 84.9 89.6 79.7 72.3 79.9 83.7 87.3
CL20 80.0±0.2 82.5±0.3 80.5±0.3 88.0±0.1 73.7±0.4 63.8±0.7 79.2±0.3 81.1±0.3 86.2±0.1
ND + BD + BD 79.4±0.1 82.3±0.1 80.0±0.2 87.9±0.2 73.1±0.2 62.5±0.2 79.8±0.3 80.7±1.0 85.8±0.5
ND + AD + BD 80.0±0.1 82.6±0.1 80.5±0.1 88.2±0.1 73.6±0.4 63.3±0.4 79.4±1.0 80.8±0.8 86.2±0.3
ND + AD + LV 80.0±0.1 82.2±0.2 80.5±0.1 87.7±0.2 74.5±0.2 64.1±0.3 78.4±1.0 80.5±0.8 86.2±0.3

(a) Results on AMR 2.0 results. Supervised†/unsupervised§ pre-training and self-learning‡ are orthogonal to our work.

SMATCH Fine-grained Evaluation
Labeled Unlabeled No WSD Concept SRL Reent. Neg. NER Wiki

Lyu et al. (2020) 75.8 - - 88.0 72.6 - - - -
CL20 76.8±0.2 79.9±0.2 77.3±0.2 86.3±0.2 73.2±0.2 63.4±0.2 72.3±1.4 73.0±0.5 79.5±0.2
ND + BD + BD 75.8±0.2 79.0±0.1 76.2±0.1 84.6±0.2 72.1±0.3 61.7±0.4 72.6±0.7 71.6±0.3 78.7±0.2
ND + AD + BD 76.8±0.1 80.1±0.1 77.3±0.1 86.5±0.2 73.1±0.2 63.6±0.2 73.2±0.9 73.0±0.2 79.6±0.1
ND + AD + LV 77.0±0.2 79.8±0.2 77.5±0.2 86.1±0.1 73.6±0.3 62.6±0.6 71.3±0.4 73.3±0.7 79.5±0.3

(b) Results on AMR 3.0.

Table 1: Averages ± standard deviations on AMR 2.0 and 3.0 . CL20: results by running the original implementa-
tion of Cai and Lam (2020) 3 times, ND+BD+BD: §3.2, ND+AD+BD: §3.3, ND+AD+LV: §3.4.

4 Experiments

4.1 Experimental Setup

All models are experimented on both the AMR 2.0
(LDC2017T10) and 3.0 datasets (LDC2020T02).
AMR 2.0 has been well-explored by recent work,
while AMR 3.0 is the latest release about 1.5
times larger than 2.0 that has not yet been ex-
plored much. The detailed data statistics are
shown in Table A.1.2. The training, develop-
ment, and test sets provided in the datasets are
used, and performance is evaluated with the
SMATCH (F1) (Cai and Knight, 2013) as well
as fine-grained metrics (Damonte et al., 2017).
The same pre- and post-processing suggested by
Cai and Lam (2020) are adapted. Section A.2 gives
the hyper-parameter configuration of our models.

4.2 Results

All our models are run three times and their aver-
ages and standard deviations are reported in Table 1.
Compared to CL20 using 2 transformers to decode
arcs & concepts then apply attention across them,
our models use 1 transformer for the Node De-
coder achieving both objectives simultaneously.
All models except for ND+BD reaches the same
SMATCH score of 80% on AMR 2.0. ND+AD+LV
shows a slight improvement over the others on
AMR 3.0, indicating that it has a greater poten-
tial to be robust with a larger dataset. Consid-
ering that this model uses about 3M fewer pa-

rameters than CL20, these results are promising.
ND+BD+BD consistently shows the lowest scores,
implying the significance of modeling concept gen-
eration and arc prediction coherently for structure
learning. ND+AD+LV shows higher scores for SRL
and Reent whereas the other models show advan-
tage on Concept and NER on AMR 2.0, although
the trend is not as noticeable on AMR 3.0, imply-
ing that the Levi graph helps parsing relations but
not necessarily tagging concepts.

Case Study We study the effect of our proposed
two improvements: heterogeneous Graph Trans-
former and Levi graph, from the view of attention
in Figure 4. Figure 4a shows that the core verb
“wants” is heavily attended by every token, suggest-
ing that our Graph Transformer successfully grasps
the core idea. Figure 4b presents the soft alignment
between nodes and tokens, which surprisingly over-
weights “ boy”, “girl” and “believe” possibly due
to their dominance of semantics. Figure 4c illus-
trates the arc prediction, which is a lower triangular
matrix obtained by zeroing out the upper triangle
of stacked α⊗. Its diagonal suggests that self-loop
is crucial for representing each node.

5 Conclusion

We presented two effective approaches which
achieve comparable (or better) performance com-
paring with the state-of-the-art parsers with signifi-
cantly fewer parameters. Our text-to-graph trans-

54

(a) Token�token (b) Node�token (c) Node�node

Figure 4: Self- and cross-attention for tokens “The boy
wants the girl to believe him” and nodes “want believe
ARG1 boy ARG1 ARG0 girl ARG0”.

ducer enables self- and cross-attention in one trans-
former, improving both concept and arc prediction.
With a novel Levi graph formalism, our parser de-
mostrates its advantage on relation labeling. An
interesting future work is to preserve benefits from
both approaches in one model. It is also noteworthy
that our Levi graph parser can be applied to a broad
range of labeled graph parsing tasks including de-
pendency trees and many others.

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1699–1710, Lisbon, Portugal. Association for Com-
putational Linguistics.

Miguel Ballesteros and Yaser Al-Onaizan. 2017. AMR
parsing using stack-LSTMs. In Proceedings of the
2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1269–1275, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th linguistic
annotation workshop and interoperability with dis-
course, pages 178–186.

Guntis Barzdins and Didzis Gosko. 2016. RIGA at
SemEval-2016 task 8: Impact of Smatch extensions
and character-level neural translation on AMR pars-
ing accuracy. In Proceedings of the 10th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2016), pages 1143–1147, San Diego, California. As-
sociation for Computational Linguistics.

Daniel Beck, Gholamreza Haffari, and Trevor Cohn.
2018. Graph-to-sequence learning using gated
graph neural networks. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 273–283, Melbourne, Australia. Association
for Computational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both:
Symmetric AMR semantic parsing and generation
without a complex pipeline. In Proceedings of
AAAI.

Deng Cai and Wai Lam. 2019. Core semantic first: A
top-down approach for AMR parsing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3799–3809, Hong
Kong, China. Association for Computational Lin-
guistics.

Deng Cai and Wai Lam. 2020. AMR parsing via graph-
sequence iterative inference. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1290–1301, Online. As-
sociation for Computational Linguistics.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752.

Joachim Daiber, Max Jakob, Chris Hokamp, and
Pablo N. Mendes. 2013. Improving efficiency and
accuracy in multilingual entity extraction. In Pro-
ceedings of the 9th International Conference on Se-
mantic Systems (I-Semantics).

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Mean-
ing Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep Biaffine Attention for Neural Dependency
Parsing. In Proceedings of the 5th International
Conference on Learning Representations, ICLR’17.

Ramón Fernandez Astudillo, Miguel Ballesteros,
Tahira Naseem, Austin Blodgett, and Radu Flo-
rian. 2020. Transition-based parsing with stack-
transformers. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1001–1007, Online. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/D17-1130
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/S16-1176
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/P18-1026
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://www.aclweb.org/anthology/E17-1051
https://www.aclweb.org/anthology/E17-1051
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/pdf?id=Hk95PK9le
https://www.aclweb.org/anthology/2020.findings-emnlp.89
https://www.aclweb.org/anthology/2020.findings-emnlp.89

55

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831–1841, Melbourne,
Australia. Association for Computational Linguis-
tics.

Zhijiang Guo and Wei Lu. 2018. Better transition-
based AMR parsing with a refined search space.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1712–1722, Brussels, Belgium. Association
for Computational Linguistics.

Zhijiang Guo, Yan Zhang, Zhiyang Teng, and Wei
Lu. 2019. Densely connected graph convolutional
networks for graph-to-sequence learning. Transac-
tions of the Association for Computational Linguis-
tics, 7:297–312.

Alexander Koller, Stephan Oepen, and Weiwei Sun.
2019. Graph-based meaning representations: De-
sign and processing. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pages 6–11, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
Sequence-to-sequence models for parsing and gener-
ation. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 146–157, Vancouver,
Canada. Association for Computational Linguistics.

Young-Suk Lee, Ramón Fernandez Astudillo, Tahira
Naseem, Revanth Gangi Reddy, Radu Florian, and
Salim Roukos. 2020. Pushing the limits of AMR
parsing with self-learning. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2020,
pages 3208–3214, Online. Association for Computa-
tional Linguistics.

Friedrich Wilhelm Levi. 1942. Finite geometrical sys-
tems: six public lectues delivered in February, 1940,
at the University of Calcutta. University of Calcutta.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576–4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929–3951, On-
line. Association for Computational Linguistics.

Yijia Liu, Wanxiang Che, Bo Zheng, Bing Qin,
and Ting Liu. 2018. An AMR aligner tuned by
transition-based parser. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2422–2430, Brussels, Bel-
gium. Association for Computational Linguistics.

Chunchuan Lyu, Shay B Cohen, and Ivan Titov. 2020.
A differentiable relaxation of graph segmentation
and alignment for amr parsing. arXiv preprint
arXiv:2010.12676.

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 397–407, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Tahira Naseem, Abhishek Shah, Hui Wan, Radu Flo-
rian, Salim Roukos, and Miguel Ballesteros. 2019.
Rewarding Smatch: Transition-based AMR parsing
with reinforcement learning. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4586–4592, Florence,
Italy. Association for Computational Linguistics.

Rik van Noord and Johan Bos. 2017. Neural semantic
parsing by character-based translation: Experiments
with abstract meaning representations. Computa-
tional Linguistics in the Netherlands Journal, 7:93–
108.

Xiaochang Peng, Linfeng Song, Daniel Gildea, and
Giorgio Satta. 2018. Sequence-to-sequence models
for cache transition systems. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1842–1852, Melbourne, Australia. Association for
Computational Linguistics.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and Ni-
anwen Xue. 2017. Addressing the data sparsity is-
sue in neural AMR parsing. In Proceedings of the
15th Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume 1,
Long Papers, pages 366–375, Valencia, Spain. Asso-
ciation for Computational Linguistics.

Leonardo F. R. Ribeiro, Claire Gardent, and Iryna
Gurevych. 2019. Enhancing AMR-to-text genera-
tion with dual graph representations. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3183–3194, Hong
Kong, China. Association for Computational Lin-
guistics.

https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/P18-1170
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.18653/v1/D18-1198
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.1162/tacl_a_00269
https://doi.org/10.18653/v1/P19-4002
https://doi.org/10.18653/v1/P19-4002
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://doi.org/10.18653/v1/P17-1014
https://www.aclweb.org/anthology/2020.findings-emnlp.288
https://www.aclweb.org/anthology/2020.findings-emnlp.288
https://doi.org/10.18653/v1/P19-1450
https://doi.org/10.18653/v1/P19-1450
https://www.aclweb.org/anthology/2020.emnlp-main.323
https://www.aclweb.org/anthology/2020.emnlp-main.323
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/D18-1264
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P19-1451
https://doi.org/10.18653/v1/P19-1451
https://clinjournal.org/clinj/article/view/72
https://clinjournal.org/clinj/article/view/72
https://clinjournal.org/clinj/article/view/72
https://doi.org/10.18653/v1/P18-1171
https://doi.org/10.18653/v1/P18-1171
https://www.aclweb.org/anthology/E17-1035
https://www.aclweb.org/anthology/E17-1035
https://doi.org/10.18653/v1/D19-1314
https://doi.org/10.18653/v1/D19-1314

56

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng
Ji, and Nianwen Xue. 2016. CAMR at SemEval-
2016 task 8: An extended transition-based AMR
parser. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 1173–1178, San Diego, California. Associa-
tion for Computational Linguistics.

Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and
Guodong Zhou. 2020. Improving AMR parsing
with sequence-to-sequence pre-training. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
2501–2511, Online. Association for Computational
Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019a. AMR parsing as sequence-to-
graph transduction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 80–94, Florence, Italy. Associa-
tion for Computational Linguistics.

Sheng Zhang, Xutai Ma, Kevin Duh, and Benjamin
Van Durme. 2019b. Broad-coverage semantic pars-
ing as transduction. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3786–3798, Hong Kong, China. As-
sociation for Computational Linguistics.

Qiji Zhou, Yue Zhang, Donghong Ji, and Hao Tang.
2020. AMR parsing with latent structural infor-
mation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4306–4319, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/S16-1181
https://doi.org/10.18653/v1/S16-1181
https://doi.org/10.18653/v1/S16-1181
https://www.aclweb.org/anthology/2020.emnlp-main.196
https://www.aclweb.org/anthology/2020.emnlp-main.196
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/P19-1009
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/D19-1392
https://doi.org/10.18653/v1/2020.acl-main.397
https://doi.org/10.18653/v1/2020.acl-main.397

57

A Appendix

A.1 Datasets and Pre/Post-Processing
Table 2 describes statistics of the AMR 2.06 and
the AMR 3.07 datasets used in our experiments.

Sentences Tokens Concepts Relations
TRN 36,521 624,750 422,655 426,712
DEV 1,368 27,713 19,890 20,111
TST 1,371 28,279 26,513 27,175

(a) AMR 2.0.
Sentences Tokens Concepts Relations

TRN 55,635 965,468 656,123 667,577
DEV 1,722 34,696 25,171 25,568
TST 1,898 37,225 34,903 35,572

(b) AMR 3.0.

Table 2: Statistics of AMR 2.0 and 3.0. TRN/DEV/TST:
training/development/evaluation set.

Tokenization, lemmatization, part-of-speech and
named entity annotations are generated by the Stan-
ford CoreNLP tool (Manning et al., 2014). Most
frequent word senses are removed and restored dur-
ing pre- and post-processing. The same graph re-
categorization is performed to assign specific sub-
graphs to a single node as in Cai and Lam (2020).
Wikification is done using the DBpedia Spotlight
(Daiber et al., 2013) during post-processing.

A.2 Hyper-Parameter Configuration
The hyper-parameters used in our models are de-
scribed in Table 3.

6AMR 2.0: https://catalog.ldc.upenn.edu/
LDC2017T10

7AMR 3.0: https://catalog.ldc.upenn.edu/
LDC2020T02

Embeddings
lemma 300
POS tag 32
NER tag 16
concept 300
char 32
Char-level CNN
#filters 256
ngram filter size [3]
output size 128
Text Encoder
#transformer layers 4
Graph Encoder
#transformer layers 2
Transformer Layer
#heads 8
hidden size 512
feed-forward hidden size 1024
Graph Transformer
feed-forward hidden size 1024
Biaffine
hidden size 100

Table 3: Hyper-parameters settings.

https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2017T10
https://catalog.ldc.upenn.edu/LDC2020T02
https://catalog.ldc.upenn.edu/LDC2020T02

