The Reading Machine: a Versatile Framework for Studying Incremental
Parsing Strategies

Franck Dary, Alexis Nasr
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{franck.dary,alexis.nasr} @lis-lab.fr

Abstract

The Reading Machine, is a parsing framework
that takes as input raw text and performs six
standard NLP tasks: tokenization, POS tagging,
morphological analysis, lemmatization, depen-
dency parsing and sentence segmentation. It
is built upon Transition Based Parsing, and
allows implementing a large number of pars-
ing configurations, among which a fully incre-
mental one. Three case studies are presented
to highlight the versatility of the framework.
The first one explores whether an incremen-
tal parser is able to take into account top-down
dependencies (i.e. the influence of high level
decisions on low level ones), the second com-
pares the performances of an incremental and
a pipe-line architecture and the third quantifies
the impact of the right context on the predic-
tions made by an incremental parser.

1 Introduction

Syntactic parsers usually take as input text that
has been processed at several levels. It has gener-
ally been segmented in sentences, tokenized, POS
tagged, and possibly lemmatized and morphologi-
cally analyzed. All such steps are realized by other
NLP modules that are usually organized in a se-
quential pattern, called a pipe-line. The pipe-line
imposes a rational order on the modules: word
boundaries, for example, have to be determined
before a word can be associated to a POS tag and
syntactic parsing usually comes after POS tagging,
for POS tags group words that have close syntactic
properties.

The pipe-line architecture offers many advan-
tages, among which, the independence of the mod-
ules that compose it. The only constraint for their
inter-operability is the compatibility of their inputs
and outputs. Once this constraint is verified, each
module can be built on any kind of model consid-
ered more suitable for the task to perform. Besides,

26

in a pipe-line architecture, every module narrows
down the search space of the following modules:
a parser, for example, does not have to consider
different tokenization hypotheses nor different POS
tags for a word. Considering all such decisions
can lead to a combinatorial explosion problem and
yields huge search spaces.

The pipe-line architecture nevertheless has its
limits. It is well known that some low level de-
cisions (made by early modules of the pipe-line)
can benefit from high level ones (made by late
modules). Some tokenization decisions, for exam-
ple, can depend on the syntactic structure of the
sentence to parse, such as complex prepositions
in French, as noted by Nasr et al. (2015). Like-
wise, sentence segmentation can depend on syn-
tactic structures, especially when punctuation is
absent or unreliable, such as in speech transcrip-
tions. Such fop down dependencies cannot be taken
into account in a strict pipe-line architecture. But
they are arguably less numerous than bottom up
dependencies and this is the reason why the pipe-
line architecture usually yields good results. One
aim of this paper is to propose a framework, called
the Reading Machine (RM), that is flexible enough
to define several patterns for combining different
NLP modules and explore different ways to link
decisions made by these modules. We use in this
paper the RM framework to define and compare sev-
eral non sequential machines that model top down
dependencies.

There is another, less immediate, reason for
studying non sequential architectures, in link with
human cognition. Psycholinguistic studies have
shown that human language processing is incre-
mental, i.e., people do not wait to see the entire
sentence before they start trying to understand it
(see Keller (2010) for more details). Such find-
ings have developed interest in using NLP tools
to implement cognitively-plausible models of hu-

Proceedings of the 17th International Conference on Parsing Technologies (IWPT 2021), pages 26-37
Bangkok, Thailand (online), August 6, 2021. ©2021 Association for Computational Linguistics

man sentence processing (see Hale (2017) for a
review). Various “linking hypotheses” have been
proposed to relate the models’ intermediate states
when parsing a given sentence to the behavior of
human subjects trying to understand that same sen-
tence. The RM offers a framework to investigate
such linking hypotheses by defining machines that
implement them and observe their behaviour on
human data. In this perspective, the RM has already
been used for predicting eye-movements during
reading: different RM architectures have been com-
pared on their ability to accurately predict fixation
time (Dary et al., 2021a,b). In order to illustrate the
kind of experiments that can be conducted in such a
perspective, we will define and compare machines
that model different perceptual fields and measure
their influence on an incremental parsing process.

Technically, RM is an extension of the transition-
based parsing algorithm (TBP) (Yamada and Mat-
sumoto, 2003; Nivre, 2003). The reason for this
choice is mainly that TBP implements an incremen-
tal parsing strategy (Nivre, 2008). We propose to
extend this model to define a complete incremental
NLP parser that integrates six tasks: tokenization,
POS tagging, morphological analysis, lemmatiza-
tion, syntactic parsing and sentence segmentation.
RM borrows from TBP the two key notions of Con-
figurations and Actions (also called Transitions), as
well as a greedy algorithm that performs syntactic
parsing. We extend these notions by defining an
enriched version of a configuration and a richer set
of actions. All linguistic decisions, such as word
and sentence boundaries detection, POS tagging,
lemmatization and, of course, syntactic parsing
are realized by actions that are predicted based on
configurations. The RM takes as input raw text and
greedily predicts a sequence of actions that perform
the six tasks mentioned above.

2 Related Work

Solving the circular dependencies that exist be-
tween parsing and other pre-processing steps, is
an active area of research in the parsing literature.
The solution that has been mainly investigated con-
sists in jointly performing syntactic parsing and
other pre-parsing steps. If we restrict ourselves
to recent approaches to dependency parsing, so-
lutions have been proposed both for graph-based
parsing (Yan et al., 2020; Lee et al., 2011; Nguyen
and Verspoor, 2018; Nasr et al., 2015; Li et al.,
2011; Zhang et al., 2015) and transition-based pars-

27

ing (Yoshikawa et al., 2016; Bohnet and Nivre,
2012; Alberti et al., 2015; Hatori et al., 2012; Hon-
nibal and Johnson, 2014; Constant and Nivre, 2016;
Kurita et al., 2017; Wan et al., 2018).

Solutions to this problem differ vastly for these
two approaches, mainly because of the different
parsing strategies they adopt. This is why we have
decided to restrict ourselves to TBP based papers in
the remainder of this section.

There have been many propositions to real-
ize simultaneously several linguistic tasks in TBP.
Both Bohnet and Nivre (2012) and Alberti et al.
(2015), for example, show how a transition system
can be extended and trained to jointly predict POS
tags and the dependency tree, improving both the
accuracy of tagging and parsing. These systems
are not strictly incremental across the tasks they
realize for they process text that has already been
segmented in words and sentences. Besides, the
text has been pre-tagged in order to limit the size
of the search space.

The closest approach to ours is Kurita et al.
(2017), which is based on the work of Hatori et al.
(2012). The authors propose an extension of the
arc-standard transition system that is able to per-
form a fully joint prediction of word segmentation,
POS tagging and dependency parsing. Their sys-
tem takes a queue of symbols as input, and process
it in an incremental fashion, consuming one sym-
bol at a time. They conducted their experiments
on Chinese, and were the first to use a neural net-
work architecture using both word and character
based embeddings to achieve fully joint prediction
of these three tasks. They showed that their joint
architecture was competitive with a pipeline archi-
tecture for word segmentation and POS tagging, but
fell short on parsing.

For their participation in the 2018 CoNLL
Shared Task (Zeman et al., 2018), Wan et al. (2018)
also defined an extension of TBP that is close to
ours. It is based on the arc-standard system en-
riched with a swap transition (Nivre, 2009), and is
able to jointly perform word segmentation, POS
tagging, morphological tagging and dependency
parsing. They showed that such a system could get
better scores than the shared task’s baseline, while
still being quite far from the top scoring systems.
Their paper focuses on low or even zero resources
languages (what the shared task was mainly about),
and did not test whether or not the joint prediction
of multiple tasks was improving the performances.

Our model has the following characteristics that
distinguishes it form the approaches cited above.

The RM performs simultaneously six NLP tasks
with the notable inclusion of sentence segmentation
which is almost always pre-processed in parsing
systems.

The RM allows us to build a machine that is
strictly incremental across the six tasks it realizes.
There are two reasons for this choice. The first is
theoretical, we are interested to know how much
information is present in top-down dependencies
and whether they can be captured in an incremental
setup. The second is related to psycholinguistics:
we believe that the definition of a fully incremental
RM offers a useful model for simulating human
behaviour during reading.

The RM is flexible enough to design machines
that implement different strategies in order to com-
pare them. We propose, in section 5, a high-level
description format that allows us to define ma-
chines that differ on a specific dimension and study
the effect of this dimension on the performances of
the machines.

3 The Reading Machine

As mentioned in the introduction, the reading ma-
chine is an extension of the TBP! framework. The
details of this algorithm are well known and do not
need to be repeated here. We will only introduce
the terms that are important for the rest of the paper.

TBP is an algorithm that predicts the dependency
syntactic structure of sentences. This task can be
viewed as selecting for each word w of a sentence
its syntactic governor (another word w’ of the sen-
tence) as well as its syntactic function f. A directed
arc, referred to as a dependency, is built from w’
to w, labeled with function f. The graph built at
the end of the parsing process is a tree. The TBP
algorithm builds the dependency tree by scanning
the sentence word by word, in reading order. At
each step, an action, is predicted and applied to
the current configuration of the parser and yields
a new configuration. The prediction is realized by
a classifier that takes as input a configuration and
computes a score for every possible action. The
parser makes use of a stack containing words that
need to be linked to words yet undiscovered.

Four types of actions are defined: SHIFT, pushes
the current word on the stack, REDUCE, pops the

!Several sets of actions have been proposed in the litera-
ture, the one used here is known as Arc Eager.

28

SEG NO NO NO NO NO |YES
SYN DET | SUB ROOT DET OBJ |[PCT
GOV +1 +1 0 +1 -2 -3
LEM @ @ s@ @ @ @
MRF DEF SG P3S DEF SG -
POS DET N \% DET N |PCT
TOK the boy hits the ball

INPUT] t[h[e] |blo]y| [h[i[t[s] [t[h[e[[b[a[l]l

Table 1: Input and output tapes of a RM after processing
the text The boy hits the ball.

stack, LEFT;, creates a left dependency, labeled [,
whose governor is the current word and dependent
is top element of the stack and RIGHT;, which cre-
ates a right dependency, labeled [, whose dependent
is the current word and governor is the top element
of the stack.

Before giving a precise definition of the RM, in
section 3.1, we describe the directions in which the
TBP has been extended.

Tapes: The RM has one input tape, which is a
read tape and an arbitrary number of output tapes
which are read/write tapes.

The input tape contains the text to parse. It is
character based: each cell of the tape contains a
character. The text has not been linguistically pre-
processed: it has not been segmented into sentences
nor into words. The current position of the reading
head of the input tape is called the character index.

Output tapes are word based: each cell of a tape
refers to a word of the input text. Output tapes are
used to write the predictions made by the machine,
typically one tape per type of prediction. These
tapes are synchronized: at all times, the head is
at the same position for all tapes. This position is
called the word index.

Table 1 represents the tapes of a machine af-
ter processing the text The boy hits the ball. The
machine has 7 output tapes and one input tape, rep-
resented at the bottom.

Sliding Window: The reading head of the in-
put tape takes the form of a sliding window. It is
centered on the cell of the tape pointed by the char-
acter index and has access to an arbitrary number
of cells to the left and to the right of this cell.

States and Transitions: TBP can be seen as a
single state machine, in contrast RM are multi-state
machines. Every state, or set of states, is devoted to
a specific linguistic task and is linked to a classifier.
The linking between states and classifiers can range
from a single classifier for all states to one classifier

per state. States are deterministically linked to
each other through transitions that are labelled with
action labels. At each step, the classifier of the
current state predicts the next action to perform.
The action is applied on the configuration and the
transition labeled with this action is traversed to
reach another state.

Actions: RM actions encompass standard Arc
Eager actions for parsing and new actions have
been defined for performing the other tasks.

Word tagging tasks (POS tagging and morpholog-
ical tagging) are realized through a single action:
TAG[,(t), which simply writes symbol ¢ on tape L
at the word index position. For example, action
TAGpos(DET) tags the current word as a determiner.

It is not straightforward to cast lemmatization
as a classification task, due to the large number of
classes (potentially all the lemmas of a language).
Besides, lemmatization is, to a large extent, regular.
In order to capture this regularity, the classifier
that realizes the lemmatization task predicts editing
rules of the form s1@s2 where s1 is a suffix of
the word to lemmatize and s2 the suffix of the
lemma.> When applied to a word w, such a rule
strips off suffix s1 from w and appends s2, as in
the following example apply(sQ@, hits) = hit.

The actions predicted by the tokenizer are of four
types: ADD,, adds the n next characters of the input
tape to the current word and moves the character
index n positions to the right, IGNORE ignores the
current character (typically spaces) and moves the
character index to the right, WORD marks the cur-
rent word as complete and SPLITj, action moves
the character index |w| positions to the right and
adds the word sequence W in the buffer. This last
action is used to expand contractions such as don’t
— do not.

Programming an oracle function for actions IG-
NORE, WORD and SPLIT is straightforward because
there is no ambiguity on which is correct at any
time. However, the choice of ADD,, is ambiguous:
if we consider that the 8 next characters on the in-
put tape are “academic”, we want to add them to
the current word. This could be done using several
action sequences, such as “ADDg”, “ADD4,ADD4”
or “ADD9,ADD3,ADD3,”. In our experiments, we
chose to limit the size of ADD,, to n=6 and to pro-
gram the oracle so that it adds the largest number

20f course, such a simple form of rules can only deal with
suffixal flexional morphology. More complex morphological
phenomena, in templatic morphology for example, ask for
more elaborate types of rules.

29

State| Action Description
TOK |ADD,, Adds the n next symbols to b.0.
TOK |IGNORE |Ignores the next symbol.
TOK |WORD |Marks b.0 as complete.
TOK |SPLIT};, |Consume symbol sequence w.
Add word sequence W in buffer.
;(;SF’ TAG (t) |Writes tag ¢ to b.0 on tape L.
LEM |s@s’ b.0 lemma := form — s + &'
LEM |CASE,; |b.0 lemma to upper/lower case.
SYN |[REDUCE |Pop the the stack.
SYN |SHIFT Push b.0 on the stack.
SYN |RIGHT; |Adds arc (s.0,b.0,]).
Push b.0 on the stack.
SYN |LEFT; Adds arc (b.0,s.0,1).
Pop the stack.
SEG |EOS(Y/N)|Mark b.0 as an end of sentence,
set sentence root, attach orphans
to root then empty stack.

Table 2: Actions used in our RM architecture. b.0
stands for the current word and s.0 for the word on top
of the stack.

of characters at once. During training, the correct
action sequence would then be: “ADDg,ADD>”

Sentence segmentation is realized by a binary
action EOS(YES/NO) which tags the current word
as the end of the current sentence, or not. Once the
end of a sentence has been detected, the deepest
element in the stack is marked as the root of the
sentence and the potential remaining elements of
the stack are attached to the root, before emptying
the stack. The complete set of actions is reported
in Table 2.

3.1 Formal Definition

A RM, as any formal automata, has an input alpha-
bet X7, which is a set of characters, a set of states
S, a transition function ¢, an initial state sg and a
set F' of final states. It also has N output alpha-
bets Y1, ...y associated to its /N output tapes.
Transitions between states are labelled with actions.
Moreover, each state is associated, via function +,
to a classifier, which maps configurations to actions,
along with a score.

Formally, we define a RM as a tuple 7' =
(X7, N, 3, S, 50, A,K,7,6, F). We develop be-
low the elements of the machine that deserve more
explanation.

- A is a set of actions. Each action can write a
symbol on an output tape, move the character head
or the word head either to the left or to the right
and push or pop the stack (see Table 2).

- K is a set of classifiers, described in section 3.3
-§:S8 x A — §Sis adeterministic transition func-
tion, also called a Strategy. Given the current state
and its associated classifier, the action selected by
the classifier is performed and control jumps to the
destination state of the transition. The strategy de-
fines the order in which the predictions are made.
For instance a strategy could force the lemmatiza-
tion task to happen after the dependency parsing
task. Two different strategies are described in sec-
tion 5.

-7 : S — K is a function that maps each state of
the RM to a classifier. This mapping allows several
states to share a single classifier which allows in
turn jointly training several processes.

3.2 Configuration

Configurations for a RM M and a text T are defined
as (S, T,c, p1,n,w,o, H), where:

- S is the current state of M.

- T is the input tape

- ¢ is the character index

- 1, is a collection of output tapes.

- w is the word index

- o is a stack of word indexes, its purpose is the
same as the stack in TBP.

- H is the sequence of transitions that have been
predicted till now.

The set of all configurations for text 7" is noted
Cr.

An initial configuration for a text T' is defined
as follows: (s, 7,0, 3,0, [],[]), where all tapes in
B are empty.

An accept configuration is defined as (s €
F,T,n., B,ny,[], H), where n. and n,, are respec-
tively the number of characters and words in 7.

3.3 Classifier

The classifiers that constitute the set K are func-
tions that map a configuration to actions and scores.

The classifiers are independent of each other but
they all take as input a configuration which con-
tains all aspects of the current state of the RM, in
particular, the content of all the tapes of the RM.
The tapes contain all predictions already realized.
Each classifier defines its own Feature Function
which extracts from the input configuration all fea-
tures considered useful for the type of prediction

30

it realizes. We will not delve into the set of all
possible features, let us just mention that most of
them allow to access the content of a specific cell
of a specific tape.

4 Training the RM

The training process of a RM is close to TBP train-
ing. It starts with a dependency tree that is de-
composed into a sequence of (state, configuration,
action) triples, by a static oracle. The difference
with TBP is that the set of actions is considerably
larger since it encompasses actions for all six tasks.
This sequence is used to train the classifiers: ev-
ery classifier receives examples corresponding to
the states it is related to. The RM is trained using
only correct examples, predicted by the oracle. In
order to increase the robustness to error propaga-
tion, we use a dynamic oracle (Goldberg and Nivre,
2012) to extract a new set of training examples
where the actions applied were the one predicted
by the network.?> The RM is therefore trained to
predict the next action given potentially incorrect
configurations.

Four epochs are devoted to the first part of the
training process, followed by 26 more epochs in dy-
namic oracle regime.* At each epoch, the machine
is used to decode the development set, and is saved
if its score (mean score across all 6 levels) is the
best so far. We used cross entropy as a loss function
and Adagrad (Duchi et al., 2011) for optimization.

The classifiers used to predict the actions can
be decomposed into three parts: the first part is
devoted to feature extraction, it is composed of sev-
eral encoders applied to different parts of the RM
configuration. The output of these encoders are
then concatenated yielding a dense vector repre-
sentation of the current configuration, to which we
apply a dropout of 0.5 and feed it into a Multi Layer
Perceptron (MLP) composed of 2 hidden layers of
respective sizes 3200 and 1600 with dropout 0.4
and ReL.U activation. The output of the MLP is
then fed into a decision layer, producting a probabil-
ity distribution over the possible actions. The most
probable action is predicted then applied to the con-
figuration. A classifier can have up to 6 decision
layers, one for every task. A schematic represen-
tation of the classifier structure can be found in

SExcept for tokenization and sentence segmentation ac-
tions, because our dynamic oracle is not able to deal with
1ncorrect segmentation.

* All hyper-parameters have been optimized for the devel-
opment set described in section 6.

| Tok | [pos | . [pars]

1600

| 3200 \

’ Input ‘

hSLSTM‘ fBLSTM\ hSLSTM‘

’ Configuration ‘

Figure 1: General structure of the classifiers of a RM.
They take as input a configuration and predict an action
for up to 6 tasks.

Figure 1.

The most complex part of the classifier is the
transformation of the configuration into a vector:
the input of the MLP. Depending of its feature func-
tion, the classifier extracts from the configuration
elements that can be of different natures: the cur-
rent state of the RM, tags or words read from the
tapes, characters read from the input tape, previ-
ous action present in the history and words from
the stack. All these elements are fed to specific
Bi-LSTM that produce contextual representations,
as in Kiperwasser and Goldberg (2016), that are in
turn concatenated in the MLP input layer.

All feature values are represented by trainable
embeddings of size 128. These embeddings are
randomly initialized, except for word embeddings
that are pretrained® exclusively on the train set, in
order to produce an embedding for unknown words
(using words occurring only once in the train set).

The Bi-LSTM that take sequences of these em-
beddings as input are made of only one layer of
size 64.

5 Designing Reading Machines

The precise definition of RM, introduced in section
3, allows us to design a large number of machines.
Every machine is defined by a large number of
features and comparing machines is not always
easy. In this section we define a more abstract
description that is based on four high-level features,
and define seven machines that are compared in
section 6.

3Using GloVe (Pennington et al., 2014), implementation:
https://github.com/stanfordnlp/Glo Ve.

31

Q@Q\é

start —|(TOK @

‘gﬁ &

Figure 2: Two RM strategies that correspond to the or-
der of predictions. Above, the INCR strategy and below
the SEQ strategy.

We first describe the four high-level features then
give a description of the machines.

5.1 Strategy

As mentioned in section 3, the strategy of a RM
is the structure of the underlying automaton: its
number of states and transition function. A strategy
dictates the order in which the predictions are made.
Two strategies: INCR and SEQ, are defined, they
are represented in Figure 2. The actions that label
the transitions have been omitted for readability
reasons.

The main difference between the two strategies
comes from the loops on all states of the SEQ strat-
egy. These loops model the sequential behaviour of
the RM: the whole text is processed at a given level
before switching to the upper level. In contrast, the
INCR strategy processes a word at a given level then
performs a prediction at the next higher level for
the same word. This difference can be illustrated
in the way the matrix of Table 1 is filled: the SEQ
machine fills it line by line, bottom-up, while the
INCR machine fills it column by column, from left
to right.

5.2 Feature Span

The Feature Span of a machine specifies the part
of the tapes that are accessible to each classifier
in order to make a prediction. Three feature spans
have been defined, they are represented in Figure 3.
Each of the three rectangles represents, schemati-
cally, the tapes of an RM, as in Table 1. The black
square corresponds to the current prediction and the
hatched area to the content of the tapes available for
the current prediction. The past-low (PA-LO) fea-
ture span only sees the tapes content for the lower
level past predictions. Future-low (FU-LO) sees the
past, current and future predictions for lower levels.

https://github.com/stanfordnlp/GloVe

_

FUTURE LOW (FU-LO)

_

PAST LOW (PA-LO)

PAST HIGH (PA-HI)

Figure 3: Three feature spans: the black square is the
current prediction and the hatched area, the available
features.

Past-high (PA-HT) have access to low, current and
high-level predictions from the past.

In the PA-HI configuration, when the tagger, for
example, has to select the POS tag of a word, it has
access to the predictions made by all the modules,
including the parser, for preceding words. The PA-
HI feature span therefore offers an explicit way to
model top down dependencies.

5.3 Number of Classifiers

As mentioned above, several states of a machine
can share a single classifier to predict the actions
associated to these states. The sharing of a sin-
gle classifier by several states amounts to perform
multi-task training, which “uses the domain infor-
mation contained in the training signals of related
tasks as an inductive bias. It does this by learning
tasks in parallel while using a shared representa-
tion; what is learned for each task can help other
tasks be learned better” (Caruana, 1997).

In our case, when a single classifier is used, for
example, to perform both POS tagging and parsing,
the representation of a configuration built by this
classifier is obtained by optimizing both tasks. De-
cisions made by the parser can therefore implicitly
influence the tagger. The Number of Classifiers is,
with the Feature Span, the two ways that will be
tested to take into account top down dependencies.

Two extreme choices have been made with re-
spect to this dimension, in the first one, all states
share a single classifier while in the second each
state defines its own classifier, yielding two differ-
ent values: 1 and 6.

5.4 Window Span

The Window Span of a machine is simply the span
of the sliding window that gives access to the text.
A window span is defined by a pair of integers that
indicate how many characters, to the left and to the
right of the character index, are accessible. The
window span corresponds to the sliding window
introduced by McConkie and Rayner (1975) used
to model the perceptual span of a human reader.

32

Four different window spans have been defined:
[-5,2], [-5, 5], [-5, 10] and [-5, 15]. We fol-
lowed McConkie and Rayner (1976) in choosing
asymmetric windows.

5.5 Seven Machines

Given the four dimensions defined above and the
number of values per dimension, a total of 48 dif-
ferent machines can be defined. We have selected,
among these, seven machines that can be grouped
in four subsets, as shown in Table 3. Machines in a
subset generally differ from one another for a sin-
gle dimension, the exception are the two machines
of the first subset. These four subsets correspond
to the four experiments that are described in the
following section. The letter in the first column of
the table indicates identical machines. They have
been given several names in order to ease the com-
parisons in section 6. The feature function of the
classifiers of each of these machines can be found
in table 4.

RM Strat. | FE.Span | W.Span | NC
A PA-HI INCR | PA-HI | [-5,10] | 6
PA-LO INCR | PA-LO | [-5,10] | 6
B Cl INCR | PA-HI | [-5,10] | 1
A C6 INCR | PA-HI [-5,10] | 6
B INCR INCR | PA-HI | [-5,10] | 1
SEQ SEQ | FU-LO | [-5,10] | 1
[-5,2] INCR | PA-HI [-5,2] 6
[-5,5] INCR | PA-HI [-5,5] 6
A [-5,10] | INCR | PA-HI [-5,10] | 6
[-5,15] | INCR | PA-HI [-5,15] | 6

Table 3: Definition of the machines used in the experi-
ments. The letter in the first column indicates identical
machines. NC stands for Number of Classifiers.

6 Experiments

The experiments presented in this section aim at
exploring three directions. The first one is the
modelling of top-down dependencies. We have
introduced two means for taking into account such
dependencies in a RM: joint prediction of several
tasks, using a single classifier, and the feature span
of the classifiers. The two first experiments aim
at studying whether these two techniques allow to
effectively model such dependencies. The second
direction compares the sequential and the incremen-
tal strategies and measure how much information a
parser gets from the knowledge of the next words

Machine Features

cl
INCR

FORM,ID,POS,MRF,SYN: b.-3 b.-2 b.-1 b.0 5.0
s.15.2b.0.0s5.0.05.0.-15.1.0s.1.-1 5.2.0s.2.-1
Prefix&Suffix of size 5: b.0

Raw text: [-5,10] around character index
History: past 10 actions

Split: list of applicable SPLIT actions

Name: name of the current state

Distances: from s.0 s.1 s.2 to b.0.

Same as INCR with the addition of right context:
b.1 b.2.

Each of the 6 classifiers has the same features as
cl.

SEQ

PA-HI
c6
[-5,10]

PA-LO

Each of the 6 classifiers is different. The classi-
fier corresponding to a given linguistic level will
only have the features of PA-HI corresponding
to this linguistic level and inferior levels. For
example, the classifier corresponding to MRF
will only access columns FORM,ID,POS,MRF for
targets b.-3 b.-2 b.-1 b.0 and will not have the
distance feature.

Same as [-5,10] but with window [-5,2].
Same as [-5,10] but with window [-5,5].

1 |Same as [-5,10] but with window [-5,15].

[-5,
[-5,
[-5

>

2]
5]
15

Table 4: Features used in our RM architecture. “b.i”
stands for the word at position word index+i in the
buffer and “s.i” for the i topmost word on the stack.
Additional suffixes “.0” and “.-1” refer respectively to
the leftmost and rightmost dependent.

POS, lemma and morphological analysis. The third
direction aims at measuring the effect of the win-
dow span on the performances of an incremental
RM.

The machines realize six types of predictions: to-
kenization, part of speech tagging, lemmatization,
morphological analysis, syntactic parsing and sen-
tence segmentation. Each of these predictions are
evaluated by a specific metric using the evaluation
script of the CoNLL 2018 shared task (Zeman et al.,
2018). Besides the task specific metrics, we report
the Morphology-Aware Labeled Attachment Score
(MLAS) which takes into account word segmenta-
tion, morphological and POS tagging as well as syn-
tax, as described in Zeman et al. (2018). The MLAS
allows us to compare the general performances of
two machines, while the task specific metrics allow
for a finer comparison of these machines.

Experiments have been conducted on French®
data, using the GSD corpora of the Universal De-

5The same experiments can be replicated on any language
of the UD collection. Comparing the respective merits of
the different machines across languages is a very interesting
but very resource demanding task (mainly for optimizing the
hyper-parameters for each language) and we leave this for
future work.

33

pendencies collection (Zeman et al., 2019) ver-
sion 2.7. In the official distribution of this cor-
pus, the train/dev/test split is of respective sizes
364,349/36,775/10,298 words. In preliminary ex-
periments, we found out that the test split was
way too small to meaningfully compare machines.
That’s why we decided to use 10 fold cross-
validation: we realized ten different 80%/10%/10%
train/dev/test splits and trained ten copies of each
of our machines on these splits. The ten test sets
were then decoded by the corresponding copy of
the machine and the predictions were concatenated.
This technique allowed us to compare the machines
on their predictions on a test set of 427,763 words.
We tested the significance of our comparisons using
paired bootstrap resampling’ (Koehn, 2004), and
reported in our tables the corresponding p-value,
estimating the probability that in a pair of models,
the model that appear to perform better is in real-
ity a worse model. Unfortunately, the resampling
script we used (the one used in the CoNLL 2018
shared task) is not able to produce p-values for
the task of sentence segmentation, that is why the
corresponding cells in tables 5,6 and 7 are empty.

6.1 Wide vs Narrow Feature Span

This experiment aims at studying if past high level
predictions can help current low level predictions,
which is the explicit means we have proposed to
model top-down dependencies. In order to test this
hypothesis, we compare machines PA-LO and PA-
HI. Both machines differ on their Feature Span. PA-
HI has access to past high-level predictions while
PA-LO does not.

The results, displayed in Table 5, show that PA-
HI yields lower results than PA-LO. This is true
for the general MLAS measure, as well as sentence
segmentation and morphological tagging. The dif-
ferences obtained by the two machines on the other
tasks are not significant. Contrary to what we ex-
pected, using past high level predictions does not
seem to increase the performances of low-level
modules. We do not have for the moment an expla-
nation for this result. It could be explained by the
errors made by PA-HI on earlier predictions which,
in turn, provoke errors on current word predictions.

6.2 Multi Task vs Mono Task

The aim of our second experiment is to test the sec-
ond means we have proposed to model top-down

"Using implementation of Popel et al. (2017).

Task PA-LO PA-HI p-value
MLAS | 77.70 77.30 0.014
Seg 96.65 96.57

LAS 86.88 86.77 0.193
UAS 89.13 89.03 0.183
Lemma | 98.04 98.01 0.22
UFeats | 97.02 96.87 0.003
UPOS 97.02 9693 0.051
Words | 99.60 99.64 0.02

Table 5: Wide vs Narrow Feature Span

dependencies: multi task prediction. Two machines
are compared: C1 which uses a single classifier
to predict all tasks and C6 which uses a specific
classifier for every task. The results are reported
in Table 6. The table shows that C1 outperforms
C6 on the MLAS metric: on average, a multi-task
setup performs better than a mono-task one. C1 is
significantly better than C6 for parsing, morpholog-
ical and POS tagging. While the two machines are
equivalent on the other tasks. These results show
that predictions based on representations of the ma-
chine configurations that are optimised for all tasks
are beneficial for all tasks. It is tempting to con-
clude that multi task learning is an effective way to
model top down dependencies. It is unfortunately
premature to draw such a conclusion for multi task
learning is a complex process that models a large
number of dependencies in the data. More investi-
gation using, for example, probing, is in order to
give a definite answer to this question.

It is worth noting that C1 has six times less pa-
rameters than C6, because each classifier of C6 has
as many parameter as the classifier of C1, another
argument in favor of multi-task training.

Task cl c6 p-value
MLAS | 7793 77.29 0.001
Seg 96.40 96.57

LAS 87.08 86.77 0.008
UAS 89.33 §8§9.03 0.004
Lemma | 98.02 98.01 0.39
UFeats | 97.01 96.87 0.004
UPOS | 96.99 9693 0.135
Words | 99.65 99.64 0.315

Table 6: Multi Task vs Mono Task

34

6.3 Sequential vs Incremental

In this experiment, two machines are compared,
SEQ, a sequential machine that implements a pipe-
line architecture, and INCR that implements an in-
cremental architecture. These two machines differ
on two dimensions, their strategy as well as their
feature span. The aim of this experiment is to mea-
sure to which extend the information given to a
parser by the next words low level analysis (POS
tagging, morphological tagging and lemmatization)
help a parser. The SEQ machine implements a two
words look-ahead: the parser has therefore access
to the form, POS, lemma, and morphological analy-
sis of the next two words.

The results of this experiment are reported in
Table 7. As one can see, SEQ outperforms INCR
on the MLAS metric: on average, SEQ gets bet-
ter results than INCR. As was expected, it is the
parser that takes advantage of the sequential strat-
egy: both LAS and UAS are increased by around
one point. The two architectures achieve equivalent
performances on the low level tasks, meaning that
early processing steps do not take advantage of the
sequential architecture.

Task INCR SEQ p-value
MLAS | 77.93 78.60 0.000
Seg 96.40 95.96

LAS 87.08 87.56 0.000
UAS 89.33 89.89 0.000
Lemma | 98.02 98.01 0.403
UFeats | 97.01 97.16 0.002
UPOS | 9699 97.09 0.036
Words | 99.65 99.63 0.115

Table 7: Sequential vs Incremental

6.4 Window Span

Our last experiment aims to study the influence
of the Window Span on the performances of an
incremental machine. Four machines are compared:
[-5,2], [-5,5], [-5,10], [-5,15].

The best MLAS results are obtained by machine
[-5,10] which defines a look-ahead of 10 char-
acters for its predictions. It is interesting to note
that low values of look ahead has a dramatic ef-
fect on the performances. This is partly due to the
metrics used in which tokenization errors provoke
errors on higher level modules. As expected, we
observe diminishing returns as we increase the Win-
dow Span to the right, and going to 15 characters

slightly decreases performances. These results are
in line with McConkie and Rayner (1975) who
determined experimentally that the span of the win-
dow for humans is about four characters to the left
of the current character and twelve characters to
the right.

Task [-5.2] [-5,5] [-5.10] [-5.15]
MLAS | 48.53 76.76 7729 77.19
Seg 79.75 96.44 96.57 96.68
LAS 59.39 86.28 86.77 86.69
UAS 61.05 88.56 89.02 88.96
Lemma | 83.67 97.89 98.01 97.99
UFeats | 82.58 96.74 96.87 96.83
UPOS | 8246 96.71 9693 96.90
Words | 85.12 99.55 99.64 99.65

Table 8: Different values of Window Span

7 Conclusion and Future Work

This paper introduced a versatile parsing frame-
work, called the Reading Machine, that allows us to
compare incremental parsers that implement differ-
ent parsing configurations. We illustrated this with
two cases. In the first one, we compared different
ways to take into account top down dependencies
across six tasks. In the second, we compared the ef-
fect of the look-ahead on the parsing performances.

This work will be extended in several directions.

The first one concerns the analysis of the results
obtained in our two first experiments. More in-
vestigation is needed to explain the reason why
using past high level predictions cannot help low
level current ones. Likewise, we would like to
understand if the better results of multi task learn-
ing comes from the modelling of top down depen-
dencies. Two means will be used in order to an-
swer this question: probing and the development
of (small) specialized test sets that focus on such
phenomena.

The sequential machines that have been pro-
posed are greedy: a local decision taken by a ma-
chine is never questioned even when contradicted
by future events. This behaviour is not appeal-
ing from an NLP perspective nor from a psycholin-
guistic one. In order to tackle this problem, we
will introduce in the Reading Machine a backtrack
mechanism that can predict left movements leading
to the re-analysis of a previously analyzed part of
the text.

The third direction consists in evaluating the

35

model against human experimental data. The Read-
ing Machine has already been used to predict read-
ing time. We will continue further in this direction
and use the Reading Machine to predict saccades.

The strategies implemented in the RM described
in this paper completely specify the order in which
predictions are made. We plan to relax this con-
straint and let the RM learn strategies that optimize
its performances. A RM would have the ability to
decide the order in which to perform some tasks
(specifically, POS tagging, lemmatization and mor-
phological analysis).

8 Acknowledgments

This work was granted access to the HPC resources
of IDRIS under the allocation 2020-AD011011708
made by GENCI.

References

Chris Alberti, David Weiss, Greg Coppola, and Slav
Petrov. 2015. Improved transition-based parsing and
tagging with neural networks. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1354—1359.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, pages 1455—
1465. Association for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41-75.

Matthieu Constant and Joakim Nivre. 2016. A
transition-based system for joint lexical and syntac-
tic analysis. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 161-171, Berlin,
Germany. Association for Computational Linguis-
tics.

Franck Dary, Abdellah Fourtassi, and Alexis Nasr.
2021a. On the role of low-level linguistic tasks for
reading time prediction. In Proceedings of the 43th
Annual Meeting of the Cognitive Science Society. In
press.

Franck Dary, Alexis Nasr, and Abdellah Fourtassi.
2021b. TALEP at CMCL 2021 shared task: Non
linear combination of low and high-level features
for predicting eye-tracking data. In Proceedings of
the Workshop on Cognitive Modeling and Computa-
tional Linguistics, pages 108—113, Online. Associa-
tion for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1016
https://doi.org/10.18653/v1/P16-1016
https://doi.org/10.18653/v1/P16-1016
https://doi.org/10.31234/osf.io/qv2f5
https://doi.org/10.31234/osf.io/qv2f5
https://www.aclweb.org/anthology/2021.cmcl-1.13
https://www.aclweb.org/anthology/2021.cmcl-1.13
https://www.aclweb.org/anthology/2021.cmcl-1.13

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine
learning research, 12(7).

Yoav Goldberg and Joakim Nivre. 2012. A dynamic or-
acle for arc-eager dependency parsing. In Proceed-
ings of COLING 2012, pages 959-976.

John Hale. 2017. Models of human sentence compre-
hension in computational psycholinguistics.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach to
word segmentation, POS tagging, and dependency
parsing in Chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1045—
1053, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Matthew Honnibal and Mark Johnson. 2014. Joint in-
cremental disfluency detection and dependency pars-
ing. Transactions of the Association for Computa-
tional Linguistics, 2:131-142.

Frank Keller. 2010. Cognitively plausible models of
human language processing. In Proceedings of the
ACL 2010 Conference Short Papers, pages 60-67.
Association for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313-327.

Philipp Koehn. 2004. Statistical significance tests
for machine translation evaluation. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pages 388—
395, Barcelona, Spain. Association for Computa-
tional Linguistics.

Shuhei Kurita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2017. Neural joint model for transition-based
Chinese syntactic analysis. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 12041214, Vancouver, Canada. Association
for Computational Linguistics.

John SY Lee, Jason Naradowsky, and David A Smith.
2011. A discriminative model for joint morphologi-
cal disambiguation and dependency parsing. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human lan-
guage technologies, pages 885-894.

Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu,
Wenliang Chen, and Haizhou Li. 2011. Joint models
for Chinese POS tagging and dependency parsing.
In Proceedings of the 2011 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1180-1191, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

36

George W McConkie and Keith Rayner. 1975. The
span of the effective stimulus during a fixation in
reading. Perception & Psychophysics, 17(6):578—
586.

George W McConkie and Keith Rayner. 1976. Asym-
metry of the perceptual span in reading. Bulletin of
the psychonomic society, 8(5):365-368.

Alexis Nasr, Carlos Ramisch, José Deulofeu, and
André Valli. 2015. Joint dependency parsing and
multiword expression tokenisation. In Annual Meet-
ing of the Association for Computational Linguistics,
pages 1116-1126.

Dat Quoc Nguyen and Karin Verspoor. 2018. An
improved neural network model for joint POS tag-
ging and dependency parsing. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
81-91, Brussels, Belgium. Association for Computa-
tional Linguistics.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
eighth international conference on parsing technolo-
gies, pages 149-160.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513-553.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351-359.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532—1543.

Martin Popel, Zden&k Zabokrtsky, and Martin Vojtek.
2017. Udapi: Universal api for universal depen-
dencies. In Proceedings of the NoDaLiDa 2017
Workshop on Universal Dependencies (UDW 2017),
pages 96—-101.

Hui Wan, Tahira Naseem, Young-Suk Lee, Vittorio
Castelli, and Miguel Ballesteros. 2018. Ibm re-
search at the conll 2018 shared task on multilingual
parsing. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 92—102.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of IWPT, volume 3, pages
195-206. Nancy, France.

Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020. A
Graph-based Model for Joint Chinese Word Segmen-
tation and Dependency Parsing. Transactions of the
Association for Computational Linguistics, 8:78-92.

https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-377
https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-377
https://www.aclweb.org/anthology/P12-1110
https://www.aclweb.org/anthology/P12-1110
https://www.aclweb.org/anthology/P12-1110
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00171
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://www.aclweb.org/anthology/W04-3250
https://www.aclweb.org/anthology/W04-3250
https://doi.org/10.18653/v1/P17-1111
https://doi.org/10.18653/v1/P17-1111
https://www.aclweb.org/anthology/D11-1109
https://www.aclweb.org/anthology/D11-1109
https://doi.org/10.18653/v1/K18-2008
https://doi.org/10.18653/v1/K18-2008
https://doi.org/10.18653/v1/K18-2008
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.1162/tacl_a_00301
https://doi.org/10.1162/tacl_a_00301

Masashi Yoshikawa, Hiroyuki Shindo, and Yuji Mat-
sumoto. 2016. Joint transition-based dependency
parsing and disfluency detection for automatic
speech recognition texts. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1036—-1041, Austin, Texas.
Association for Computational Linguistics.

Daniel Zeman, Jan Haji¢, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 shared task: Mul-
tilingual parsing from raw text to universal depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1-21, Brussels, Belgium.
Association for Computational Linguistics.

Daniel Zeman et al. 2019. Universal dependencies 2.5.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized greedy inference
for joint segmentation, POS tagging and dependency
parsing. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 42-52, Denver, Colorado. Associa-
tion for Computational Linguistics.

37

https://doi.org/10.18653/v1/D16-1109
https://doi.org/10.18653/v1/D16-1109
https://doi.org/10.18653/v1/D16-1109
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
https://doi.org/10.18653/v1/K18-2001
http://hdl.handle.net/11234/1-3105
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.3115/v1/N15-1005
https://doi.org/10.3115/v1/N15-1005

