
InterNLP 2021

First Workshop on Interactive Learning for Natural
Language Processing

Proceedings of the Workshop

August 5, 2021
Bangkok, Thailand (online)

©2021 The Association for Computational Linguistics
and The Asian Federation of Natural Language Processing

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-66-4

ii

Message from the General Chair

Motivation: A key aspect of human learning is the ability to learn continuously from various sources
of feedback. In contrast, much of the recent success of deep learning for NLP relies on large datasets
and extensive compute resources to train and fine-tune models, which then remain fixed. This leaves a
research gap for systems that adapt to the changing needs of individual users or allow users to continually
correct errors as they emerge. Learning from user interaction is crucial for tasks that require a high grade
of personalization and for rapidly changing or complex, multi-step tasks where collecting and annotating
large datasets is not feasible, but an informed user can provide guidance.
What is interactive NLP?: Interactive Learning for NLP means training, fine-tuning or otherwise
adapting an NLP model to inputs from a human user or teacher. Relevant approaches range from active
learning with a human in the loop, to training with implicit user feedback (e.g. clicks), dialogue systems
that adapt to user utterances and training with new forms of human input. Interactive learning is the
converse of learning from datasets collected offline with no human input during the training process.
Goals: The goal of this workshop was to bring together researchers to:

• Develop novel methods for interactive machine learning of NLP models.

• Discuss how to evaluate interactive NLP systems, including models for realistic user simulation.

• Identify scenarios involving natural language where interactive learning is beneficial.

Previous work has been split across different tracks and task-focused workshops, making it hard to
disentangle applications from broadly-applicable methodologies or establish common practices for
evaluating interactive learning systems. We aimed to bring together researchers to share insights on
interactive learning from a wide range of NLP-related fields, including, but not limited to, dialogue
systems, question answering, summarization, and educational applications.
Concerning methodology, we encouraged submissions investigating various dimensions of interactive
learning, such as (but not restricted to):

• Interactive machine learning methods: the wide range of topics discussed above, from active
learning with a user to methods that extract, interpret and aggregate user feedback or preferences
from complex interactions, such as natural language instructions.

• User effort: the amount of user effort required for different types of feedback; explicit labels
require higher user effort than feedback deduced from user interaction (e.g., clicks, viewtime);
how users cope with the system misinterpreting instructions.

• Feedback types: different types of feedback require different techniques to incorporate them into a
model. E.g., explicit labels allow us to directly train while user instructions require interpretation.

A major bottleneck for interactive learning approaches is their evaluation, including a lack of suitable
datasets. We, therefore, encouraged submissions that cover research into the following:

• Evaluation methods: approaches to assessing interactive methods, such as low-effort, easily
reproducible approaches with real-world users and simulated user models for automated
evaluation.

• Reproducibility: procedures for documenting user evaluations and ensuring they are reproducible.

• Data: Introduce novel datasets for training and evaluating interactive models.

To investigate scenarios where interactive learning is effective, we invited submissions that present
empirical results for applications of interactive methods.

iii

Organizing Committee

• Kianté Brantley (kdbrant@cs.umd.edu) is a fourth year PhD student in Computer Science at The
University of Maryland College Park advised by Hal Daumé III. His research interest is in designing
algorithms that efficiently integrate domain knowledge into sequential decision-making problems
(e.g. reinforcement learning, imitation learning and structure prediction for natural language
processing).

• Soham Dan (sohamdan@seas.upenn.edu) is a PhD student at the University of Pennsylvania
working with Dan Roth on natural language understanding- specifically, in the context of grounded
domains. His research involves concept learning, interactive learning and semantic parsing of
instructions.

• Iryna Gurevych (gurevych@ukp.informatik.tu-darmstadt.de) is a full professor in the department
of Computer Science at the Technical University of Darmstadt. She has published on interactive
methods for NLP in various NLP domains such as language learning, text summarization, or entity
linking.

• Ji-Ung Lee (lee@ukp.informatik.tu-darmstadt.de) is a PhD student at the Technical University
of Darmstadt. His research focuses on effective model training from user feedback in low-data
scenarios coupled with providing the user with instances that fit their needs.

• Filip Radlinski (filiprad@google.com) is a Research Scientist at Google, UK. His research focuses
on improvements to conversational search and recommendation through better understanding
and modeling user interests through natural language, improved transparency of conversational
systems, as well as human-centered evaluation and personalization of information retrieval and
recommendation tasks. He received his PhD from Cornell University.

• Hinrich Schütze (hinrichacl@cis.lmu.de) is a full professor at Ludwig Maximilian University,
Munich and chair of computational linguistics. His research covers deep learning for NLP, semantics
in NLP and linguistics, and information retrieval. He has co-organized several workshops, including
two SCLeM workshops (Subword and Character level models in NLP) at EMNLP and NAACL and
a Dagstuhl seminar entitled "From Characters to Understanding Natural Language".

• Edwin Simpson (edwin.simpson@bristol.ac.uk) is a lecturer at the University of Bristol working on
interactive learning for NLP and machine learning for crowdsourced annotation with an interest in
Bayesian methods for handling uncertainty.

• Lili Yu (liliyu@fb.com) is a research scientist in the Facebook Language Research team. Her re-
search interest lies in summarization, conversational AI, learning from user feedback and knowledge
representation and grounding.

v

Table of Contents

HILDIF: Interactive Debugging of NLI Models Using Influence Functions
Hugo Zylberajch, Piyawat Lertvittayakumjorn and Francesca Toni . 1

Apple Core-dination: Linguistic Feedback and Learning in a Speech-to-Action Shared World Game
Susann Boy, AriaRay Brown and Morgan Wixted . 7

SHAPELURN: An Interactive Language Learning Game with Logical Inference
Katharina Stein, Leonie Harter and Luisa Geiger . 16

A Proposal: Interactively Learning to Summarise Timelines by Reinforcement Learning
Yuxuan Ye and Edwin Simpson . 25

Dynamic Facet Selection by Maximizing Graded Relevance
Michael Glass, Md Faisal Mahbub Chowdhury, Yu Deng, Ruchi Mahindru, Nicolas Rodolfo Fauceglia,

Alfio Gliozzo and Nandana Mihindukulasooriya . 32

Active Curriculum Learning
Borna Jafarpour, Dawn Sepehr and Nick Pogrebnyakov. .40

Tackling Fake News Detection by Interactively Learning Representations using Graph Neural Networks
Nikhil Mehta and Dan Goldwasser . 46

vii

Conference Program

August 5th, 2021

Session 1

19:00–19:05 Opening Remarks

19:05–19:50 Invited talk 1
Dan Goldwasser

19:50–20:20 Poster short talks 1

HILDIF: Interactive Debugging of NLI Models Using Influence Functions
Hugo Zylberajch, Piyawat Lertvittayakumjorn and Francesca Toni

Apple Core-dination: Linguistic Feedback and Learning in a Speech-to-Action
Shared World Game
Susann Boy, AriaRay Brown and Morgan Wixted

SHAPELURN: An Interactive Language Learning Game with Logical Inference
Katharina Stein, Leonie Harter and Luisa Geiger

A Proposal: Interactively Learning to Summarise Timelines by Reinforcement
Learning
Yuxuan Ye and Edwin Simpson

20:20–21:30 Poster session 1

21:30–22:15 Invited talk 2 : Beyond Imitation Learning: New Paradigms of Querying and Inte-
grating Different Types of Human Data for Improved Robot Learning
Dorsa Sadigh

ix

August 5th, 2021 (continued)

Session 2

23:00–23:05 Opening Remarks

23:05–23:50 Invited talk 3 : Continual Language Learning through Collaborative Interaction
with Users
Yoav Artzi

August 6th, 2021

00:00–00:45 Panel discussion 1
Julia Kreutzer, Alison Smith-Renner, Ido Dagan

01:00–01:30 Poster short talks 2

Dynamic Facet Selection by Maximizing Graded Relevance
Michael Glass, Md Faisal Mahbub Chowdhury, Yu Deng, Ruchi Mahindru, Nicolas
Rodolfo Fauceglia, Alfio Gliozzo and Nandana Mihindukulasooriya

Interactive learning from activity description
Khanh Nguyen, Dipendra Misra, Robert Schapire, Miro Dudík and Patrick Shafto

Active Curriculum Learning
Borna Jafarpour, Dawn Sepehr and Nick Pogrebnyakov

Tackling Fake News Detection by Interactively Learning Representations using
Graph Neural Networks
Nikhil Mehta and Dan Goldwasser

01:30–02:45 Poster session 2

03:00–03:45 Invited talk 4
Percy Liang

x

August 6th, 2021 (continued)

Session 3

06:00–06:05 Opening Remarks

06:05–06:50 Invited talk 5
Dan Roth

07:00–07:45 Panel discussion 2
Seung-won Hwang, Yu Zhou, Dilek Hakkani-Tur

xi

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 1–6
August 5, 2021. ©2021 Association for Computational Linguistics

HILDIF: Interactive Debugging of NLI Models Using Influence Functions

Hugo Zylberajch, Piyawat Lertvittayakumjorn, Francesca Toni
Department of Computing, Imperial College London, UK
{hz1820, pl1515, ft}@imperial.ac.uk

Abstract

Biases and artifacts in training data can cause
unwelcome behavior in text classifiers (such
as shallow pattern matching), leading to lack
of generalizability. One solution to this prob-
lem is to include users in the loop and leverage
their feedback to improve models. We propose
a novel explanatory debugging pipeline called
HILDIF, enabling humans to improve deep
text classifiers using influence functions as an
explanation method. We experiment on the
Natural Language Inference (NLI) task, show-
ing that HILDIF can effectively alleviate arti-
fact problems in fine-tuned BERT models and
result in increased model generalizability.

1 Introduction

Given two sentences, a premise and a hypothesis,
Natural Language Inference (NLI) is the task of
determining whether the premise entails the hy-
pothesis, and it has been considered by many as a
sign of language understanding (Condoravdi et al.,
2003; Dagan et al., 2005). Although recent deep
learning models have shown to achieve good perfor-
mances on different NLI datasets, as in other tasks,
they have been shown to learn shallow heuristics.
For example, a model is very likely to predict en-
tailment for all hypotheses constructed from words
in the premise (McCoy et al., 2019). A key chal-
lenge is therefore to understand when and why
state-of-the-art NLI models fail and try to mitigate
the problems accordingly.

In order to bring to light this kind of pathology,
one can use explanation techniques to comprehend
how a black box model makes particular predic-
tions. For instance, feature attribution methods
explain by identifying parts of inputs that mainly
contribute to predictions (Smilkov et al., 2017; Sun-
dararajan et al., 2016; Ribeiro et al., 2016; Lund-
berg and Lee, 2017). Further, example-based meth-
ods, such as influence functions (Koh and Liang,

2017), identify training data points which are the
most important for particular predictions. Existing
works have proposed ways to improve models by
incorporating human feedback, in response to the
explanations, by: adding model constraints by fix-
ing certain parameters (Stumpf et al., 2009; Lertvit-
tayakumjorn et al., 2020), adding training samples
(Teso and Kersting, 2019), and adjusting models’
weights directly (Kulesza et al., 2015).

In this paper, we propose a novel interac-
tive model debugging pipeline called HILDIF –
Human In the Loop Debugging using Influence
Functions. With the NLI task as a target, we use
influence functions as an explanation method to
help users understand the model reasoning via
influential training examples. Then, for each in-
fluential example shown, the users provide feed-
back to create augmented training samples for fine
tuning the model. Using HILDIF, we effectively
mitigate artifact issues of BERT models (Devlin
et al., 2019) trained on the MNLI dataset (Williams
et al., 2018) and tested on the HANS dataset (Mc-
Coy et al., 2019), which is a known pathologi-
cal setting for most deep NLI models working
on English language. Our code can be found at
https://github.com/hugozylberajch/HILDIF.

2 Related Work

Influence Functions. Introduced by Hampel
(1974), influence functions compute how up-
weighting individual examples in the training loss
changes the model parameters. Influential training
examples can also be used to study models (Koh
and Liang, 2017). They are particularly useful
when feature attribution scores are not sufficient to
illustrate how the model reasons. In the NLI task,
for example, single input words may not suffice
to explain a certain prediction, and the overall se-
mantics and structures in the input may be needed.

1

Recently, Han et al. (2020) showed that influence
functions can capture key fine-grained interactions
among input words and detect the presence of arti-
facts that lead to incorrect NLI predictions.

Although very appealing, influence functions
are computationally expensive. Hence, Koh and
Liang (2017) reduced computational complexity
by using the LInear time Stochastic Second order
Algorithm (LISSA) for calculating approximations.
Guo et al. (2020) proposed FASTIF, which further
speeds up the calculation using the k-nearest neigh-
bors algorithm. They also fine tuned the model
with influential training samples of anchor points
(i.e., some data points in the validation set) to cor-
rect model errors. We will use FASTIF as a tool to
explain BERT model’s predictions on the NLI task
in our experiment.

Explanatory Interactive Debugging, where we
improve a model by leveraging user feedback af-
ter presenting explanations for model predictions,
was first introduced using simple statistical mod-
els such as Naı̈ve Bayes models or Support Vec-
tor Machines with simple explanatory techniques
(Stumpf et al., 2009). Recently, explanatory de-
bugging has been applied to more complex models
using refined interpretability methods. In FIND
(Lertvittayakumjorn et al., 2020), a masking matrix
is added at the end of a CNN text classifier so as
to disable particular CNN filters based on human
feedback in response to LRP-based explanations
(Arras et al., 2016). In CAIPI (Teso and Kersting,
2019), the user investigates and corrects a LIME-
based explanation (Ribeiro et al., 2016) for each
prediction. Then additional training samples, cre-
ated based on the correction, are used to fine tune
the model. For more details on explanatory debug-
ging, we refer interested readers to the survey by
Lertvittayakumjorn and Toni (2021).

As in CAIPI, we will exploit user feedback to
control the generation of augmented samples for
fine tuning the model. However, our explanations
are influential training samples which are more
suitable for explaining NLI predictions. This is an
improvement from Guo et al. (2020) that simply
fine tuned the model on influential samples without
human feedback involved.

3 HILDIF

We propose in Algorithm 1 a new pipeline called
HILDIF (Human In the Loop Debugging with
Influence Functions) for debugging deep text clas-

Algorithm 1: HILDIF. L is a labeled train-
ing set, V is a labeled validation set, T is
the number of iteration, and g is a data aug-
mentation method.
t←− 0
f ←− FIT(L)
while t < T do
X ←− SELECT ANCHORS(f,V)
Ŷ ←− f(X)
Z ←− EXPLAIN(f,X , Ŷ)
S ←− Ø
for xi ∈ X do

for zij ∈ Zi do
Present xi, ŷi, zij to the user;
Obtain a similarity score sij for

the influential example zij ;
S ←− S ∪ g(zij , sij)

f ←− FINE TUNE(f,S)
t←− t+ 1

Return : f

sifiers using influence functions. As far as our
knowledge goes, this is the first interactive ex-
planatory debugging algorithm that makes effec-
tive use of influence functions. To improve a
model f using HILDIF, a set of anchor points X =
(x1, x2, ..., xn) is first selected from the validation
dataset V , and the predictions Ŷ = (ŷ1, ŷ2, ..., ŷn)
are computed using the model f . Then, for each
anchor point xi, we use FASTIF to identify p influ-
ential training samples Zi = (zi1, zi2, ..., zip), and
we define Z as a collection of Zi for all xi ∈ X .
Next, for each pair of (xi, zij), i ∈ {1, ..., n}, j ∈
{1, ..., p}, the user will give a score of similarity sij
that will be used to generate synthetic data using a
data augmentation function g. Finally, the model is
fine tuned on the new generated data samples.

Next, we explain, in detail, each step of HILDIF,
including explanation generation, user feedback
collection, and data augmentation.

Explanation Generation. From the validation
set V , we can either select anchor points randomly
or handpick some that contain particular heuristics
we want to debug. After that, the user is presented
with a list of top-p most negatively influential train-
ing data points for each anchor point. These influ-
ential data points contribute to the decrease of the
model’s loss when upweighted. Hence, fine-tuning
the model using these data points should improve
the model performance as studied by Guo et al.

2

(2020). However, since HILDIF relies on FASTIF
which only approximates influence scores, we hy-
pothesize that we can achieve better performance
by asking humans to assess relevancy of the influ-
ential training samples returned by FASTIF before
fine-tuning.

User Feedback Collection. For each anchor
point xi and corresponding influential sample zij ,
the user is asked the question: The test case and the
presented sample are: (1) Very different; (2) Differ-
ent; (3) Can’t decide; (4) Similar; (5) Very similar;
the user can then answer by selecting a radio button.
Then zij will obtain a similarity score sij from 1 to
5 accordingly based on the user’s answer. Similar
in this context means that both samples share the
same type of heuristics or lexical artifacts.

Data Augmentation. To create an augmented
sample for the NLI task, we have to make sure
that the overall semantics of the premise and
the hypothesis as well as the overall relation
between the two sentences are preserved. We
therefore choose random word replacement with
synonyms as well as back translation for data
augmentation since neither changes the semantic
of the sentences. Moreover, we found empirically
by testing different configurations that generating
10 × sij augmented samples for the influential
sample zij yielded the best results. For instance,
an influential sample with the score 3 leads to 30
augmented samples with the same label as the
original sample.

4 Experimental Setup

Datasets and Models. We evaluate our pipeline
with a pretrained BERT-base cased model. We use
the MNLI dataset (Williams et al., 2018) for train-
ing and validation, and the HANS dataset, which is
known to be a dataset where BERT performs poorly
(McCoy et al., 2019), for testing. For the MNLI
training and validation set, we merge the class neu-
tral and contradiction into a single non-entailment
class, following the HANS dataset’s setting. HANS
targets three heuristics of NLI and includes exam-
ples showcasing these heuristics: Lexical Overlap
where the hypothesis is constructed with words
from the premise, Constituent, where the hypoth-
esis is a subtree of the premise’s parse tree, and
Subsequence, where the hypothesis is a contigu-
ous subsequence of the premise (see Table 1 in

the Appendix for some examples). NLI models
almost always predict entailment for any example
containing these heuristics although sometimes the
correct label is non-entailment. So, our goal is to
make the model better detect non-entailment cases
while maintaining its performance on the entail-
ment cases. For the overall performance, we chose
accuracy as our evaluation metric because HANS is
a balanced dataset (containing, for each subgroup
of heuristics, 5,000 samples of the entailment class
and 5,000 samples of the non-entailment class).

Implementation Details. All our models are im-
plemented using the pytorch library and trained
using the AdamW optimizer. The HANS dataset is
held-out during training and fine-tuning and is only
used for testing. For computing influence func-
tions, we use the FASTIF algorithm and FAISS
library (Johnson et al., 2019) for k-nearest neigh-
bors search. Finally, we ran all our experiment
on a single 12GB NVIDIA Tesla K80 GPU. With
this setting, the computation of influence scores
of 5,000 training points for a corresponding an-
chor point takes approximately seven minutes. The
BERT-base model is trained for two epochs on the
MNLI training dataset.

Regarding user feedback collection, due to hu-
man resources constraints, we did our interactive
experiments with one expert user. Further exper-
iments could be conducted with more users, and
results for the same pair of anchor point and influ-
ential point could be aggregated in order to reduce
human bias.

Comparison. We experimented with T = 1, us-
ing five anchor points with 10 and 20 influential
samples each. We introduce three binary proposi-
tions that will define the debugging pipeline: HS:
Human scoring, DA: Data augmentation, and H:
Handpicked anchor points. Without human scoring
(¬HS), every influential sample receives a score
of 5. Without data augmentation (¬DA), the fine
tuning is done on each influential sample only, and
without handpicked anchor points (¬H), anchor
points are selected randomly. Note that our hand-
picked anchor points were chosen among the vali-
dation samples that contain either the lexical over-
lap or the subsequence heuristic (see Table 2 in
the Appendix). We compared the performance of
eight different configurations of debugging algo-
rithms that stem from these three binary proposi-
tions. For each configuration, we trained and im-

3

(a) (b)

Configuration 10 influential points 20 influential points
LO SUB CON LO SUB CON

HS

DA
H (93.99 , 18.16) (98.90 , 12.10) (92.99 , 36.10) (92.70 , 20.76) (99.24 , 18.80) (90.82 , 41.58)
¬H (98.89 , 3.56) (99.66 , 2.74) (97.12 , 12.10) (98.12 , 2.06) (98.51 , 4.20) (97.22 , 19.21)

¬DA
H (95.51 , 6.81) (96.40 , 5.32) (93.71 , 22.28) (98.94 , 8.64) (97.81 , 3.40) (95.01 , 19.32)
¬H (98.81 , 2.16) (98.73 , 2.25) (95.55 , 16.12) (99.09 , 1.91) (98.89 , 2.12) (93.39 , 17.64)

¬HS

DA
H (99.42 , 2.94) (99.65 , 3.15) (96.01 , 32.15) (99.32 , 3.76) (99.20 , 4.01) (94.99 , 32.34)
¬H (99.10 , 1.86) (99.81 , 2.84) (97.67 , 9.66) (98.10 , 2.40) (98.89 , 3.90) (96.20 , 17.01)

¬DA
H (98.13 , 3.10) (99.62 , 2.87) (97.03 , 9.99) (97.21 , 4.01) (99.68 , 2.61) (96.54 , 13.13)
¬H (99.49 , 0.90) (99.32 , 1.67) (97.88 , 6.10) (99.12 , 1.12) (99.01 , 1.29) (97.15 , 5.99)

Baseline LO: (99.56 , 0.98) SUB: (100.00 , 1.30) CON: (99.02 , 5.74)

(c)

Figure 1: HS stands for Human Scoring, DA for Data Augmentation and H for Handpicked anchor points. (a)
Average accuracy on the MNLI test set (b) Accuracies on the HANS evaluation set, which has 3 heuristic categories
and 2 classes. Dashed lines show chance performance. (c) Accuracies on the HANS evaluation set for different
configurations of all the debugging procedures. LO stands for Lexical Overlap, SUB for Subsequence, and CON
for Constituent category of heuristics. For each cell, the first value of the tuple is the accuracy on the entailment
class and the second is the accuracy on the non-entailment class. Best scores for the non-entailment class in bold.

proved three models using different random seeds
and averaged the final performance on the test set.
Note that the (¬HS,¬DA,¬H) configuration is
the algorithm used in Guo et al. (2020) whereas the
(HS,DA,H) and (HS,DA,¬H) configurations
are our HILDIF algorithm.

5 Results

Figure 1b shows the accuracies on the HANS
dataset of the baseline model (i.e., BERT trained
on MNLI), and of four configurations, including
(HS,DA,H) which is displayed as HILDIF in
the figure. We can see that HILDIF consistently
achieved a higher accuracy in all three categories
of heuristics for the non-entailment class and a
slightly lower accuracy for the entailment class.
Actually, we observe the trade-off between the ac-
curacies of both classes in all the four configura-
tions. However, HILDIF still got higher overall
accuracy on the HANS dataset than the baseline

and the other configurations. Moreover, interac-
tive debugging with human scores yielded better
accuracies than debugging without human scores
for the Lexical Overlap and the Subsequence cat-
egories. Meanwhile, on the Constituent category,
handpicking anchor points with targeted heuristic
led to a big jump in accuracy that outperformed
the configuration with human feedback but random
anchor points. Therefore, incorporating human
knowledge since the selecting anchors step is also
helpful when we have prior knowledge about the
model bugs. Note also, in Figure 1a, that the model
accuracies on the MNLI for HILDIF and the other
configurations stay close to the baseline model’s
accuracy, as desired.

The table in Figure 1c shows that fine tuning the
model with augmented data samples, instead of the
influential samples only, gave better results in most
cases. This was likely because data augmentation
could help prevent the model from overfitting the
influential samples. Besides, there was little to no

4

improvement in the model performance when we
added user feedback (i.e., human scores) for ran-
dom anchor points but a substantial improvement
for handpicked anchor points. This can be because,
during user feedback collection, most of the data
samples are difficult to compare as they either sat-
isfy several heuristics or no heuristics relevant to
the NLI task. When looking at some influential
samples for handpicked anchor points, most satisfy
the same heuristic and, if not, they can be easily
spotted by human eyes. Although we are still far
from chance performance on the non-entailment
class, HILDIF achieved a substantial increase in
accuracy with just five anchor points.

6 Conclusion

We introduced HILDIF, an interactive explanatory
debugging pipeline for deep text classifiers, and
ran experiments on the NLI task, achieving high
accuracies with MNLI-trained BERT across all cat-
egories of the pathological HANS dataset. Future
work includes enhancement of the data augmenta-
tion part, including the use of a variational auto-
encoder or a GPT-2 based generative model for
synthetic data generation. Also, with more human
resources, experiments can be conducted by fine-
tuning more than one iterations (T > 1) with more
anchor points for each iteration. Finally, it would
be interesting to apply HILDIF to other text classi-
fication tasks, given that, except for the handpicked
anchor points that are chosen with knowledge of the
task, every step of the pipeline is task-independent.

References
Leila Arras, Franziska Horn, Grégoire Montavon,

Klaus-Robert Müller, and Wojciech Samek. 2016.
Explaining predictions of non-linear classifiers in
NLP. In Proceedings of the 1st Workshop on Repre-
sentation Learning for NLP, pages 1–7, Berlin, Ger-
many. Association for Computational Linguistics.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Rein-
hard Stolle, and Daniel G. Bobrow. 2003. Entail-
ment, intensionality and text understanding. In Pro-
ceedings of the HLT-NAACL 2003 Workshop on Text
Meaning, pages 38–45.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Proceedings of the PASCAL Chal-
lenges Workshop on Recognising Textual Entail-
ment.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Han Guo, Nazneen Fatema Rajani, Peter Hase, Mohit
Bansal, and Caiming Xiong. 2020. Fastif: Scalable
influence functions for efficient model interpretation
and debugging. arXiv preprint arXiv:2012.15781.

Frank R. Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the American
Statistical Association, 69(346):383–393.

Xiaochuang Han, Byron C. Wallace, and Yulia
Tsvetkov. 2020. Explaining black box predictions
and unveiling data artifacts through influence func-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5553–5563, Online. Association for Computa-
tional Linguistics.

J. Johnson, M. Douze, and H. Jégou. 2019. Billion-
scale similarity search with gpus. IEEE Transac-
tions on Big Data, pages 1–1.

Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions. In
Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 1885–1894. PMLR.

Todd Kulesza, Margaret Burnett, Weng-Keen Wong,
and Simone Stumpf. 2015. Principles of explana-
tory debugging to personalize interactive machine
learning. In Proceedings of the 20th International
Conference on Intelligent User Interfaces, IUI ’15,
page 126–137, New York, NY, USA. Association for
Computing Machinery.

Piyawat Lertvittayakumjorn, Lucia Specia, and
Francesca Toni. 2020. FIND: Human-in-the-Loop
Debugging Deep Text Classifiers. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages
332–348, Online. Association for Computational
Linguistics.

Piyawat Lertvittayakumjorn and Francesca Toni. 2021.
Explanation-based human debugging of nlp models:
A survey. arXiv preprint arXiv:2104.15135.

Scott Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. arXiv
preprint arXiv:1705.07874.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

5

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. “why should i trust you?” explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda
Viégas, and Martin Wattenberg. 2017. Smoothgrad:
removing noise by adding noise. arXiv preprint
arXiv:1706.03825.

Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen
Wong, Margaret Burnett, Thomas Dietterich, Erin
Sullivan, and Jonathan Herlocker. 2009. Interact-
ing meaningfully with machine learning systems:
Three experiments. International journal of human-
computer studies, 67(8):639–662.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2016. Gradients of counterfactuals. arXiv preprint
arXiv:1611.02639.

Stefano Teso and Kristian Kersting. 2019. Explanatory
interactive machine learning. In Proceedings of the
2019 AAAI/ACM Conference on AI, Ethics, and Soci-
ety, AIES ’19, page 239–245, New York, NY, USA.
Association for Computing Machinery.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

A Examples and Anchor Points

Table 1 shows an example from the MNLI dataset
(Williams et al., 2018) and three examples from
the HANS dataset (each of which has a different
heuristic type) (McCoy et al., 2019). Besides, Ta-
ble 2 shows the five handpicked anchor points used
in the experiment.

MNLI Dataset
P: News ’ cover says the proliferation of small computer
devices and the ascendance of Web-based applications are
eroding Microsoft’s dominance.
H: Microsoft is a more profitable company than Apple.
Label: non-entailment
HANS Dataset (Lexical Overlap)
P: The professors advised the judge.
H: The judge advised the professors.
Label: non-entailment
HANS Dataset (Subsequence)
P: The professor who introduced the doctors recognized
the secretaries.
H: The doctors recognized the secretaries.
Label: non-entailment
HANS Dataset (Constituent)
P: Certainly the senators recognized the actor.
H: The senators recognized the actor.
Label: entailment

Table 1: Examples of premises and hypotheses from
the MNLI dataset and the HANS dataset. P and H
stand for premise and hypothesis, respectively.

P: Similar conclusions have been reached by state legal
needs ’ studies in a dozen states including Florida , Geor-
gia , Hawaii , Illinois , Indiana , Kentucky , Maryland ,
Massachusetts , Missouri , Nevada , New York , and Vir-
ginia , using a variety of methodologies for estimating the
unmet legal needs of the poor.
H: Similar conclusions have been reached by state legal
needs ’ studies.
Label: entailment
Heuristics: Subsequence
P: From Cockpit Country to St . Ann ’ s Bay.
H: From St . Ann ’ s Bay to Cockpit Country.
Label: non-entailment
Heuristics: Lexical Overlap, Reverse Ordering
P: Shoot only the ones that face us , Jon had told Adrin.
H: Shoot the ones that face us , Adrin told Jon.
Label: non-entailment
Heuristics: Lexical Overlap, Reverse Ordering
P : Just north of the Shalom Tower is the Yemenite Quarter
, its main attractions being the bustling Carmel market and
good Oriental restaurants.
H: The Shalom Tower is north of the Yemenite Quarter.
Label: non-entailment
Heuristics: Lexical Overlap, Reverse Ordering
P : Life , unlike Reich ’ s book , is not a series of morality
fables.
H: Reich ’ s book is a series of morality fables.
Label: entailment
Heuristics: Lexical Overlap, Negation

Table 2: Five handpicked anchor points from the MNLI
validation set, with specific heuristics. P and H stand
for premise and hypothesis, respectively.

6

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 7–15
August 5, 2021. ©2021 Association for Computational Linguistics

Apple Core-dination: Linguistic Feedback and Learning in a
Speech-to-Action Shared World Game

Susann Boy∗

Saarland University
AriaRay Brown

Saarland University
{susannb,ariaray,morganw}@coli.uni-saarland.de

Morgan Wixted
Saarland University

Introduction. We investigate the question of
how adaptive feedback from a virtual agent im-
pacts the linguistic input of the user in a shared
world game environment. To do so, we carry out
an exploratory pilot study to observe how individ-
ualized linguistic feedback affects the user’s in-
structional speech input. We introduce a speech-
controlled game, Apple Core-dination, in which an
agent learns complex tasks using a base knowledge
of simple actions.

Apple Core-dination is a shared-world language
building game that situates the user and agent in a
common virtual space. The agent is equipped with
a learning mechanism for mapping new commands
to sequences of simple actions, as well as the abil-
ity to incorporate user input into written responses.
To build a framework for mapping new language
and actions to existing knowledge, our game adopts
concepts from the semantic parsing model of Artzi
and Zettlemoyer (2013), which makes use of sit-
uated cues and common constructs found in in-
structional language. We seed the knowledge of
the agent by providing an initial lexicon of text-
to-action mappings for basic movements and com-
municative functionalities. The agent repeatedly
shares its internal knowledge state by responding
to what it knows and does not know about language
meaning and the shared environment.

Our paper focuses on the linguistic feedback
loop in order to analyze the nature of user input.
Feedback from the agent is provided in the form of
visual movement and written linguistic responses.
Particular attention is given to incorporating user
input into agent responses and updating the speech-
to-action mappings based on commands provided
by the user. Since the portrayal of an agent can
affect how the user perceives its emotional intelli-
gence (Chita-Tegmark et al., 2019) and trustwor-

∗* All authors have equal contribution.

thiness (Fan et al., 2017), we consider visual cues
that may also contribute to the user’s choice of
language when interacting. The focus of build-
ing agent knowledge is based on enriching the
mappings of linguistic input to sequences of sim-
ple actions for a given user session. Our system
also gives the user control over the mechanism of
speech input by providing multiple key-press ac-
tivated speech-to-text models. Through our pilot
study, we analyze task success and compare the
lexical features of user input. Results show varia-
tion in input length and lexical variety across users,
suggesting a correlation between the two that can
be studied further.

Background. Cooperative language building
games allow the user and agent to jointly accom-
plish a shared task through language collaboration.
Previous research in cooperative language build-
ing games has shown that success can be achieved
through accommodation between the user and the
agent, where both user and agent adapt their com-
munication to adjust to the communicative needs
of the other. The interaction can result in user lan-
guage becoming “more consistent, less verbose,
and more precise” as users adapt to the perceived
abilities of the computer (Wang et al., 2016). Ac-
commodation of user language supports findings in
human-human interaction in which speakers tend
to infer the linguistic and situational awareness of
their interlocutors (Pickering and Garrod, 2004).
Even low effort from the computer agent to cooper-
ate with the user can lead users to believe common
ground is established (Chai et al., 2014). Perceived
common ground, or a common understanding of
the shared environment, can be achieved through
the goal of a shared task along with the agent’s ef-
fort to make apparent its internal knowledge state.

Speech-to-Action Shared World Game. Apple
Core-dination embodies the computer in a person-

7

ified agent that prompts the user to teach it new
tasks through learning and cooperative interaction.
The agent’s internal knowledge of its progress is
shared through linguistic and action-based feed-
back. We use the player’s own speech (the input) to
customize agent responses (the output). The result-
ing system allows us to analyze how individualized
feedback affects the nature of user input. Game
implementation code is available on GitHub1

Game Environment. The game begins with an
introduction in which the user first learns to interact
with the agent by naming it through speech. The
goal of the game is to complete a set of tasks framed
as complex actions. The user teaches the agent to
achieve the given tasks through multi-step speech
commands that build upon basic actions already
known by the agent. A mid-session view of the
game screen is shown in Figure 1. Additional game
views are offered in Appendix A.

Figure 1: The game interface. The tasks are displayed
on the right side and at the bottom appears the agent’s
feedback while executing a command.

The basic actions of the agent can be triggered by
uttering corresponding commands. Basic actions
include simple movement functions in all four di-
rections (left, right, up, down), general movement
(move), object destinations (e.g. tree, bridge, it-
self), repetition of previous actions, greeting the
user, and reacting to positive and negative feedback
such as good job or no, not that.

The agent can store new learned commands into
its knowledge base via the yes function triggered
by the word yes. Upon completion of a task, the
yes function is silently called in order to add the
the relevant task instructions to the agent’s learned
commands. A subsequent utterance of the learned
task instruction (e.g. climb the tree) will directly
access the climb tree function. Although the

1https://github.com/ariabee/applecore

Figure 2: Description of the game loop. The user gives
speech input which is transcribed by a speech-to-text
model. The transcribed instruction is then interpreted
by the agent and feedback is generated. If the instruc-
tion is in the agent’s knowledge base, an action is exe-
cuted. The game checks if the action led to the comple-
tion of a task and then waits for the next instruction.

agent can move to the location of objects in its
knowledge base, it does not contain action func-
tions to interact with the objects. While executing
a command, the agent gives a response in the form
of text feedback on the screen and movement to a
destination when applicable.

Speech-to-Text. Our speech-to-text system pro-
vides users with the ability to play our game using
their voice. We currently have two systems imple-
mented: Google Cloud Speech API (Zhang, 2017)
and SpeechBrain’s pre-trained automatic speech
recognition (ASR) model (Ravanelli et al., 2021).
With both of these models, we can experiment to
see the interactions between the users and the abil-
ity to choose between different speech recognition
systems.

Our speech-to-text pipeline is as follows: our
users give speech input by pressing and holding a
key (M or SPACE) that accesses the speech-to-text
model. The input is recorded using Python’s speech
recognition library (Zhang, 2017) and transcribed
using the selected model. A single .wav file is
saved locally and rewritten for each utterance that
uses the SpeechBrain model.

Agent Knowledge and Language Parsing. The
agent embodies the language knowledge and learn-
ing mechanism of the game. The agent has access
to a knowledge base, a transcript that serves as
long-term memory, interpretation methods for pars-
ing linguistic input, and internal properties that act
as working memory. The agent’s knowledge also
contains hidden actions, or functions represent-
ing the complex game tasks. These functions are
hidden in the sense that the agent cannot initially
access them through their corresponding instruc-
tions. Figure 3 is referenced for explanation.

The knowledge base contains a lexicon of
known words mapped to action functions, a dic-
tionary of learned phrases that fills as the game

8

Figure 3: Model of the agent knowledge and language
processing mechanism in Apple Core-dination.

progresses, a list of actions mapping indices to ac-
tion functions, and the individual action functions
which represent basic actions. Each piece of lan-
guage that the agent recognizes is mapped to the
related action functions. Knowledge also holds
the hidden actions that represent the given com-
plex tasks that the agent cannot yet access through
mapped language, e.g. the tasks climb the tree,
cross the bridge, and find red flowers.

The transcript serves the role of long-term
memory, in case the agent needs to reference a
previous instruction, action sequence, or response.
The transcript updates and saves to a structured data
file in every game loop. The file contains informa-
tion about which of the two speech-to-text models
was accessed, which instruction the user has given
to the agent (output of the speech-to-text model),
the response of the agent, and what sequence of
actions was executed after the command. We track
the progression of the game by storing whether the
performed actions led to the completion of a task.

The agent has the ability to map both new and
recognized utterances to actions. The function for
confirmation and learning links the previous com-
mand to a successful sequence of actions performed
by the agent. When an instruction is given, the
agent parses and composes the utterance into an
executable action sequence, or list of indexed ac-
tion functions. Each function of the event is then
executed during the game loop. Successfully com-
pleting a task will map the original task command
to the hidden task function, adding the phrase-
to-action mapping to the agent’s learned phrases.

Henceforth, input containing the task command
will trigger the learned task function.

We implement a simplified parsing mechanism
to compose input strings into meaningful combina-
tions of mapped action functions. Parsing involves
first searching for learned phrases, followed by
checking the remaining string for recognized words
that exist in the lexicon. Known words and phrases
along with their corresponding actions are stored in
the agent’s working memory. The list of actions
is then composed into a list of single actions and
combined based on semantic meaning. The com-
pleted sequence is stored in an action queue. Each
action contributes to building the agent’s response
by returning a string based on the input that trig-
gered the action. Once the response is composed,
each action in the queue is executed one at a time
in the game loop.

Linguistic Feedback. When a user gives an in-
struction (e.g. walk there to the left), part of the
utterance is incorporated into the response of the
agent (e.g. walking somewhere going left). Feed-
back from the agent then becomes input for the user,
while also informing the user about the nature of
the agent’s knowledge, or what it does or does not
know about language meaning and its surrounding
environment.

The nature of individualized feedback is depen-
dent on each basic action function. The part of
the utterance that triggered each action is sent
as an argument when processing the function for
response-only output. Constructed feedback from
each mapped utterance is concatenated to form
the agent’s response. For instructions containing
learned phrases, the entire learned string is returned
as feedback. For example, the instruction hop up to
the tree will initially result in the response, going
up going to the tree. When the phrase is learned,
the agent will respond instead with the recognized
learned phrase hop up to the tree that maps to mov-
ing up and to the position of the tree. An example
instruction with resulting linguistic feedback is pro-
vided in Appendix B.

The agent also provides feedback for fully
unrecognized input; e.g. climb the tall plant
would result in the agent response: how do
I climb the tall plant?, where the unrecognized
phrase is incorporated into agent feedback. Upon
learning this new command, the agent would re-
spond: yes, I learned to climb the tall plant.

9

Pilot Study. We tested our game in an ex-
ploratory pilot study of five English-speaking vol-
unteers who were only instructed to play the game
but not obligated to complete all tasks in the game.
Participants were given instructions for using each
speech-to-test system, but not directed to use either
or both. We evaluate the interaction between agent
and user with the agent’s long-term memory, the
transcript. The transcript files include information
about which key they pressed to give an instruction,
the instruction transcribed by the speech-to-text
model, the actions triggered by the command, the
linguistic feedback given by the agent and whether
the command led to the completion of a task.

In completed transcripts, the instructions were
manually annotated by one of the authors as clean
if the speech-to-text model correctly transcribed
the instruction. Only cleaned instructions were
used for analysis, as incorrect model output does
not indicate a successful interaction between user
and agent. However, if the intended action was
triggered even though one or more words were tran-
scribed wrongly, the instruction was still marked as
clean. The users were asked to anonymously send
us or upload their transcript files. We gathered 219
commands in total, of which 182 were annotated
as clean transcriptions.

Our main interest is how the user interacts with
the agent. The usage of two speech-to-text models
enables us to evaluate their performance based on
the preference of the users.

Results. We examine two lexical factors of the
instructions: quantity and quality of the command.
Quantity in this context refers to the length of the
phrase (how many words were used), and quality
is a measure of how large the user’s vocabulary is
(how many different words were used). Table 1
shows relevant statistics regarding the instructions
by each user.

Instruction lengths and vocabulary size were ob-
tained from the cleaned transcripts (only utterances
that the speech-to-text model transcribed correctly).
We found that the range of the instruction length
is quite wide (one to 11 words), but the average
instruction length of 3.7 words suggests that users
tend to use single short commands. The agent can
perform multiple actions, but the players rarely
made use of this. This observation is in agree-
ment with studies by Marge et al. (2020). The
quality of a user’s instructions is defined by their
vocabulary size, which was determined by count-

User1 User2 User3 User4 User5 average
instruction length

(min-max) 1-5 1-7 3-11 1-5 1-11 1.4-7.8

average
instruction length 3.1 3.3 5.8 2.3 3.8 3.7

vocab size 28 53 38 20 38 35.4
M key

(clean output) 44 (27) 0 0 4 (1) 0 9.6

SPACE bar
(clean output) 4 (3) 52 (47) 19 (19) 46 (42) 50 (43) 34.2

Table 1: Relevant interaction data between each user
and the agent: Shortest and longest instruction, av-
erage instruction length, vocabulary size (number of
unique words) and number of times M (SpeechBrain)
or SPACE (Google Speech) was pressed (and how
many times the speech was transcribed well).

Task User1 User2 User3 User4 User5 average
Go to the tree 1 2 2 5 2 2.4
Climb the tree 9 2 5.5
Cross the bridge 10 7 21 12.7
Find red flowers 7 15 11

Table 2: Instructions needed by each user until a task
was completed.

ing the number of unique words uttered by each
user. The average vocabulary size is 35.4 words.
User 4, who uttered the shortest instructions on
average, also has the smallest vocabulary size (20
words), and User 2 has the largest vocabulary (53
words), but their instruction length is below aver-
age. Future work will more precisely examine the
interaction between quality and quantity of user
input and whether it corresponds to agent feedback
or individual participant differences.

The linguistic feedback helped the players to
communicate successfully with the agent. They
often repeated their previous command when the
speech-to-text model did not correctly transcribe
their utterance.

Table 2 shows how many instructions the users
uttered until a task was completed. The first task
(go to the tree) can be completed with one com-
mand since the agent has it already in its knowledge
base. This task acts as positive reinforcement for
the user to continue completing tasks and marks
a common point across users where utterances be-
come more task-directed. It was also the only task
that all users completed: User 1 achieved it after
one command, User 4 needed five commands. Only
a single player completed all four tasks, which
could mean that it is not clear how to complete
some of the tasks or that the game is not engaging
enough.

We used multiple speech-to-text models to eval-
uate which model was preferred by our users in
terms of user interaction. Table 1 shows that the

10

SPACE bar was pressed more often than the M key,
meaning that the Google model was accessed more
often. Only User 1 used the M key in the major-
ity of speech commands to the agent and three out
of the five users did not use the second model at
all. This could be due to preferred usability (the
SPACE bar is easier to press than the M key), that
one model produces cleaner and faster transcrip-
tions compared to the other model, or simply that
users forget there is a second model option.

Transcription accuracy from either model can
affect feedback, user-agent interaction, and game
progression in several cases of interest. In one
example, the Google model transcribed the instruc-
tion go up as *co-op, which resulted in the response
how do I co-op? and no movement from the agent.
For User 1 who accessed both models, the Speech-
Brain model transcribed the instruction go left as
go *lift, which resulted in the response of going
somewhere, since the agent recognized only the
word go from its knowledge base. Both examples
exhibit failed instructions from transcription errors,
since the input did not lead to successful parsing of
the intended actions. However, only the former re-
veals the incorrect transcription. In the latter case,
the user is not notified that left was absent from
the feedback because it was transcribed as lift. In
cases of misalignment due to transcription error,
the user could attempt to clarify the command, if
simple clarification seems possible, or opt for a
new speech-to-text model altogether. For future
experiments, we will encourage users to try either
system to see if they have a preference, especially
when it is clear that a command was not properly
interpreted.

Future Work. Results from user-agent interac-
tions in the pilot study inform improvements that
can be made to the game environment. These in-
clude expanding the agent’s baseline knowledge,
increasing the complexity in agent parsing abili-
ties, and more finely incorporating user input into
feedback responses. More grammatically formed
feedback for learned phrases could be processed
with the addition of a semantic parser. The re-
sponse for a learned phrase dance left and slide
right would appear more realistic and sophisticated
if it occurred from the agent in the gerund verb
form as dancing left and sliding right.

We plan to carry out a larger comparative study
of user input in Apple Core-dination. Players will
be divided into two groups: one where the agent

gives individualized linguistic feedback and one
where it gives action-only feedback. By providing
a clear choice of speech-to-text models, we can bet-
ter assess the interaction between model accuracy,
agent response, and user behavior to determine
whether the user’s preference for a model becomes
a factor in resolving agent understanding.

Our current results show variation in quantity
and quality of input across users, which will be in-
vestigated further. The user’s language adjustment
over time may also vary when the agent responses
are shown to increasingly accommodate user input.
Individualized linguistic feedback should better in-
form the user of how the agent processes input and
adapts to new knowledge from the user. It should
also allow users to speak to the agent through pre-
ferred utterances, and help them to resolve commu-
nication errors when they struggle to complete a
task.

Acknowledgments. We would like to thank the
anonymous reviewers for their valuable feedback.
We also thank our anonymous participants for their
help, and Dr. Lucia Donatelli for her insightful
comments and suggestions throughout.

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Joyce Y. Chai, Lanbo She, Rui Fang, Spencer Ottarson,
Cody Littley, Changsong Liu, and Kenneth Hanson.
2014. Collaborative effort towards common ground
in situated human-robot dialogue. HRI ’14, page
33–40, New York, NY, USA. Association for Com-
puting Machinery.

M. Chita-Tegmark, M. Lohani, and M. Scheutz. 2019.
Gender effects in perceptions of robots and humans
with varying emotional intelligence. In 2019 14th
ACM/IEEE International Conference on Human-
Robot Interaction (HRI), pages 230–238.

Lisa Fan, Matthias Scheutz, Monika Lohani, Marissa
McCoy, and Charlene Stokes. 2017. Do we need
emotionally intelligent articial agents? first results
of human perceptions of emotional intelligence in
humans compared to robots. In Proceedings of the
Seventeenth International Conference on Intelligent
Virtual Agents.

Matthew Marge, Felix Gervits, Gordon Briggs,
Matthias Scheutz, and Antonio Roque. 2020. Let’s
do that first! a comparative analysis of instruction-
giving in human-human and human-robot situated

11

dialogue. In Proceedings of the 24th Workshop on
the Semantics and Pragmatics of Dialogue - Full
Papers, Virtually at Brandeis, Waltham, New Jersey.
SEMDIAL.

Martin J. Pickering and Simon Garrod. 2004. Toward
a mechanistic psychology of dialogue. Behavioral
and Brain Sciences, 27(2):169–190.

Mirco Ravanelli, Titouan Parcollet, Aku Rouhe, Pe-
ter Plantinga, Elena Rastorgueva, Loren Lugosch,
Nauman Dawalatabad, Chou Ju-Chieh, Abdel Heba,
Francois Grondin, William Aris, Chien-Feng Liao,
Samuele Cornell, Sung-Lin Yeh, Hwidong Na, Yan
Gao, Szu-Wei Fu, Cem Subakan, Renato De Mori,
and Yoshua Bengio. 2021. Speechbrain. https:
//github.com/speechbrain/speechbrain.

Sida I. Wang, Percy Liang, and Christopher D. Man-
ning. 2016. Learning language games through in-
teraction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2368–2378, Berlin,
Germany. Association for Computational Linguis-
tics.

Anthony Zhang. 2017. Speech recognition (version
3.8).

12

A Example User-Agent Interaction.

Hello!

Can you �nd

the tree?

Great job!

Figure 1: Example interaction.

1

13

B Example Instruction Processing.

Figure 2: Agent processing of the instruction walk to the left.

2

14

C Transcripts.

Figure 3: Transcript file of a completed game.

3

15

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 16–24
August 5, 2021. ©2021 Association for Computational Linguistics

SHAPELURN:
An Interactive Language Learning Game with Logical Inference

Katharina Stein Leonie Harter
Department of Language Science and Technology

Saarland Informatics Campus
Saarland University, Germany

{kstein, leonieh, lgeiger}@coli.uni-saarland.de

Luisa Geiger

Abstract
We investigate if a model can learn natural lan-
guage with minimal linguistic input through in-
teraction. Addressing this question, we design
and implement an interactive language learn-
ing game that learns logical semantic represen-
tations compositionally. Our game allows us
to explore the benefits of logical inference for
natural language learning. Evaluation shows
that the model can accurately narrow down po-
tential logical representations for words over
the course of the game, suggesting that our
model is able to learn lexical mappings from
scratch successfully.

1 Introduction

An open question in NLP research is how models
can learn natural language most successfully and
effectively. Many state-of-the-art semantic parsers
and machine learning algorithms are dependent on
large data sets for successful training. This poses
a problem when using NLP applications for low-
resource languages or specific domains for which
only little annotated training data is available if any
at all (Klie et al., 2020). Interactive NLP Systems
can overcome these problems as they start with a
small or even empty set of training data that gets
extended based on user feedback for the predictions
the model makes based on its current parameters
(Lee et al., 2020). Therefore, learning mappings
from natural language to formal representations
through interaction with a user is an attractive ap-
proach for low-resource settings. The model pa-
rameters are optimized based on feedback and the
resulting data itself can be used as training data for
other models avoiding costly manual annotations.

However, the interaction with a not yet fully
trained model can get monotonous or can lead to
frustration on the part of the users if they do not
benefit from the interaction themselves (Lee et al.,
2020). Wang et al. (2016) present an interactive

language learning setting, called SHRDLURN, in
which a model learns a language by interacting with
a player in a game environment, hence making the
interactive learning setting more attractive and fun
for users. Their model is language independent and
can be taught any language from scratch.

Here we follow Wang et al. (2016) and design
and implement an interactive language learning
game where a model learns to map natural language
to logical forms in a compositional way based on
the feedback provided by the player1. Whereas
Wang et al. (2016)’s model learns to map instruc-
tions to executable logical forms, we aim to learn
logical formulas that evaluate to truth values with
respect to the current state of the game environment.
This decision was taken because the additional in-
formation about the truth can be incorporated in the
parsing and learning process in order to already re-
strict the potential logical formulas. Overall, we are
trying to answer the following research questions:
Can we implement a model that 1) can learn a nat-
ural language from scratch only from interacting
with a user and 2) is not dependent on any language
specific syntax and is hence language independent.

2 Previous Work

Several approaches map natural language to logical
form for its ability to model inferences. Zettle-
moyer and Collins (2005) present a learning algo-
rithm for mapping sentences to their lambda calcu-
lus semantic representations and automatically in-
ducing a combinatory categorical grammar (CCG).
Zettlemoyer and Collins (2007) extend this algo-
rithm to make the grammar more flexible. Pasupat
and Liang (2015) also present a flexible semantic
parsing framework, the floating parser, for learning
mappings from natural language to logical forms

1The complete code is available under https://
github.com/itsLuisa/SHAPELURN

16

in the lambda dependency-based compositional se-
mantic language (Liang, 2013). Liang and Potts
(2015) present a framework for learning to map
natural language utterances to logical forms that
combines the principle of compositionality with a
standard machine learning algorithm.

Current approaches that aim at overcoming the
need for costful annotated training data include the
interactive human-in-the-loop method where a hu-
man corrects annotations predicted by a machine
learning system and this feedback is used to im-
prove future predictions. Klie et al. (2020) use this
approach for the task of Entity Linking and He et al.
(2016) apply the approach to a CCG parser, thereby
improving parsing performance. Goldwasser and
Roth (2014) present a learning approach where a
model learns to map natural language instructions
to logical representations of solitaire game rules
based on feedback. Finally, Zhang et al. (2018)
present a game for grounded language acquisition
where a human teaches an agent language from
scratch in a natural language conversation.

3 From SHRDLURN to SHAPELURN

3.1 Game Design

Wang et al. (2016) designed their model to perform
a block building task in 3-D space using natural lan-
guage instructions from the player. The computer
and player work together towards a shared goal
(a specific block position) while only the player
knows the goal and only the computer can move
the blocks. The more successful the model learns
the human’s language, the faster this shared goal
can be reached (Wang et al., 2016).

Based on this idea, we design a 2-D game envi-
ronment where the model and player work towards
teaching the model a language with the user giving
descriptive input about the environment. The user
is presented with a randomly generated picture dis-
playing varying numbers of objects which have one
of three shapes (circle, square, triangle) and one of
four colors (red, blue, yellow, green) (see Figure
1). The picture corresponds to a 4× 4-grid which
is internally represented as a matrix allowing for
simplified spatial calculations.

The user is asked to describe one or more of
the displayed objects by typing in one phrase in
a language of their choice. Importantly, this lan-
guage should be kept consistent in order for the
computer to recognize language specific patterns.
The program proceeds by parsing the input into

Figure 1: The interface displaying three randomly gen-
erated objects the user can use to build an utterance

a logical formula, comparing it to the matrix and
then making a guess on which object(s) the user
was referring to by marking them with a black bor-
der. The user can then provide feedback in terms of
selecting the right marking by skipping through the
computer’s guesses which show up in descending
order according to their probability (see A.1). Like
this, the feedback is specific enough for the model
to learn lexical mappings.

This process is repeated over 4 levels of alter-
nating complexity (regarding both the number of
displayed blocks and the length of the input) each
consisting of 20 (level 2) or 15 (other levels) pic-
tures. The learning algorithm is responsible for the
guesses to improve as the game proceeds and lets
the model adapt to the input language.

3.2 Preprocessing and Parsing

We tokenize, lowercase and stem the input, since
learning is much quicker if it is clear that e.g. trian-
gle and triangles refer to the same shape. In order
to stem language independently, we use a cosine
similarity based heuristic. To compare two tokens,
we transform them into vectors with length of the
longer one. If they have the same character at a
position, the vectors get a 1 there. Otherwise one
vector gets a 1 and the other a -1. If the cosine
similarity of the vectors is > 0.65, we assume the
tokens to belong to the same word (see Figure 2).

Figure 2: Two stemming examples

17

Since Liang and Potts (2015)’s framework2,
which we use as groundwork, employs a CYK
parser that forces players to adhere to a strict syn-
tax, we equipped it with Pasupat and Liang (2015)’s
floating parser instead. This parser stores interme-
diate results in a chart according to their semantic
category c and size s (Figure 3), but does not con-
sider which indices the covered tokens span. This
allows to parse syntactic structures without binding
the user to a certain syntax. We adjust the three
derivation rules for parsing to our grammar:

(1) (TokenSpan, i, j)[s]→ (c, 1)[f]

(2) ∅ → (c, 1)[f]

(3) (c1, s1)[f1] + (c2, s2)[f2]→ (c, s1 + s2)[f1(f2)]

Rule (1) is a lexical rule matching a token span
from index i-j to a rule in the lexicon entry of the
word in this span telling us which category c and
which function f to use. Rule (2) allows us to
establish lexical logical forms matching words we
have not seen in the input and proceeds with these
”imaginary tokens” as in (1). It is used to create
the formula in the parse chart field (E,1) in Figure
3. Rule (3) combines parse items of categories the
grammar allows to combine. We only allow each
token to be used once per parse.

Previous work used beam search to address the
huge number of possible parse trees (Wang et al.,
2016; Pasupat and Liang, 2015). However, as beam
search does not guarantee that the correct parse is
kept we decided to not use a heuristic approach
for pruning. Instead, we restrict the number of
parses by building only formulas up to the size
corresponding to the number of tokens in the input
plus four. Additionally, we allow each token to be
mapped to only one lexical rule per parse. This
averts building non-sense constructions like (ex-

ist([2])(blue(BF(triangle,all))))(exist([1])(blue(BF(square,all))))

for the utterance ”two triangles and one blue
square” (considering the picture in Figure 1).

Figure 3: Parse Chart for ”one blue circle”

3.3 Grammar
For our grammar we use the same overall structure
as Liang and Potts (2015) (see A.3 for the complete

2https://github.com/cgpotts/annualreview-complearning

grammar). The main information is encoded in the
lexicon which is a dictionary that pairs words with
a list of corresponding lexical rules. A lexical rule
is a triple of a category (B, C, E, N, POS or CONJ),
a logical form and a weight. For example, the word
”red” is paired with (C, red, w), where C is the
category, red the logical form as defined by the
grammar and w the current weight.

The logical formulas for entries of category B
and N are evaluated directly whereas the other log-
ical forms are functions whose evaluation is speci-
fied separately using lambda calculus. For exam-
ple, red is defined as the function λx(BF (red, x))
where BF (condition, list) is a function that
yields all blocks from list that fulfill condition.

We use a set of binary CFG rules to define which
categories can be combined and how logical for-
mulas are applied to each other to yield larger for-
mulas, e.g. BC→ C B specifies that formulas of
category C and B can be combined to a formula of
category BC by applying C to B.

Each completed formula V is composed of at
least one sub-formula of the categories B, N, E
and C, and the categories POS and CONJ allow to
build more complex formulas for inputs including
relative positions and conjunctions.3 Descriptions
not specifying a color are handled by rule (2) of
the floating parser that introduces a lexical rule of
category C with an empty condition into the parse.
For lower parsing complexity, users are instructed
to mention only the objects, e.g. ”a circle” instead
of ”there is a circle”. We model the implicit exis-
tential quantification with a lexical rule for exists
that gets introduced into each formula by rule (2).

3.4 Learning Algorithm
Like Wang et al. (2016), we aim to learn correct
lexical rule(s) for all words in the lexicon. Initially,
every new word gets paired with every lexical rule.
Following Zettlemoyer and Collins (2005)’s ap-
proach in a simplified way, we delete the most un-
likely pairs during training leaving the correct ones
remain. We use Liang and Potts (2015)’s learn-
ing algorithm, a linear regression model optimized
with stochastic gradient descent (SGD), which re-
turns weight changes for word-rule pairs improving
the model. Whereas Wang et al. (2016)’s features
consist of n-grams and skip-grams for the utterance,
tree-grams for the formulas and a formula depth,

3The denotation of a formula V consists of the truth of the
description w.r.t. the picture and the list of blocks that make
the description true.

18

our features only contain a list of word-rule pairs.
This is sufficient, since the formula’s structure and
depth and the distances between combinable words
are handled by the floating parser.

After a training round we get weight changes for
all words in the input paired with the rules used
to build the gold standard logical formulas and
the ones predicted by the model. We sum up the
weights for each pair after every training step. If
a weight sum reaches the lower threshold of -0.1,
we delete this rule for the corresponding word. If
all pairs get weight change 0, SGD has converged,
so the model is optimal for the current training
batch. Hence, the word rule pairs used to build the
formulas for the current training utterance must be
the correct ones and all others can be deleted. If a
weight sum reaches the upper threshold of 1.0, we
assume this rule to be correct and delete all other
rules for the word with weight sum ≤ 0.

As different formulas can have the same deno-
tation (see Figure 4), we group all formulas evalu-
ating to true by the guessed blocks they evaluate
to. Only these guesses are then presented to the
player. The formulas leading to the correct blocks,
as determined by the user feedback, are used as
gold standard training batch. During training we
collate all possible parses. Otherwise too much
information is lost, which causes deletions of cor-
rect rules. Liang and Potts (2015)’s cost function
gave us too few weight changes 6= 0. Therefore,
we average over all rules of a formula if this rule
was also used in the gold formulas (value 1) or not
(value 0):

1

n

n∑

i=1

{
0 if(wi, ri) in goldword rule pairs

1 otherwise

n: number of tokens wi: token number i

ri: rule applied to wi to get current formula

gold word rule pairs: word rule pairs leading to gold formula

Figure 4: Four formulas with the same denotation

4 Evaluation

For a preliminary evaluation of the performance of
the model we collected and analyzed data of seven
participants who played the game in English (3),
Spanish (1), German (2) and Esperanto (1). One
of the participants completed two levels, four three
levels and only two completed all four levels.

We planned to follow Wang et al. (2016) and
count how often the user needs to click ”NEXT”
i.e. how far down the ranked parses the correct
solution is. For our project to be viewed as success-
ful, this number should decrease over the course
of the game. Due to the simple game design, the
exclusion of formulas evaluating to false and the
grouping of identical markings, the total number
possible markings is very low throughout the whole
game and so is the number of clicks needed to ar-
rive at the desired one (M = 1.27). But because of
our simplified game setting, this cannot be directly
compared to Wang et al. (2016)’s results. Since
the number of clicks almost does not change in our
case, it is not a meaningful measure for evaluating
the improvement of the model.

To assess performance within the model itself,
we analyze the remaining rules for each word. Ini-
tially, there are 20 possible rules per word as each
new word gets paired with each rule from the lexi-
con and ideally exactly the correct rule(s) for each
word should be left finally. Figure 5 shows the
average number of rules per word left after each
level. As our data set is very small the results have
to be taken with a grain of salt. Nevertheless, the
plot reveals that the model was able to decrease the
number of possible rules per word by about 15 (see
A.2). Manual investigation of the remaining rules
at the end of level 3 revealed a total of 1202 dele-
tions (63.9%), out of which only seven were falsely
deleted (0.58%). This indicates that our model is
able to successfully exclude incorrect mappings.

5 Discussion

Although, the setting of our language learning
game is simpler than SHRDLURN, the 2-D grid
environment allows to elicit different kinds of in-
puts that involve the composition of colors and
shapes as well as relative spatial relations between
objects that can be nested. In contrast to Wang
et al. (2016), the player task in our game is not
to give instructions to reach a specified goal state
from the current state but to describe some part of
the current state of the game (picture). Although

19

Figure 5: Mean number of rules per word left after each
level. Error bars indicate 95% confidence intervals.

we restrict the complexity of the descriptions in the
first levels to improve the first learning phase, the
player task is in general a very open task as there
are many ways to describe objects in a grid and
the player can freely choose the objects to describe
as well as the properties used to reference them.
This makes the setting particularly interactive and
allows to investigate in which ways humans choose
and formulate their descriptions.

The design of the player task allows us to use the
truth values of the parses in order to present only
the true guesses to the player. Hence, the number
of potential denotations is limited by the number
of possibilities to mark different combinations of
objects in the picture. This decreases the number of
denotations the player can choose from compared
to Wang et al. (2016) where the number of potential
successor states for a current state is much higher.
Although our design inhibits to use the number of
clicks during the game as evaluation measurement,
we see the overall low number of guesses as an
advantage: the player spends less time on clicking
through wrong guesses even in cases where the
correct denotation is ranked very low what can
improve the playing and success experience.

We find that the informativeness of feedback
plays a crucial role in interactive learning. Our re-
sults indicate that making the current ”knowledge”
of the computer as explicit as possible, e.g. by
marking all blocks mentioned in the input, could
be a promising starting point as simple user feed-
back can provide enough information for learning.

During testing we found that the learning
progress depends on specific combinations of de-
scriptions and pictures. Learning appears to benefit
from situations where the correct formula for the
description differs in one lexical rule from other
true parses: ”a red circle” is more informative with
respect to the meaning of ”red” for a picture that

shows a red circle and a circle in another color than
for a picture displaying only one (red) circle.

The main advantage of using only input from
the player to train the model is its independence
of the availability of (annotated) training data as
opposed to approaches requiring large data sets
such as neural approaches. Hence, our approach
is applicable for low resource settings. However,
our model requires a grammar that covers all se-
mantic concepts that can be part of the interaction.
Due to our game design, the number of concepts
our grammar needs to address is very limited but
extending the domain requires increasing the num-
ber of handwritten rules. Therefore, scaling the
model to larger domains would require the costful
construction of a large-scale grammar.

Concerning the scalability of the game environ-
ment, the model could be easily adjusted to create
more complex pictures as long as an adequate in-
ternal representation is found.

A key challenge of our work was the high uncer-
tainty of the model. The computer has no initial
knowledge about language and must consider each
lexicon entry for each word. Additionally, the float-
ing parser can combine the corresponding logical
formulas in any order, discard tokens from the in-
put and add additional logical forms. The number
of parses is thus huge for short sentences and grows
exponentially with sentence length, vastly increas-
ing parsing and learning times. Future work could
use beam search at higher levels to handle this.

6 Conclusion

We implement an interactive language learning
game where the computer learns natural language
based on user feedback. We find that learning inter-
actively from scratch with a language independent
model is complex due to the huge number of po-
tential parses. Our results indicate that our model
is able to learn language through interaction and
low-resource domains and languages could benefit
from such an approach. Future work will address
the trade-off between increasing flexibility and in-
creasing processing times.

Acknowledgments

We would like to thank Dr. Lucia Donatelli for the
valuable discussions and support throughout the
project development and writing process. Further,
we would like to express our gratitude towards the
participants of our evaluation experiment.

20

References
Dan Goldwasser and Dan Roth. 2014. Learning from

natural instructions. Machine learning, 94(2):205–
232.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2337–2342, Austin, Texas. Association for Compu-
tational Linguistics.

Jan-Christoph Klie, Richard Eckart de Castilho, and
Iryna Gurevych. 2020. From Zero to Hero: Human-
In-The-Loop Entity Linking in Low Resource Do-
mains. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6982–6993, Online. Association for Computa-
tional Linguistics.

Ji-Ung Lee, Christian M. Meyer, and Iryna Gurevych.
2020. Empowering Active Learning to Jointly Op-
timize System and User Demands. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4233–4247, On-
line. Association for Computational Linguistics.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. arXiv preprint arXiv:1309.4408.

Percy Liang and Christopher Potts. 2015. Bringing ma-
chine learning and compositional semantics together.
Annual Review of Linguistics, 1(1):355–376.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Sida I. Wang, Percy Liang, and Christopher D. Man-
ning. 2016. Learning language games through in-
teraction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2368–2378, Berlin,
Germany. Association for Computational Linguis-
tics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, USA. AUAI Press.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing
to logical form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 678–687.

Haichao Zhang, Haonan Yu, and Wei Xu. 2018. Inter-
active language acquisition with one-shot visual con-
cept learning through a conversational game. arXiv
preprint arXiv:1805.00462.

A Appendices

A.1 Game Design

Level Instruction
0 Welcome to SHAPELURN, where

you can teach the computer any
language of your choice!
You will be looking at different
pictures and describing them to the
computer in one sentence.
There will be four levels with
different constraints on the
descriptions.
Please use short sentences in the
first two levels and do not use
negation at all.

1 Use only the shapes and/or the num-
ber of blocks for your description
e.g.: ’a circle’ or ’two forms’

2 You can additionally describe the
blocks by color
e.g: ’two blue forms’

3 Now you can describe relations
between blocks and use conjunction
(please don’t use colors)
e.g.: ’a circle under a square’

4 Describe whatever you want!

Table 1: The overall instructions for the input descrip-
tions (0) and the level specific constraints for the de-
scriptions.

Figure 6 - 8 illustrate the course of the game for
an example picture and the input description ”two
triangles”. The user is shown a picture and enters
a description. Then the computer makes a guess
and the user clicks NEXT until the correct guess is
shown.

21

Figure 6: Grid generated by the model in level 1

Figure 7: First guess of the model, user clicks NEXT

Figure 8: Next guess is correct, user clicks YES

A.2 Evaluation

Level Mean SD Participants
1 14.801 0.114 7
2 8.691 1.319 7
3 7.116 1.250 6
4 5.280 0.396 2

Table 2: Mean and sd for the average number of rules
per word in the lexicon at the end of each level

A.3 The Grammar

Rule
1 V→ EN BC
2 V→ CONJ 1 V
3 CONJ 1→ CONJ V
4 EN→ E N
5 BC→ C B
6 BC→ POS NB BC
7 POS NB→ POS N BC
8 POS N→ POS N

Table 3: The rules of the CFG grammar used to derive
the input utterances and the logical forms

22

Lexical Rule: (category, logical form, weight) Example Word
1 (B, BF ([λb(b.shape == ”rectangle”)], all), w) ”square”
2 (B, BF ([λb(b.shape == ”circle”)], all), w) ”circle”
3 (B, BF ([λb(b.shape == ”triangle”)], all), w) ”triangle”
4 (B, BF ([], all), w) ”form”
5 (N, range(1, 17), w) ”a”
6 (N, [1], w) ”one”
7 (N, [2], w) ”two”
8 (N, [3], w) ”three”
9 (C, green, w) ”green”
10 (C, blue, w) ”blue”
11 (C, yellow, w) ”yellow”
12 (C, red, w) ”red”
13 (POS, over, w) ”over”
14 (POS, under, w) ”under”
15 (POS, next, w) ”next [to]”
16 (POS, left, w) ”[to the] left [of]”
17 (POS, right, w) ”[to the] right [of]”
18 (CONJ, und, w) ”and”
19 (CONJ, oder, w) ”or”
20 (CONJ, xoder, w) ”or”
21 (C, anycol, w) ∅
22 (E, exist, w) ∅ / [there is]
Function BF (condition, all) returns all blocks from the list of all blocks of the
picture that fulfill condition condition

Table 4: The lexicon of the grammar where each lexical rule is triple of (category, logical form, weight) and English
example words for each rule.

23

Logical Form from Lexicon Function for interpretation
1 exist λn(λb(update guess(b) and len(b) in n))

2 green λx(BF ([λb(b.color == ”green”)], x))

3 blue λx(BF ([λb(b.color == ”blue”)], x))

4 yellow λx(BF ([λb(b.color == ”yellow”)], x))

5 red λx(BF ([λb(b.color == ”red”)], x))

6 anycol λx(BF ([], x))

7 over λn(λx(λy(PT (y, x, n, ”o”))))

8 under λn(λx(λy(PT (y, x, n, ”u”))))

9 next λn(λx(λy(PT (y, x, n, ”n”))))

10 left λn(λx(λy(PT (y, x, n, ”l”))))

11 right λn(λx(λy(PT (y, x, n, ”r”))))

12 und λv1(λv2(v1 and v2))

13 oder λv1(λv2(v1 or v2))

14 xoder λv1(λv2((v1 and not v2)or(v2 and not v1))))

Function BF (condition, x) returns all blocks from the list x that fulfill condition condition
Function PT (y, x, n, ”pos”) returns all blocks from the list y that stand in position ”pos” to n
blocks from list x
Function update guess(b) returns a list of all mentioned blocks by recursively backtracking from
the blocks in list b

Table 5: The functions used to interpret the logical forms for the categories E, C, POS and CONJ.

CFG Logical Form Denotation
1 B→ circle BF(circle, all) the list with all blocks of the picture with shape circle
2 N→ one [1] [1]
3 C→ blue blue the C s.t. C(x) returns a list of all blocks of x with color blue
4 POS→ over over the POS s.t. POS(y)(x)(n) returns the sublist of blocks from y that

are located over n blocks from x
5 E→ ∅ exist the E s.t. E(b)(n) returns True if length of b satisfies n and False

otherwise
6 BC→ C B C(B) application of denotation of C to denotation of B
7 V→ EN BC EN(BC) application of denotation of EN to denotation of BC
8 EN→ E N E(n) application of denotation of E to denotation of n
Input utterance: ”one blue square over a red triangle”
Logical Form: exist([1])(over(range(1, 17))(blue(BF (square, all)))(red(BF (triangle, all))))
Denotation: True and the list of guessed blocks consisting of the blue square and the red triangle

Table 6: Illustration of the way in which the grammar works for the example ”[there is] one blue square over
a red triangle”. The upper part shows the lexical rules and the mid part the combination rules needed for the
example sentence. The lower part shows the input utterance with its simplified logical form and the corresponding
denotation with respect to the picture in Figure 1 in the paper.

24

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 25–31
August 5, 2021. ©2021 Association for Computational Linguistics

A Proposal: Interactively Learning to Summarise Timelines by
Reinforcement Learning

Yuxuan Ye
Intelligent Systems Laboratory

University of Bristol
yuxuan.ye@bristol.ac.uk

Edwin Simpson
Intelligent Systems Laboratory

University of Bristol
edwin.simpson@bristol.ac.uk

Abstract

Timeline Summarisation (TLS) aims to gener-
ate a concise, time-ordered list of events de-
scribed in sources such as news articles. How-
ever, current systems do not provide an ade-
quate way to adapt to new domains nor to fo-
cus on the aspects of interest to a particular
user. Therefore, we propose a method for in-
teractively learning abstractive TLS using Re-
inforcement Learning (RL). We define a com-
pound reward function and use RL to fine-
tune an abstractive Multi-document Summari-
sation (MDS) model, which avoids the need to
train using reference summaries. One of the
sub-reward functions will be learned interac-
tively from user feedback to ensure the con-
sistency between users’ demands and the gen-
erated timeline. The other sub-reward func-
tions contribute to topical coherence and lin-
guistic fluency. We plan experiments to eval-
uate whether our approach could generate ac-
curate and precise timelines tailored for each
user.

1 Introduction

Notable events often happen over a long period. For
example, COVID-19 caused immeasurable dam-
age around the world, lasting for more than a year.
When reviewing different aspects of the disaster,
the huge number of reports and news articles makes
it difficult to trace the development of events such
as outbreaks, policy interventions and vaccination
efforts. TLS can solve this problem by identify-
ing significant dates and summarising events of
sub-topics.

Most prior TLS works focused on producing
extractive timelines, which copies the original sen-
tences from input documents (Martschat and Mark-
ert, 2018; Nguyen et al., 2014; Yan et al., 2011). Ir-
relevant and repeated information may be extracted
in this process, decreasing the quality of the gen-
erated timelines. Abstractive timeline summari-

sation methods can address this problem (Steen
and Markert, 2019; Barros et al., 2019) but few
neural network models have been proposed due
to the lack of reference timelines for supervised
learning. Producing reference timelines by human
requires expertise to capture important temporal
information and sub-events from the source doc-
uments, thus it is extremely expensive. In MDS
tasks, researchers have tried heuristics-based and
unsupervised methods to address the reference data
shortage problem (Ryang and Abekawa, 2012; Ri-
oux et al., 2014). However, their results on some
evaluation metrics, like ROUGE-2, only reached
half of the upper bound. Gao et al. (2018) showed
that interactive learning could improve the perfor-
mance of an MDS system via leveraging users’
preference, which is relatively easy to obtain, and
does not require reference summaries. Therefore,
we take inspiration from their work to propose an
interaction-based abstractive TLS framework.

Martschat and Markert (2018) treated the TLS
task as an MDS task and proposed a modular sum-
marisation method, which achieved the state of the
art and is adaptable. However, its adaptation re-
quires abstracting mathematical constraints from
concrete requirements. This contrasts with inter-
active learning (IL), which greatly decreases the
cognitive burden for humans by receiving user feed-
back to refine summaries (Gao et al., 2018; Lin
et al., 2010). Comparing to traditional approaches,
interaction enables the model to learn from the
users, thus it is possible to accurately tailor and
refine timeline summaries according to users’ de-
mands.

In this paper, we propose an interaction-based
abstractive timeline summarisation framework us-
ing deep RL. By learning a reward signal from
user feedback, we can fine-tune a pretrained MDS
model for the TLS task via a small number of in-
teractive learning rounds. Therefore, our frame-

25

Figure 1: The workflow of our event detection timeline
summarisation method

work should be capable of generating timeline sum-
maries with high text quality after enough episodes
of training. And we plan both simulation and real-
user experiments to evaluate the framework on two
benchmark TLS datasets, Timeline17 (Binh Tran
et al., 2013; Tran et al., 2013) and Crisis (Tran et al.,
2015).

The workflow of our model (Figure 1) mainly
follows the event detection method, CLUST (Gha-
landari and Ifrim, 2020), which identifies sub-
events first and then generates summaries for them.
Due to the RL-based interactive learning process
in the framework, our model can be automatically
adapted to new topics and adjusted by users’ inter-
ests.

1. Firstly, we embed source documents into vec-
tors and cluster them in vector space. Each
cluster represents a sub-event in a large topic;

2. In the next step, we assign a date to each clus-
ter. And they will be ranked by a metric to
identify important sub-events;

3. Then it comes to our RL-based interactive
learning process.

(a) An abstractive MDS model will generate
summaries for each sub-event. All sum-
maries will be ordered by date to form a
timeline.

(b) The user can preview the timeline in this
step and respond by expressing prefer-

ences over keywords or by comparing
the new summary to an earlier version.

(c) Using a reward function that evaluates
the consistency between the produced
timeline and those user preferences, of-
fline RL then tunes the model and starts
another round of interactive learning.

Our main contribution is a proposed interactive
method for generating timelines for news, which
adapts to user feedback through RL fine-tuning.

2 Related Work

Extractive Timeline Summarisation Prior ex-
tractive methods (Martschat and Markert, 2018;
Ghalandari, 2017) defined several objective func-
tions to assess the quality of timelines, including
coverage of summaries and temporal information.
These methods greedily select one sentence in each
iteration to maximise the combined objective func-
tion. Our reward function is also modular but lacks
monotonicity and submodularity, hence we use RL
instead of a greedy algorithm.

Interactive Summarisation Instead of produc-
ing reference texts by crowdsourcing, obtaining in-
formation (e.g., keywords) via user interaction can
be more practical to obtain training data. Liu et al.
(2012) outperformed previous extractive MDS ap-
proaches on ROUGE-based metrics by querying
topic words from users. Gao et al. (2018) collected
pairwise comparisons between summaries from
simulated users, which are then used to train a
ranker without any reference data, and fixed the ef-
ficiency issue of IL. Due to the similarity between
the MDS and TLS task, IL is expected to solve the
reference timelines shortage problem as well, with-
out increasing many computation expenses. So we
introduce interaction into an RL-based TLS model
for the first time.

Reinforcement Learning in Natural Language
Generation (NLG) Recent research on applying
RL on NLG tasks has received some success. Some
prior works on dialogue systems (Song et al., 2020;
Mesgar et al., 2020) utilized RL-based fine-tuning
method to ensure the factual consistency of the re-
sponse. In automatic summarisation (Gao et al.,
2018, 2019; Simpson et al., 2020), IL is applied
to learn a reward function from users, so that RL
agents could learn a policy to summarise text in-
directly under users’ guidance. However, for the

26

TLS task, we are the first to use RL to generate
summaries for key dates.

3 Method

All components of our method shown in Figure 1
will be introduced below.

3.1 Event Detection Timeline Summarisation

Clustering For each input document, we use
the sentence-transformer (Reimers and Gurevych,
2019) based on DistilRoBERTa (Liu et al., 2019) to
embed its sentences. Then we represent the docu-
ment by the mean of the sentence vectors expecting
that dense vectors could capture more information
in text than TF-IDF vectors, as used in Steen and
Markert (2019) and Ghalandari and Ifrim (2020).

Next, we use Affinity Propagation (AP) (Frey
and Dueck, 2007) to cluster all the documents. AP
is an unsupervised method, which automatically
determines the number of clusters. AP uses an
affinity matrix A, constructed by the Euclidean
distance of each pair of document vectors.

To detect events accurately, we add constraints
to the clustering algorithm. If two reports were
published too apart from each other, although, with
a small distance in vector space, they should be
considered to belong to two similar but different
sub-topics. In our model, we keep the setting of
prior work (Steen and Markert, 2019). If di and
dj were published no more than t day(s) apart,
Ai,j = −‖~di− ~dj‖1/22 , otherwise it will be assigned
by 0.

Date Assignment By clustering all the docu-
ments, reports describing the same event are gath-
ered. However, temporal information is equally as
important as summaries in TLS, which differs from
MDS. Martschat and Markert (2018) and Chen
et al. (2019) adapted MDS methods to make them
temporally sensitive. Both received outstanding
results. In our work, we use HeidelTime (Strötgen
and Gertz, 2015) to identify and count date ex-
pressions in documents. Following Ghalandari and
Ifrim (2020), we assign each cluster with the most
frequently mentioned date in it.

Cluster Ranking Some clusters contain less im-
portant information than others. According to Gha-
landari and Ifrim (2020), the importance of a clus-
ter is in proportion to the number of sentences that
mentions the assigned date to some extent. To cap-
ture useful information, we use the same setting

and only summarise the top-k important clusters.

Cluster Summarisation & Timeline Construc-
tion Summarising the sub-topic of a key date can
be regarded as an MDS task, as each event has mul-
tiple sources. We plan to fine-tune an abstractive
MDS model for this task, which will be introduced
later. After all the top-k clusters are summarised,
we combine all the summaries by date to generate
a timeline. We follow the setting of Ghalandari and
Ifrim (2020), which skips a cluster when its date is
already used by another prior cluster.

3.2 Interaction

Figure 2: A view of interaction process

Every time the timeline is generated, the user can
preview it and provide several types of feedback
such as keywords and dates that must be included
or excluded, and expressing preferences against
previous version of the timeline. Given these feed-
back, we can renew our reward function and fine-
tune the summariser via hundreds of RL episodes.
Then we can produce a new timeline to start an-
other round of interactive learning. After several
interactive learning rounds, our model would be
able to generate and tailor a high-quality timeline
for the user.

3.3 RL-based fine-tuning

Timeline17
AR-F1 AR-F2

CLUST 0.082 0.02
PEGASUS-Multi News 0.089 0.019

Table 1: Performance of two methods evaluated by
Alignment ROUGE-1 and Alignment ROUGE-2.

PEGASUS We use PEGASUS (Zhang et al.,
2020) to solve the MDS task on each cluster. PE-
GASUS is an abstractive summariser providing var-
ious fine-tuned versions. PEGASUS-Multi News

27

is fine-tuned on Multi-News (Fabbri et al., 2019)
to summarise news articles. We found that
PEGASUS-Multi News outperforms the state-of-
the-art extractive event detection method, CLUST
(Ghalandari and Ifrim, 2020), when applying it
directly on clusters without fine-tuning (Table 1).
Therefore, it provides a strong basis for our follow-
ing work.

Figure 3: A view of our RL method

PEGASUS-RL Although PEGASUS is power-
ful enough to generate high-quality summaries, we
still need RL to ensure the summaries are topically
coherent and linguistically fluent. The PEGASUS
model generates summaries token-by-token. When
the last token, i.e. 〈eos〉, is generated, the reward
component will assess the quality of the summary
and produce a reward signal to update the sum-
marising policy (Figure 3). This whole process
will tune the parameters of PEGASUS so that it
enhances the quality of the generated summary as
well.

Action and Reward Function Let D =
(d1, d2, . . . , d|D|) be a document cluster describ-
ing the same sub-topic. P = (p1, p2, . . . , p|P |)
denotes the preferences between different ver-
sions of the generated timelines. Assuming that
p1, p2, . . . , p|P | are several different pairwise la-
bels, collected over a number of rounds, com-
paring several different versions of the timeline.
The words, dates and keyphrases that the user
wants to include and exclude are marked as M =
(m1,m2, . . . ,m|M |) and N = (n1, n2, . . . , n|N |)
individually. And S = (t1, t2, . . . , t|S|) is the sum-
mary generated for cluster D. Our goal is to fine-
tune a single model to generate a summary S, for
each cluster D that is linguistically fluent and topi-

cally coherent with any di and consistent with any
piece of feedback pi,mi, ni.

We regard each token generation process in Fig-
ure 3 as an action of PEGASUS. Our model is
expected to generate a summary with topical coher-
ence, linguistic fluency and consistency with the
user’s demands for each cluster. Thus, a compound
reward function is proposed, which consists of four
sub-reward functions: R1 guarantees topical co-
herence with the cluster, R2 enforces consistency
with each piece of individual user feedback, R3

and R4 contribute to the linguistic fluency of the
produced summaries. The reward of the cluster D
is the weighted sum of them.

RC = γ1R1 + γ2R2 + γ2R3 + γ4R4 (1)

where γ1,2,3,4 are the normalization factors that
sum to one. The whole training signal R is the sum
of k selected clusters’ rewards.

Topical coherence sub-reward (R1 and R2)
Topical coherence is the pivotal property of a sum-
mary. We measure how topically coherent the sum-
mary S is with a clusterD by their cosine similarity.

R1 = cos (~S, ~D) (2)

R2 is the core reward function in the fine-tuning
process, which will be updated in each interactive
learning round. We embed all the keywords in M
and N to dense vectors and measure their topic
coherence by cosine similarities. Due to N rep-
resents the words that the user wants to exclude,
we set its reward to be negative. To accommodate
pairwise preference labels, we learn a ranking func-
tion using a random utility model (Thurstone, 1927;
Mosteller, 2006). This provides a scoring function
that should also be added to R2.

R2 = w1score(~S, ~P)

+ w2

∑

mi∈M
cos (~S, ~mi)

− w3

∑

ni∈N
cos (~S, ~ni)

(3)

where w1,2,3 are the normalization factors.

Linguistic fluency sub-reward (R3 and R4)
Prior work (Mesgar et al., 2020) has shown that
applying RL to improve evaluation metrics’ results
might lead to decreasing in linguistic quality. To

28

avoid that, we apply two sub-reward functions to
our model. R3 utilizes a language model which has
been fine-tuned on a similar news dataset:

R3 =
α−N(S)

α
(4)

where N(·) is the Negative Log-likelihood loss
function, and α is the maximum of N(·) so that it
can normalize R3. R4 reduces repeated words in
summaries, by penalizing repeated unigrams:

R4 = 1− #repeated tokens in summary

#tokens in summary
(5)

Training In this work, RL attempts to learn a
policy Pθ that generates a summary maximizing
the expectation of the reward function.

L = ES∼Pθ [R(S, (C,F))] (6)

However, RL is known for high variance issue
when sampling the gradient. To solve this prob-
lem, we plan to run several hundred episodes of RL
to increase the size of the sample and reduce the
variance.

In addition, according to Mnih et al. (2016) and
Mesgar et al. (2020), we can tune the policy func-
tion by actor-critic, which could further reduce vari-
ance in learning. In actor-critic algorithm, the pol-
icy function Pθ is regarded as the actor, and we
define the residual of temporal difference Ψt to be
the critic. Although Ψt is a biased estimation of
the reward function R, we can reduce the variance
via replacing the reward function R in the policy
gradient equation (7) by Ψt, as in the following:

g = E

[∑

t=0

Ψt∇θ logPθ(at|st)
]

(7)

4 Plan for Evaluation

As a kind of summarisation task, correctly extract-
ing temporal information is the special challenge
of TLS, which makes the evaluation more com-
plex as well. In our work, we plan to evaluate our
model by the suitable evaluation metrics proposed
by Martschat and Markert (2017).

Concatenation ROUGE Discard all dates and
concatenate all summaries in the reference and the
output timeline. Evaluate ROUGE on two concate-
nated texts.

Alignment ROUGE Align the output timeline
with the reference by the similarity and distance of
their dates and apply ROUGE on them. Aligned
summaries with distant dates will be penalized.

User feedback will be generated through mixed
simulations, as in Gao et al. (2019) and studies
with real users. Simulations will rely on references,
from which keywords and dates can be extracted.
Pairwise preferences can be simulated by compar-
ing two summaries to a reference using ROUGE
and selecting the highest-scoring summary. The
system will be tested with different feedback types
(keywords, dates, inclusion/exclusion, and pref-
erences) to determine whether these forms of in-
teraction are feasible to improve the summaries.
However, the simulated user labels will be noisy,
so we intend to evaluate with real users once we
have developed a working system.

5 Summary

We propose an interactive method to summarise
timelines without reference data. In each inter-
active learning round, we first update the reward
function, and then use RL to fine-tune a huge neural
network model. Then the model will generate sum-
maries for each of the important sub-events, which
are identified by textual similarity to the articles in
the corpus. All the summaries will be ordered by
their assigned dates to form a timeline. The user
can preview the timeline and give feedback to start
another round of interactive learning. Part of our
method has been implemented, including PEGA-
SUS to summarise event clusters but without RL
or user feedback. Given the current experiment re-
sults, we can expect better performance after the in-
teraction part implemented. The challenge remains
in RL and designing suitable modes of interaction.
We will move forward to our planned experiments
and report our results in future work.

References
Cristina Barros, Elena Lloret, Estela Saquete, and

Borja Navarro-Colorado. 2019. Natsum: Narrative
abstractive summarization through cross-document
timeline generation. Information Processing &
Management, 56(5):1775–1793.

Giang Binh Tran, Mohammad Alrifai, and Dat
Quoc Nguyen. 2013. Predicting relevant news
events for timeline summaries. In Proceedings of
the 22nd International Conference on World Wide
Web, pages 91–92.

29

Xiuying Chen, Zhangming Chan, Shen Gao, Meng-
Hsuan Yu, Dongyan Zhao, and Rui Yan. 2019.
Learning towards abstractive timeline summariza-
tion. In IJCAI, pages 4939–4945.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li,
and Dragomir R Radev. 2019. Multi-news: A
large-scale multi-document summarization dataset
and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749.

Brendan J Frey and Delbert Dueck. 2007. Clustering
by passing messages between data points. science,
315(5814):972–976.

Yang Gao, Christian M Meyer, and Iryna Gurevych.
2018. April: Interactively learning to summarise by
combining active preference learning and reinforce-
ment learning. arXiv preprint arXiv:1808.09658.

Yang Gao, Christian M Meyer, Mohsen Mesgar, and
Iryna Gurevych. 2019. Reward learning for efficient
reinforcement learning in extractive document sum-
marisation. arXiv preprint arXiv:1907.12894.

Demian Gholipour Ghalandari. 2017. Revisiting
the centroid-based method: A strong baseline for
multi-document summarization. arXiv preprint
arXiv:1708.07690.

Demian Gholipour Ghalandari and Georgiana
Ifrim. 2020. Examining the state-of-the-art in
news timeline summarization. arXiv preprint
arXiv:2005.10107.

Jimmy Lin, Nitin Madnani, and Bonnie Dorr. 2010.
Putting the user in the loop: interactive maximal
marginal relevance for query-focused summariza-
tion. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 305–308.

Yan Liu, Sheng-hua Zhong, and Wenjie Li. 2012.
Query-oriented multi-document summarization via
unsupervised deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 26.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Sebastian Martschat and Katja Markert. 2017. Improv-
ing rouge for timeline summarization. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 285–290.

Sebastian Martschat and Katja Markert. 2018. A
temporally sensitive submodularity framework
for timeline summarization. arXiv preprint
arXiv:1810.07949.

Mohsen Mesgar, Edwin Simpson, Yue Wang, and Iryna
Gurevych. 2020. Generating persona-consistent di-
alogue responses using deep reinforcement learning.
arXiv preprint arXiv:2005.00036.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937. PMLR.

Frederick Mosteller. 2006. Remarks on the method of
paired comparisons: I. the least squares solution as-
suming equal standard deviations and equal corre-
lations. In Selected Papers of Frederick Mosteller,
pages 157–162. Springer.

Kiem-Hieu Nguyen, Xavier Tannier, and Véronique
Moriceau. 2014. Ranking multidocument event de-
scriptions for building thematic timelines. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1208–1217.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Cody Rioux, Sadid A Hasan, and Yllias Chali. 2014.
Fear the reaper: A system for automatic multi-
document summarization with reinforcement learn-
ing. In Proceedings of the 2014 conference on
empirical methods in natural language processing
(EMNLP), pages 681–690.

Seonggi Ryang and Takeshi Abekawa. 2012. Frame-
work of automatic text summarization using rein-
forcement learning. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 256–265.

Edwin Simpson, Yang Gao, and Iryna Gurevych. 2020.
Interactive text ranking with bayesian optimization:
A case study on community qa and summarization.
Transactions of the Association for Computational
Linguistics, 8:759–775.

Haoyu Song, Wei-Nan Zhang, Jingwen Hu, and Ting
Liu. 2020. Generating persona consistent dialogues
by exploiting natural language inference. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 34, pages 8878–8885.

Julius Steen and Katja Markert. 2019. Abstractive time-
line summarization. In Proceedings of the 2nd Work-
shop on New Frontiers in Summarization, pages 21–
31.

Jannik Strötgen and Michael Gertz. 2015. A baseline
temporal tagger for all languages. In Proceedings of
the 2015 conference on empirical methods in natural
language processing, pages 541–547.

30

Louis L Thurstone. 1927. A law of comparative judg-
ment. Psychological review, 34(4):273.

Giang Tran, Mohammad Alrifai, and Eelco Herder.
2015. Timeline summarization from relevant head-
lines. In European Conference on Information Re-
trieval, pages 245–256. Springer.

Giang Binh Tran, Tuan A Tran, Nam-Khanh Tran,
Mohammad Alrifai, and Nattiya Kanhabua. 2013.
Leveraging learning to rank in an optimization
framework for timeline summarization. In SIGIR
2013 Workshop on Time-aware Information Access
(TAIA.

Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong,
Xiaoming Li, and Yan Zhang. 2011. Evolutionary
timeline summarization: a balanced optimization
framework via iterative substitution. In Proceedings
of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval,
pages 745–754.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

31

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 32–39
August 5, 2021. ©2021 Association for Computational Linguistics

Dynamic Facet Selection by Maximizing Graded Relevance

Michael Glass ∗ and Md Faisal Mahbub Chowdhury * and Yu Deng * and Ruchi Mahindru
and Nicolas Rodolfo Fauceglia and Alfio Gliozzo and Nandana Mihindukulasooriya

IBM Research, T.J. Watson Research Center, Yorktown Heights, NY, USA
{mrglass, mchowdh, dengy, rmahindr, gliozzo}@us.ibm.com,
{nandana.m,nicolas.fauceglia,Gaetano.Rossiello}@ibm.com

Abstract

Dynamic faceted search (DFS), an interactive
query refinement technique, is a form of Hu-
man–computer information retrieval (HCIR)
approach. It allows users to narrow down
search results through facets, where the facets-
documents mapping is determined at runtime
based on the context of user query instead of
pre-indexing the facets statically. In this paper,
we propose a new unsupervised approach for
dynamic facet generation, namely optimistic
facets, which attempts to generate the best pos-
sible subset of facets, hence maximizing ex-
pected Discounted Cumulative Gain (DCG), a
measure of ranking quality that uses a graded
relevance scale. We also release code to gen-
erate a new evaluation dataset. Through em-
pirical results on two datasets, we show that
the proposed DFS approach considerably im-
proves the document ranking in the search re-
sults.

1 Introduction

Human–computer information retrieval (HCIR) is
the study of techniques that takes advantage of hu-
man intelligence into the search process. Through
a multi-step search process, it facilitates opportu-
nities for human feedback by taking into account
the query context. Examples of HCIR approaches
include – faceted search, relevance feedback, au-
tomatic query reformulation, illustration by tag
clouds, etc.

Faceted Search (FS) (Tunkelang, 2009), a form
of HCIR, is a prevalent technique in e-commerce
where document retrieval systems are augmented
with faceted navigation. Facets are terms that
present an overview on the variety of data available
given the user query, thereby hinting at the most rel-
evant refinement operations for zooming in on the
target information need (Ben-yitzhak et al., 2008).

∗Equal contributions.

Traditional facet generation approaches present sev-
eral drawbacks. Documents must be pre-tagged
with an existing taxonomy, adding overhead in con-
tent curation and management. Moreover, such
static facets lack contextual matching with docu-
ments or queries. Figure 1 shows an example of
static/traditional facets.

Dynamic Faceted Search (DFS) overcomes such
limitations (Dash et al., 2008). For Dynamic
facets, the facet to document mapping is deter-
mined at run-time based on the context of user
query instead of pre-indexing the facets statically.
In other words, in an information retrieval (IR)
system, there is no exclusive list of terms to be con-
sidered for dynamic facets and such facets are not
known in advance. There is no pre-existing map-
ping of facets to the documents (that are indexed
in the corresponding IR system). The mapping can
only be created at the real-time when the query is
submitted followed by generation of such facets
based on the search results specific to the given
query and are presented to the user along with the
relevant documents.

In this paper, we present an approach for gener-
ating dynamic facets and selecting the best set of
facets to be presented to the user. Hence, allowing
the user to select relevant facets (if any) to interac-
tively refine their queries, which in turn improves
search results at each facet selection iteration. This
interaction can be repeated until the user is satisfied
with the results presented or no further refinement
is possible.

Below we highlight the major contributions of
our work –

• a new state-of-the-art unsupervised approach
for dynamic facet generation (see Section 3)
evaluated on two datasets (see Section 6), and

• a new benchmark dataset,
Stackoverflow-Technotes (or,

32

Figure 1: Example of static facets used to organize a set of book titles in a digital library.

simply Stackoverflow) Benchmark.1

(see Section 5).

Rest of the paper is structured as follows. Sec-
tion 2 includes a brief summary of related work
with respect to DFS. Section 3 describes our pro-
posed approaches. The next two sections (4 and
5) describes the experimental settings and datasets.
In Section 6, we show the empirical results, both
quantitative and qualitative. Finally, Section 7 con-
cludes the paper and highlights perspectives for
future work.

2 Related Work

A closely related research task of facet generation
is to generate alternative queries, also known as
query suggestion (Mei et al., 2008). Other related
tasks are query substitution (Jones et al., 2006) and
query refinement (Kraft and Zien, 2004). The main
difference between these tasks and facet generation
is that facets are not alternative/substitute/refined
queries but rather a way to organize the search
results obtained using the original query.

Another related task is query expansion (Xu and
Croft, 1996) where the goal is adding related words
to a query in order to increase the number of re-
turned documents and improve recall accordingly.
In contrast, selection of facets allow to narrow
down search results.

There is a considerable amount of work on
faceted search (Zheng et al., 2013; Kong, 2016).
For brevity, here we focus on DFS only.

DFS can be divided into two categories. First,
DFS on databases (Basu Roy et al., 2008; Kim
et al., 2014; Vandic et al., 2018). Databases have
a rich meta-data in the form of tables, attributes,
dimensions, etc. DFS on databases focuses on the

1We provide the codes for automatically creating
the dataset using publicly available data, and also
to run the simulated automatic evaluation. They
can be found here - https://github.com/IBM/
Stackoverflow-Technotes-dataset.

best possible attributes from the meta-data, to be
presented as facets.

Our contributions are in the second category –
DFS on textual data. An early approach was pro-
posed by Ben-yitzhak et al. (2008), where the gen-
erated dynamic facets are constrained by the ability
to sum pre-defined Boolean expressions. Dash et al.
(2008) proposed an approach, given a keyword as
query, to dynamically select a small set of “inter-
esting” attributes and present their aggregation to a
user. Their work is focused on evaluating the execu-
tion time rather than result re-ranking. Dakka and
Ipeirotis (2008) proposed an approach using exter-
nal resources, namely WordNet and Wikipedia, to
generate facets given a query.

Our proposed DFS approach on text generates
dynamic facets that are terms (which are not re-
stricted), not just aggregated values, and does not
rely on any external resource. Input queries can be
natural language texts, not restricted to keywords.

In a recent relevant work, Mihindukulasooriya
et al. (2020) proposed an unsupervised DFS ap-
proach that exploits different types of word em-
bedding models to extract so called flat and typed
facets. The typed facets are organized in hierar-
chies while the flat facets are simply a list of facets
without hierarchy. They show empirically both set
of facets yield similar results.

3 Proposed Dynamic Facet Generation

Given a ranked set of search results from a tra-
ditional search engine, our proposed approach,
namely Optimistic facet set selection, tracks doc-
ument ranking changes produced by selecting each
candidate facet, and uses this information to select
a subset of best possible facets.

We use the following notations in this section:

• D = [(d1, s1), (d2, s2), ..., (dn, sn)], where
score si ∈ R, is a list of n documents in search

33

© 2020 IBM Corporation2 Internal Pre-Announcement Information -- Do Not Distribute

0 10 20 30 40 50

R
el

ev
a
n
ce

 P
ro

b
a
b
il
it
y

Initial Rank of Result

∝
1

𝑟+ 𝑟

empirical
probability

Figure 2: Relevance Probability

results for the initial query, q0 returned by ini-
tial traditional IR component/search engine.

• C = {f1, f2, ..., fc} is a set of c terms to be
considered as facet candidates.

• F ⊂ C is a set of k facets generated by the
system as output, where k can be set by the
user or the interactive search system.

3.1 Facet candidate generation

Given a user query and the respective search results
(i.e. documents) from a search engine, we extract
the terms from those candidate documents with a
frequency above threshold θfreq. Let us limit the
expected number of dynamic facets to k. Given a
pre-trained word embedding model (for the indexed
document collection), cosine similarity, sim(q0, t),
between the query and each term t is computed.
Up to the top c terms with a minimum similarity
score of θsim are kept as facet candidates.2

3.2 Optimistic Facet Set Selection

Our algorithm is built on two key assumptions:

• Optimism: the user will select the best facet:
one that attains the best Discounted Cumula-
tive Gain (DCG) (or other graded relevance
measure).

• Relevance Probability: how likely a docu-
ment is to be relevant is approximated by its
rank in initial search results.

2We set θfreq = 3, θsim = 0.5, and c = max(k2, 50).

© 2020 IBM Corporation1 Internal Pre-Announcement Information -- Do Not Distribute

R1 R2

3

2

5

Rinit Rmin

min()...

...

1

2

3

...

3

6

1

...
1

2

1

...
F = { f1 f2 ... }

Figure 3: Minimum Rank (Rmin) for Facet Set

Each candidate facet, f , is associated with some
change in the scores of the document results, δf ,
and hence, some new ranking of the document
results, Rf . Using the filter strategy, δfi is set as
−∞ if f does not appear in document di, else zero.
Experimenting with a strategy of computing the
change in BM25 score (Robertson and Zaragoza,
2009) if f is added to the query, resulted in lower
performance.

Suppose pi is the probability of being relevant
for the ith ranked document in the initial retrieval.
We fit a curve to estimate pi independent of the
query or document results and find this probability
to be roughly proportional to the inverse of the
rank plus its square root. Figure 2 shows empirical
probability of relevance and the curve to fit.

A facet set has a minimum possible rank for each
document, the lowest rank that can be achieved
by selecting any facet in the set, or no facet. We
indicate this list of ranks as Rmin = [r1, r2, ..., rn]

where rj = min
(
j,minf∈F (R

f
j)
)

. The list of

ranks Rmin is closely connected with our opti-
mistic assumption. If, for example, the single rel-
evant document is in initial rank j, then Rmin

j is
the rank it will have after the user sees the initial
results and optionally selects the best facet.

Consider the case (a majority in our datasets)
where only one document is relevant. Then the
expected DCG under the optimistic assumption is
given by Equation 2. DCG is a standard metric
in IR to measure the overall quality of the search
results. DCG depends only on the ranks of the
relevant (reli = 1) documents. Intuitively, we
optimize DCG in expectation by providing facets
that produce different and likely rankings for the
returned documents.

34

DCG =

n∑

i=1

reli
log2(1 + i)

(1)

E(DCGF) =
n∑

i=1

pi
log2(1 +Rmin

i)
(2)

We select a facet set to approximately optimize
E(DCGF) using greedy and local search. Both
the greedy and local search phases of facet set
selection rely on a function to select the facet
candidate that will improve E(DCGF) the most:
Best(C, F, f∗, s∗). The greedy phase adds k facet
candidates to the facet set, each time adding the
facet that maximizes the set score. Local search
tries to swap each facet in the facet set for some
better facet candidate. This process could repeat
until E(DCGF) does not improve. Algorithm 1
shows pseudocode for these functions.

Algorithm 1 Greedy/Local Facet Set Selection
Best(C, F, f∗, s∗)

for f in C − F do
s← E(DCGF∪{f})
if s > s∗ then
f∗ ← f
s∗ ← s

end if
end for
return f∗, s∗

Greedy(C, k)

F ← ∅
for i← 1 through k do
f∗, s∗ ←Best(C, F, ∅, 0)
F ← F ∪ {f∗}

end for
return F, s∗

LocalSearch(C, F, s∗)

repeat
s0 ← s∗

for f0 in F do
F ← F/f0
f∗, s∗ ← Best(C, F, f0, s∗)
F ← F ∪ {f∗}

end for
until s∗ = s0

4 Experiments

Evaluation Settings: We use the simulated user
based automatic evaluation, called ORACLE, pro-
posed by Mihindukulasooriya et al. (2020). For
each iteration of the faceted search, the system
presents a list of ranked search results and facets
to the ORACLE. It selects the facet which retrieves
the target document at the highest rank.

5 Datasets

5.1 TechQA Benchmark
The first dataset is an existing benchmark of
real-world user questions in English in the domain
of technical customer support, named the TechQA
dataset (Castelli et al., 2020). The reason we
choose this dataset is - the most recent work,

(Mihindukulasooriya et al., 2020)), that we are
aware of for faceted search is evaluated on this
dataset. The RoBERTa based state-of-the-art IR
approach (Liu et al., 2019) that we use as one of
the baselines also used this dataset. The TechQA
dataset has 160 answerable questions in the Dev
split and is aligned with a corpus of 801,998
publicly available IBM Technotes documents. We
evaluate our approaches on these questions while
treating the corresponding Technotes documents
(containing the answers) as the corpus.

5.2 Proposed Stackoverflow Benchmark
In addition to the TechQA benchmark, we create a
new dataset in the technical support domain to ver-
ify the generality of our approach. This allows us
to evaluate it on a different benchmark containing
real-world queries which are often noisy and not
curated.

We are releasing the corresponding benchmark
generation codes to the research community as part
of this work. The dataset contains total 883 queries.
It was created from Stackoverflow3 forum threads.
We only considered those queries where the ac-
cepted answer posts contain link(s) to documents
in the Technotes corpus (the same corpus as men-
tioned in the TechQA Benchmark). Here is how
the released codes create this new benchmark:

• Extraction of Candidate Question Answer
(QA) Pairs: We first identify the set of ques-
tion posts and corresponding accepted answer
posts from the StackOverflow post history dump.
Then we extract the title and body of the identi-
fied question posts from post history, considering
that the post body further elaborates context of
the question.

• Validation of QA Pairs with Result Links: We
retain the QA pairs where desired corpus links
have been mentioned in answer posts. This en-
sures that the questions in the dataset have answer
links from the Technotes corpus.

• Generation of Benchmark Dataset: We then
extract the Technotes IDs from the answer posts
to form the benchmark dataset. Figure 4 shows
an example of an entry in the dataset, which in-
cludes an “id” field containing the id of a ques-
tion post, a “title” field about the title of the
question post, a “body” field which is the body
part of the question post, and a “relevant docids”

3https://stackoverflow.com

35

field with a set of Technotes IDs extracted from
the corresponding accepted answer post.

The procedure described above is generic and
can be replicated for other forums and corpora with
similar characteristics.

6 Results

We implemented the flat facets proposed by Mihin-
dukulasooriya et al. (2020) to compare with our
results on both datasets. We use BM25 (Robertson
and Zaragoza, 2009) as IR baseline for the Stack-
overflow benchmark. For the TechQA dataset, we
use the state-of-the-art IR approach of Zhang et al.
(2020) built using RoBERTa (Liu et al., 2019) as
baseline. Zhang et al. (2020) generously shared
with us their system’s output for the TechQA-DR
(i.e. document retrieval) task mentioned in their
paper. We feed this output as input in our system as
well as our implementation of Mihindukulasooriya
et al. (2020) to extract facets from corresponding
search results.

For a given query, we consider maximum 50
search results retrieved by the IR baseline. Then,
the ORACLE accepts only up to 5 facets generated
from a DFS approach, and chose only one facet
(i.e. a single interaction with the DFS system) as
a filter. If a corresponding search result does not
containing this facet, it is discarded which changes
ranks of some of the remaining search results.

6.1 Quantitative Evaluation

We use three standard evaluation metrics: Dis-
counted Cumulative Gain (DCG), Mean Reciprocal
Rank (MRR), and Hits@K. For Hits@K, we share
the absolute number of queries where the expected
document is ranked within top-K results.

Table 1 empirically compares our DFS approach
against other systems. As evident from the results,
optimistic DFS demonstrated remarkable edge over
the DFS approach of Mihindukulasooriya et al.
(2020) on both of the datasets in every single metric.
Furthermore, our approach significantly improves
the results of the underlying strong IR baselines in
both datasets.

6.2 Qualitative Evaluation

For the qualitative evaluation, we selected a sample
set of 22 random queries from the Stackoverflow
dataset. We asked a Subject Matter Expert (SME),
who is a customer support agent in the field, to

manually inspect the facets (produced by optimistic
DFS) for each selected query.

According to the SME, a facet is considered
useful, if it is contextually related but not already
mentioned in the user’s (short) query (i.e. the ‘title’
in Figure 4) and either appears in (i) the fully spec-
ified query, aka ‘post‘ (i.e. the ‘body’ in Figure 4),
or (ii) in the target document.

Table 2 shows sample subset of “User Query”,
their corresponding “Top 5 Dynamically Gener-
ated Facets”, “Additional Relevant Facets Present
in Post” that the system could have considered
to rank higher to place in the top 5, and “SME
Recommended Facets” that the system should have
presented (even though they are not seen in the
post), as they are relevant for the corresponding
user query. The values in the last two columns are
provided by the SME.

The SME marked the dynamically generated
facets into four following categories:

• “Facets seen in Post” (highlighted in italic
font) – facets seen in the post body and our
algorithm also generated e.g. ‘ClearCase Re-
mote Client (CCRC)’;

• “Facets seen in Post and relevant for query”
(highlighted in bold italic font) – relevant
facets seen in the post body and our algo-
rithm also generated e.g ‘ClearCase Remote
Client’;

• “Facets unseen in Post” (highlighted in
underline) – facets unseen in the post
body that our algorithm also generated
e.g. ‘Rational ClearCase SCM Adapter’,
‘rad’, ‘source control’;

• “Facets unseen in Post and relevant for query”
(highlighted in bold underline) – relevant
facets unseen in the post and our algorithm
also generated e.g. ‘dynamic views’.

In summary, 22 randomly chosen queries and
respective 5 facets per query generated from Opti-
mistic DFS were evaluated by the SME. On aver-
age, our system generated 89% “Facets unseen in
Post”, out of which 25% are relevant for queries.
Among the 11% “Facets seen in Post”, 82% of
them are found to be relevant for queries.

36

Metric TechQA dataset Stackoverflow dataset
RoBERTa
baseline

Zhang
et al.
(2020)

Flat DFS Optimistic
DFS

BM25 Flat DFS Optimistic
DFS

DCG 0.76 0.82 0.84 0.91 0.18 0.24 0.29
MRR 0.69 0.77 0.80 0.89 0.13 0.20 0.26

Hits@1 92 109 116 138 75 144 205
(57.5%) (68.1%) (72.5%) (86.3%) (8.5%) (16.3%) (23.2%)

Hits@5 133 141 143 150 153 228 260
(83.1%) (88.1%) (89.4%) (93.8%) (17.3%) (25.8%) (29.4%)

Hits@10 137 149 151 153 200 261 293
(85.6%) (93.1%) (94.4%) (95.6%) (22.7%) (29.6%) (33.2%)

Table 1: DFS evaluation results using simulated user. “Flat DFS” refers to a DFS approach proposed by
Mihindukulasooriya et al. (2020). “RoBERTa baseline” is the baseline for (our IR baseline) Zhang et al. (2020).

User Query Top 5 Dynamically Generated Facets Additional Rel-
evant Facets
Present in Post

Recommended
Facets by SME

What are the differences
between scm adapter and
CCRC eclipse plugin?

dynamic views, rad, source control,
Rational ClearCase SCM Adapter,
ClearCase Remote Client

Eclipse SCM
adapter

CCRC plugin,
ClearCase
perspec-
tive, Eclipse
workspace, ucm

CLEARCASE XPN not
parsed as variable in
clearcase command

cleartool man, cleartool mktrtype,
command line, extended pathname,
text file

linux cleartool find

CCRC ClearCase Re-
mote Client - Error ’Con-
fig spec for view. . .
needs to be synchronized

ClearCase Remote Client (CCRC),
IBM Rational ClearCase Remote Client,
ucm, vob, web view

synchronize
with stream,
CCRC Version:
7.1.1

Unable to undo rebase
stream

integration view, rebase operation,
recommended baseline, target view,
vob

cleartool rebase

Web Service Auto Gener-
ated Files

WSDL file, ear, roundtrip,
web services, xsd

SEI, ser, deser,
helper files,
BOUNTY
EDIT

What’s the easiet way to
detect ”evil twins” in Ra-
tional ClearCase?

ClearCase MultiSite,
IBM Rational ClearCase, ccrc,
clearfsimport, file element

vob, ClearCase
7.1

cleartool,
cleartool find

How to rename member
baseline? Is it acceptable
practice?

new baseline, project, pvob, rebase,
rmbl

cleartool rm-
name, UCM,
clearcase

lbtype, label
type

Cleartool command: Get
symlink path and target

VOB symlink,
cleartool rmelem command,
config spec, global path, pathname

Table 2: Qualitative evaluation of Optimistic DFS output on the Stackoverflow dataset.

37

Figure 4: Question Answer Pair Example

7 Conclusion

In this paper, we propose Optimistic facet set se-
lection, a new unsupervised approach for dynamic
facet generation for interactive search. It outper-
forms existing state of the art on two publicly avail-
able benchmarks, one of which we are releasing as
part of this work.

We believe this new dataset will be useful for the
research community for training and evaluating in-
teractive models. Currently, our proposed approach
does not have an active learning component and
does not explicitly learn from the user feedback
(e.g. fine-tuning an NLP model). However, we
think our approach will serve as a strong baseline
for the future interactive search approaches.

In future, we plan to investigate the following –

• how to leverage the proposed algorithm to gen-
erate facets automatically grouped by types.

• how dynamic facets can be generated using
language models as Knowledge Bases.

Our vision is to transform the interactive search
experience into a learnable knowledge discovery
process.

References
Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas

Nambiar, and Mukesh Mohania. 2008. Minimum-
effort driven dynamic faceted search in structured
databases. In Proceedings of the International Con-
ference on Information and Knowledge Manage-
ment (CIKM 2008), pages 13–22.

Ori Ben-yitzhak, Nadav Golb, Nadav Har’el, Ronny
Lempel, Andreas Neumann, Shila Ofek-koifman,
Dafna Sheinwald, Eugene Shekita, Benjamin Szna-
jder, and Sivan Yogev. 2008. Beyond basic faceted
search. In Proceedings of the international confer-
ence on Web search and web data mining (WSDM
2008), pages 33–44.

Vittorio Castelli, Rishav Chakravarti, Saswati Dana,
Anthony Ferritto, Radu Florian, Martin Franz, Di-
nesh Garg, Dinesh Khandelwal, Scott McCarley,
Michael McCawley, Mohamed Nasr, Lin Pan, Cezar
Pendus, John Pitrelli, Saurabh Pujar, Salim Roukos,
Andrzej Sakrajda, Avi Sil, Rosario Uceda-Sosa,
Todd Ward, and Rong Zhang. 2020. The TechQA
dataset. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1269–1278, Online. Association for Computa-
tional Linguistics.

Wisam Dakka and Panos Ipeirotis. 2008. Automatic
Extraction of Useful Facet Hierarchies from Text
Databases. In Proceedings of the IEEE 24th In-
ternational Conference on Data Engineering (ICDE
2008), pages 466 – 475.

Debabrata Dash, Jun Rao, Nimrod Megiddo, Anas-
tasia Ailamaki, and Guy M. Lohman. 2008. Dy-
namic Faceted Search for Discovery-driven Analy-
sis. In Proceedings of the International Conference
on Information and Knowledge Management (CIKM
2008), pages 3–12.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
Greiner. 2006. Generating query substitutions. In
Proceedings of the 15th International Conference on
World Wide Web (WWW ’06).

Hak-Jin Kim, Yongjun Zhu, Wooju Kim, and Taimao
Sun. 2014. Dynamic faceted navigation in decision
making using semantic web technology. In Decision
Support Systems, volume 61, pages 59 – 68.

Weize Kong. 2016. Extending Faceted Search to the
Open-Domain Web. Ph.D. thesis, College of Infor-
mation and Computer Sciences, University of Mas-
sachusetts Amherst, MA, USA.

Reiner Kraft and Jason Zien. 2004. Mining anchor text
for query refinement. In Proceedings of the 13th In-
ternational Conference on World Wide Web (WWW

’04).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

38

Qiaozhu Mei, Dengyong Zhou, and Kenneth Church.
2008. Query suggestion using hitting time. In Pro-
ceedings of the 17th ACM conference on Informa-
tion and knowledge management (CIKM ’08).

Nandana Mihindukulasooriya, Ruchi Mahindru,
Md Faisal Mahbub Chowdhury, Yu Deng, Nico-
las Rodolfo Fauceglia, Gaetano Rossiello, Sarthak
Dash, Alfio Gliozzo, and Shu Tao. 2020. Dynamic
faceted search for technical support exploiting
induced knowledge. In International Semantic Web
Conference, pages 683–699. Springer, Cham.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3:333–389.

Daniel Tunkelang. 2009. Faceted Search. In Synthe-
sis Lectures on Information Concepts, Retrieval, and
Services, volume 1, pages 1–80. Morgan & Claypool
Publishers.

Damir Vandic, Steven S. Aanen, Flavius Frasincar, and
Uzay Kaymak. 2018. Dynamic Facet Ordering for
Faceted Product Search Engines. In IEEE Trans-
actions on Knowledge and Data Engineering, vol-
ume 29, pages 1004 – 1016.

Jinxi Xu and W. Bruce Croft. 1996. Query expansion
using local and global document analysis. In Pro-
ceedings of the 19th Annual International ACM SI-
GIR Conference on Research and Development in
Information Retrieval (SIGIR ’96).

Rong Zhang, Revanth Gangi Reddy, Md Arafat Sul-
tan, Vittorio Castelli, Anthony Ferritto, Radu Flo-
rian, Efsun Sarioglu Kayi, Salim Roukos, Avi Sil,
and Todd Ward. 2020. Multi-stage pre-training for
low-resource domain adaptation. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 5461–
5468, Online. Association for Computational Lin-
guistics.

Bweijunl Zheng, Wei Zhang, and Xiaoyu Fu Boqin
Feng. 2013. A survey of faceted search. Journal
of Web engineering, 12(1&2):041–064.

39

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 40–45
August 5, 2021. ©2021 Association for Computational Linguistics

Abstract

This paper investigates and reveals the

relationship between two closely related

machine learning disciplines, namely

Active Learning (AL) and Curriculum

Learning (CL), from the lens of several

novel curricula. This paper also introduces

Active Curriculum Learning (ACL) which

improves AL by combining AL with CL to

benefit from the dynamic nature of the AL

informativeness concept as well as the

human insights used in the design of the

curriculum heuristics. Comparison of the

performance of ACL and AL on two public

datasets for the Named Entity Recognition

(NER) task shows the effectiveness of

combining AL and CL using our proposed

framework.

1 Introduction

Modern deep learning architectures predominantly

need large amounts of labeled data to achieve high

levels of performance. In the presence of a large

unlabeled corpus, data points are usually chosen

randomly to be annotated. However, annotation

can be a costly task and not all the annotations are

equally beneficial. Active Learning (AL) aims to

reduce the number of annotations required to train

a machine learning model by choosing the most

“informative” unlabeled data for annotation. The

informativeness is determined by querying a model

or a set of models trained on the available

annotated data (Settles 2012). Algorithm 1 shows

AL more formally.

Several categories of informativeness score

have been developed in the literature. For example,

uncertainty metrics select unlabeled data for which

the model has the highest uncertainty of label

prediction (Settles and Craven 2008). Examples of

uncertainty measures for a classification task are

the difference of the probability of prediction for

the first and second most likely classes (i.e., the

margin of the prediction probability) and the

entropy of prediction over all classes (i.e.,

− ∑ 𝑝𝑖 log 𝑝𝑖
𝑐
𝑖=1 where c is the number of classes).

Lower values of margin and higher values of

entropy metrics are associated with higher

uncertainty and consequently informativeness.

Some other examples of informativeness scoring

methods for unlabeled data are the amount of

prediction disagreement in a committee of models

(Melville and Mooney 2004) and the amount of

expected change to model weights (Zhang, Lease,

and Wallace 2017) or loss value (Long et al. 2014).

Curriculum Learning (CL), on the other hand,

attempts to mimic how humans learn and uses that

knowledge to train better models (Bengio et al.

2009; Soviany et al. 2021). Complex topics are

taught to humans based on a curriculum which

takes into account the level of difficulty of the

material presented to the learner. CL borrows this

idea and engages the human experts to design a

metric that is used to sort the annotated training

data from “easy” to “hard” to be presented to the

model during training (Bengio et al. 2009). The

Active Curriculum Learning

Borna Jafarpour1, Nicolai Pogrebnyakov1,2, Dawn Sepehr1
1 Thomson Reuters, Toronto, Canada

2 Copenhagen Business School, Frederiksberg, Denmark

{firstname.lastname}@thomsonreuters.com

1. Seed labeled data 𝑫𝑳 = {(x1, y1), …, (xk, yk)}

2. Unlabeled data 𝑫𝑼 = {xk+1, …, xm}

3. While the stopping criterion is not met:

3.1. Fine-tune or train model 𝑴 on 𝑫𝑳

3.2. 𝑰 ≔ the set of 𝑖 most informative data

samples in 𝑫𝑼 according to 𝑴

3.3. 𝑫𝑼 ≔ 𝑫𝑼 \ 𝑰; 𝑫𝑳 ≔ 𝑫𝑳 ∪ 𝑳(𝑰)

Algorithm 1: Steps of the AL algorithm where 𝐿(𝑰)

denotes the set 𝑰 after annotation. An example of

stopping criterion can be a minimum value for accuracy.

1. Training data 𝑫𝑻 = {}

2. Available data 𝑫𝑨 = {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)}

3. Repeat until 𝑫𝑨 is empty:

3.1. 𝑰: = the set of 𝒌 easiest examples in 𝑫𝑨

according to a fixed curriculum

3.2. 𝑫𝑻: = 𝑫𝑻 ∪ 𝑰; 𝑫𝑨: = 𝑫𝑨 \ 𝑰

3.3. Fine-tune existing model 𝑴 on 𝑫𝑻

Algorithm 2: Steps of the CL algorithm.

 40

goal of CL is to find a better local optimum faster

compared to randomly presenting the data to the

model by smoothing the loss function in early

stages of training. CL algorithm is presented in

Algorithm 2. CL has been investigated in computer

vision (Gui, Baltrusaitis, and Morency 2017),

Natural Language Processing (NLP) (Rao,

Anuranjana, and Mamidi 2020), and speech

recognition (Braun, Neil, and Liu 2016) among

others (Soviany et al. 2021). Specifically within

NLP, CL has been used on tasks such as question

answering (Sachan and Xing 2016), natural

language understanding (Xu et al. 2020), as well as

learning word representations (Tsvetkov et al.

2016). Different curriculum designs has been

investigated by considering heuristics such as

sentence length, word frequency, language model

score, and parse tree depth (Tsvetkov et al. 2016;

Platanios et al. 2019).

Other related approaches such as self-paced

learning (SPL) (Kumar, Packer, and Koller 2010)

and self-paced curriculum learning (Jiang et al.

2015) have also been proposed to show the efficacy

of a designed curriculum which adapts

dynamically to the pace at which the learner

progresses. Other attempts at improving an AL

strategy include self-paced active learning (Tang

and Huang 2019) in which the authors introduce

practical techniques to consider informativeness,

representativeness, and easiness of samples while

querying for labels. Such methods that only focus

on designing a curriculum miss, in general, the

opportunity to also leverage the ability of the

predictive model which progresses as new labeled

data becomes available.

The addition of CL injects human expertise into

learning manifested in the design of a curriculum.

This is in contrast with previous studies that

combined AL with SPL (Tang and Huang 2019;

Lin et al. 2018). SPL is inspired by CL but,

similarly to AL, relies on querying the model being

trained to select instances for labeling.

Our contributions in this paper are twofold: (i)

we shed light on the relationship between AL and

CL by investigating if AL enforces (or follows) a

curriculum. To this end, we monitor and visualize

a variety of novel curricula during the AL

simulation loop; (ii) We propose a novel method

which we call Active Curriculum Learning (ACL).

ACL takes advantage of the benefits of both CL

(i.e., designing a curriculum for the model to

follow) and AL (i.e., choosing samples based on

the enhanced ability of the predictive model) at the

same time to improve AL. Our preliminary

experiments show that the performance of an AL

strategy will be improved by deliberately

combining AL and CL concepts.

This article presents the foundation of this method

accompanied by the preliminary results and in our

future work we will explore its effectiveness more

extensively by implementing more experiments

and performing hyper parameter tuning as well as

exploring other NLP tasks beyond NER.

2 Novel Curricula

Other than the most explored curriculum features

such as sentence length and word frequency some

other curricula for measuring diversity, simplicity,

and prototypicality of the samples are proposed in

(Tsvetkov et al. 2016). Our conjecture is that large-

scale language models and also linguistic features

can be used to design NLP curricula. We design

seven novel curricula which assign a score to a

sentence indicating its level of difficulty for a

specific NLP task. Then, to acquire a curriculum,

sentences are sorted by their corresponding scores.

Other than our 7 novel curricula, we also

experiment with the following commonly used

curricula:

1. SENT_LEN: Number of words in a sentence.

2. WORD_FREQ: Average of frequency of the

words in a sentence (e.g., frequency of the

word A is calculated by
𝑁𝐴

∑ 𝑁𝑤𝑤∈𝑉
 where V is the

set of the unique vocabulary of the labeled

dataset, and 𝑁𝑤 is the number of times the

word 𝑤 has appeared in the labeled dataset).

Our seven novel curricula are as follows:

1. PARSE_CHILD: Average of the number of

children of words in the sentence parse tree.

2. GPT_SCORE: Sentence score according to

the GPT2 language model (Radford et al.

2019) calculated as follows: ∑ log(𝑝(𝑤𝑘))𝑘

where 𝑝(𝑤𝑘) is the probability of kth word of

the sentence according to the GPT2 model.

3. LL_LOSS: Average loss of the words in a

sentence from the Longformer language model

(Beltagy, Peters, and Cohan 2020)

For the following four novel curricula, we use

the spaCy library (Honnibal and Montani 2017) to

replace a word in a sentence with one of its

linguistic features. The curriculum value for a

sentence is then calculated exactly in the same way

41

as word frequency but with one of the linguistic

features instead of the word itself:

4. POS: Simple universal part-of-speech tag such

as PROPN, AUX or VERB.

5. TAG: Detailed part-of-speech tag such as

NNP, VBZ, VBG.

6. SHAPE: Shape of the word. For example,

shapes of “Apple” and “12a.” are “Xxxxx” and

“ddx.” respectively.

7. DEP: Syntactic relation connecting the word

to its parent in the dependency parse tree of the

sentence (e.g., amod, and compound).

3 The Relationship between AL and CL

and the Experimental Setup

We set out to answer the following question: what

is the relationship between AL and CL from the lens

of the nine curricula? To answer this question, we

simulate two AL strategies as well as random

strategy and monitor the curriculum metrics on the

most informative samples (from the unlabeled

data) chosen for annotation by each sampling

strategy and compare them. We use the following

two informativeness measures for unlabeled

sentences in our AL strategies: (i) min-margin:

minimum of margin of the prediction probability

for the sentence tokens is considered as the AL

score for that sentence. Sentences with lower

scores are preferred, (ii) max-entropy: maximum

of entropy of the prediction probability for the

sentence tokens are considered as the AL score for

that sentence and sentences with higher scores are

preferred.

For the experiments, we use a single layer Bi-

LSTM model (Lample et al. 2016) with the hidden

state size of 768, enhanced with a 2-layer feed-

forward network in which the number of hidden

and output layers’ nodes are equal to the number of

classes in the dataset. The input to the LSTM

model is the word2vec embedding (Mikolov et al.

2013) of sentence words. We use ADAM optimizer

(Kingma and Ba 2017) with the batch size of 64

and the learning rate of 5e-4. We experiment with

two publicly available English-language NER

datasets: OntoNotes51, and CoNLL 20032 and use

early stopping on the loss of the provided

validation sets. Furthermore, we start with 500

randomly selected sentences as the seed data and

1 Available at https://catalog.ldc.upenn.edu/LDC2013T19

choose 500 sentences to be labeled in each iteration

for a total of 15 iterations.

Figure 1 illustrates the experimental results of

monitoring GPT score during AL loop. This figure

clearly shows that GPT score of sentences chosen

by max-entropy tends to have lower values (i.e.,

more complex sentences) and min-margin tends to

choose sentences with higher values (i.e., simpler

sentences) compared to a random strategy. Similar

figures for other curricula reveal peculiarities of the

different AL strategies compared to the random

strategy and other AL strategies. Due to space

limitations, instead of including such figures for

different strategies, we calculate the following

metric which we call Mean Normalized Difference

(MND) to quantify how an AL selection strategy

differs from a random strategy in choosing the

most informative unlabeled data based on a

curriculum. This metric is defined as follows:

 𝑀𝑁𝐷 = ∑ ∑
𝑁(𝜓𝐶𝐿(𝑅𝑁𝑖𝑗))−𝑁(𝜓𝐶𝐿(𝐴𝐿𝑖𝑗))

𝑛×𝑘

𝑘
𝑗=1

𝑛
𝑖=1 (1)

where 𝑛 is the number of iterations where we add

𝑘 newly labeled sentences to the labeled dataset,

𝜓𝐶𝐿 calculates the value of the curriculum feature

for a sentence, 𝑅𝑁𝑖𝑗 and 𝐴𝐿𝑖𝑗 are the 𝑗𝑡ℎ sentence

out of 𝑘 chosen for annotation in the 𝑖𝑡ℎ step of the

random and active strategies, respectively, 𝑁(𝑥): =

𝑥 − 𝑟𝑚𝑖𝑛
𝐶𝐿

𝑟𝑚𝑎𝑥
𝐶𝐿 − 𝑟𝑚𝑖𝑛

𝐶𝐿 , 𝑟𝑚𝑖𝑛
𝐶𝐿 : = min

𝑖 ∈[1,𝑛]

∑ 𝜓𝐶𝐿(𝑅𝑖𝑗)𝑘
𝑗=1

𝑘
 , and 𝑟𝑚𝑎𝑥

𝐶𝐿 : =

max
𝑖 ∈[1,𝑛]

∑
𝜓𝐶𝐿(𝑅𝑖𝑗)

𝑘

𝑘
𝑗=1 . In theory, the MND score can

take any value. If the MND score of an AL strategy

for a curriculum is close to zero, it means the

curriculum values (𝜓𝐶𝐿) of the data chosen for

2 Available at
https://www.clips.uantwerpen.be/conll2003/ner/

Figure 1: Comparison of the mean of GPT score of

sentences added to training data in each iteration

between random, min-margin and max-entropy AL

strategies for the CoNLL dataset (average of 3 runs).

42

annotation are close to that of the random strategy.

This, however, does not imply that the same

unlabeled data is chosen by the two techniques.

Furthermore, large values of the MND score

indicate that AL chooses unlabeled data for

annotation that have different curriculum scores

compared to the random strategy. Since MND is

normalized, we can compare the MND score of

any two combinations of AL strategy and

curriculum score to compare the degree to which

they diverge from random strategy.

Experimental Results: Results of the MND

scores for different curriculum features on the two

experimental datasets are reported in Table 1. In

most of these experiments, we observe that there is

a difference between how random strategy and AL

choose unlabeled dataset from the lens of MND as

if AL is mimicking curriculum learning. We also

observe that not all AL strategies consistently have

the same MND sign for a curriculum on

OntoNotes5 and CoNLL 2003 datasets but a

noticeable divergence from the random strategy is

evident. Table 1 also shows that the largest

difference between active and random strategies in

following curricula in our experiments is

DEP/Min-Margin combination and the smallest

difference between them is POS/Max-Entropy

combination, both for OntoNotes5 dataset.

4 Active Curriculum Learning (ACL)

To improve the performance of the AL strategies,

we introduce a simple yet effective method

leveraging both advantages of AL and CL which

we call Active Curriculum Learning (ACL). The

goal of this proposed method is to benefit from the

dynamic nature of AL data selection metric while

utilizing experts’ knowledge in designing a fixed

curriculum. To this end, in each step of the ACL

loop, we use the following linear combination of

the AL and CL scores to choose the most

informative unlabeled data:

 𝜓𝐴𝐶𝐿(𝑠, 𝑀𝑖): = 𝛼
𝜓𝐶𝐿(𝑠)

max
𝑠∈𝑫𝒊

𝑈
|𝜓𝐶𝐿(𝑠)|

+ 𝛽
𝜓𝐴𝐿(𝑠,𝑀𝑖)

max
𝑠∈𝑫𝒊

𝑈
|𝜓𝐴𝐿(𝑠,𝑀𝑖)|

 (2)

where 𝑫𝒊
𝑈 is the set of unlabeled sentences in step

𝑖 of the ACL loop, 𝛼 and 𝛽 are the two parameters

that control the combination of AL and CL scores,

𝜓𝐴𝐿(𝑠, 𝑀𝑖) is the AL score (i.e., informativeness)

of sentence 𝑠 according to the predictive model 𝑀𝑖

trained on 𝑫𝒊
𝐿 at step 𝑖.

The overall steps of the ACL algorithm are

presented in Algorithm 3. Similar to the AL

algorithm, the min-margin based strategy favors

sentences with lower 𝜓𝐴𝐶𝐿 for annotation and the

opposite is true for the max-entropy based

approach.

Experimental Results: We use the training setup

of section 3 and perform token classification on

CoNLL 2003 and OntoNotes5 datasets using the

ACL algorithm. To evaluate the performance of

ACL, for each AL metric and dataset combination,

we run 18 ACL experiments where 𝛼 = 1 , 𝛽 =
0.5 or 𝛽 = −0.5 for the 9 curricula, and also one

AL experiment where 𝛼 = 1 and 𝛽 = 0. Since the

main focus of this article is to demonstrate if the

introduction of a curriculum adds value to the

performance of the active strategies, we select

these hyper parameters in such a way that the

effects of the active strategies are still dominant in

the proposed model.

In each step of the ACL loop, we measure the

token-level F1 score (for higher granularity) of the

provided test set using the trained model in that

step. Table 2 reports the average of F1 scores for

the top 5 ACL combinations as well as the active

learner (α = 1, β = 0) across all runs (3) and steps

(15). In all of our experiments, the top 5 ACL

 CoNLL 2003 OntoNotes5

Min-

Margin

Max-

Entropy

Min-

Margin

Max-

Entropy

DEP -16.7 2 -66.3 -5.5

POS -18.2 -0.1 -4.2 -5.9

SHAPE 4.1 -3 12.5 4.7

TAG -14.3 0.3 -4.3 -8.7

GPT_SCORE -3.3 3.5 -9.0 6.3

LL_LOSS -1.5 1.1 -18.1 1.7

PARSE_CHILD 3.1 -1.7 18.1 -0.9

SENT_LEN 4.7 -3.9 10.7 -6.2

WORD_FREQ 1.9 -2.4 -0.7 -0.1

Table 1: Mean Normalized Difference of min-

margin and max-entropy for the two datasets CoNLL

2003 and OntoNotes5 (average of 15 steps and 3

runs).

1. Seed labeled data 𝑫𝑳 = {(𝑥1, 𝑦1), … , (𝑥𝑚 , 𝑦𝑚)}
2. Unlabeled data 𝑫𝑼 = {𝑥𝑚+1, … , 𝑥𝑛}
3. While the stopping criterion is not met:

3.1. 𝑰 ≔ the set of 𝑘 examples in 𝑫𝑼 with the

best score based on 𝝍𝑨𝑪𝑳}

3.2. 𝑫𝑼 ≔ 𝑫𝑼 \ 𝑰; 𝑫𝑳 ≔ 𝑫𝑳 ∪ 𝑳(𝑰)

3.3. Fine-tune or train the model 𝑴𝒊 on 𝑫𝑳

Algorithm 3. Steps of the ACL algorithm where 𝐿(𝑰)

denotes the set 𝑰 after annotation.

43

combinations always outperformed AL for that

dataset. In particular our curricula based on deep

language models (GPT_SCORE and LL_LOSS)

are appearing frequently in Table 2 indicating their

utility.

5 Conclusions and Future Work

To the best of our knowledge, this is the first work

to investigate and reveal the relationship between

two closely related machine learning techniques

namely, AL and CL. We observed that AL in fact

follows a curriculum as it progresses through its

iterations compared to the random strategy.

This is also the first work to take advantage of

the benefits of both CL (i.e., designing a

curriculum for the model to learn) and AL (i.e.,

choosing samples based on the improved ability of

the predictive model) to improve AL in a unified

model.

In our future work, we are interested in

understanding in detail how CL helps AL, and

exploring model-based techniques of combining

AL and CL rather than a fixed set of weights for α

and β. Another interesting question to investigate is

to conduct similar experiments for other NLP tasks

or using multiple curricula together with AL can be

beneficial in reducing the annotation cost. We are

also interested in investigating our novel curricula

on their own in an isolated CL setting.

References

Beltagy, Iz, Matthew E. Peters, and Arman Cohan.

2020. “Longformer: The Long-Document

Transformer.” ArXiv:2004.05150 [Cs],

December. http://arxiv.org/abs/2004.05150.

Bengio, Yoshua, Jerome Louradour, Ronan Collobert,

and Jason Weston. 2009. “Curriculum Learning.”

In Proceedings of the 26th Annual International

Conference on Machine Learning, 41–48.

Https://Doi.Org/10.1145/1553374.1553380.

Montreal, Quebec, Canada: Association for
Computing Machinery.

https://doi.org/10.1145/1553374.1553380.

Braun, Stefan, Daniel Neil, and Shih-Chii Liu. 2016.

“A Curriculum Learning Method for Improved

Noise Robustness in Automatic Speech

Recognition.” ArXiv:1606.06864 [Cs],

September. http://arxiv.org/abs/1606.06864.

Gui, Liangke, Tadas Baltrusaitis, and Louis-Philippe

Morency. 2017. “Curriculum Learning for Facial

Expression Recognition.” In 2017 12th IEEE

International Conference on Automatic Face &

Gesture Recognition (FG 2017), 505–11.
Washington, DC, DC, USA: IEEE.

https://doi.org/10.1109/FG.2017.68.

Honnibal, Matthew, and Ines Montani. 2017. “SpaCy

2: Natural Language Understanding with Bloom

Embeddings, Convolutional Neural Networks

and Incremental Parsing.”

Jiang, Lu, Deyu Meng, Qian Zhao, Shiguang Shan,

and Alexander G. Hauptmann. 2015. “Self-Paced

Curriculum Learning.” In Proceedings of the

Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2694–2700. AAAI’15. Austin,
Texas: AAAI Press.

Kingma, Diederik P., and Jimmy Ba. 2017. “Adam: A

Method for Stochastic Optimization.”

ArXiv:1412.6980 [Cs], January.

http://arxiv.org/abs/1412.6980.

Kumar, M., Benjamin Packer, and Daphne Koller.

2010. “Self-Paced Learning for Latent Variable

Models.” In Advances in Neural Information

Processing Systems. Vol. 23. Curran Associates,

Inc.

https://proceedings.neurips.cc/paper/2010/file/e5

7c6b956a6521b28495f2886ca0977a-Paper.pdf.
Lample, Guillaume, Miguel Ballesteros, Sandeep

Subramanian, Kazuya Kawakami, and Chris

Dyer. 2016. “Neural Architectures for Named

Entity Recognition.” In Proceedings of the 2016

Conference of the North American Chapter of the

Association for Computational Linguistics:

Human Language Technologies, 260–70. San

Diego, California: Association for Computational

Linguistics. https://doi.org/10.18653/v1/N16-

1030.

Lin, Liang, Keze Wang, Deyu Meng, Wangmeng
Zuo, and Lei Zhang. 2018. “Active Self-Paced

Learning for Cost-Effective and Progressive Face

Identification.” IEEE Transactions on Pattern

OntoNotes5

Min-Margin Max-Entropy

CM β F1 CM β F1

GPT_SCORE 0.5 0.4 LL_LOSS -0.5 0.48

PARSE_CHILD -0.5 0.4 DEP -0.5 0.45

SENT_LEN -0.5 0.38 POS -0.5 0.43

LL_LOSS 0.5 0.37 WORD_FREQ -0.5 0.43

TAG -0.5 0.33 SENT_LEN -0.5 0.43

- 0 0.23 - 0 0.36

CoNLL 2003

Min-Margin Max-Entropy

CM β F1 CM β F1

LL_LOSS 0.5 0.65 SENT_LEN 0.5 0.67

GPT_SCORE 0.5 0.63 LL_LOSS 0.5 0.66

PARSE_CHILD -0.5 0.63 WORD_FREQ -0.5 0.66

SENT_LEN -0.5 0.62 PARSE_CHILD 0.5 0.66

DEP 0.5 0.61 GPT_SCORE -0.5 0.66

- 0 0.57 - 0 0.64

Table 2: ACL results for OntoNotes5 and CoNLL

datasets. The last row for each experiment corresponds

to the AL strategy. Curriculum Metric is denoted by

CM, F1 is the average of F1 score across all 15 steps

and 3 runs. For all experiments we have 𝛼 = 1.

44

Analysis and Machine Intelligence 40 (1): 7–19.

https://doi.org/10.1109/TPAMI.2017.2652459.

Long, Bo, Jiang Bian, Olivier Chapelle, Ya Zhang,

Yoshiyuki Inagaki, and Yi Chang. 2014. “Active

Learning for Ranking through Expected Loss
Optimization.” IEEE Transactions on Knowledge

and Data Engineering 27 (5): 1180–91.

Melville, Prem, and Raymond J. Mooney. 2004.

“Diverse Ensembles for Active Learning.” In

Twenty-First International Conference on

Machine Learning - ICML ’04, 74. Banff,

Alberta, Canada: ACM Press.

https://doi.org/10.1145/1015330.1015385.

Mikolov, Tomas, Kai Chen, Greg Corrado, and

Jeffrey Dean. 2013. “Efficient Estimation of

Word Representations in Vector Space.” ArXiv
Preprint ArXiv:1301.3781.

Platanios, Emmanouil Antonios, Otilia Stretcu,

Graham Neubig, Barnabas Poczos, and Tom

Mitchell. 2019. “Competence-Based Curriculum

Learning for Neural Machine Translation.” In

Proceedings of the 2019 Conference of the North

{A}merican Chapter of the Association for

Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short

Papers), 1162–117. Minneapolis, Minnesota:

Association for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1119.
Radford, Alec, Jeffrey Wu, Rewon Child, David

Luan, Dario Amodei, and Ilya Sutskever. 2019.

“Language Models Are Unsupervised Multitask

Learners.” Ilya (blog). 2019.

Rao, Vijjini Anvesh, Kaveri Anuranjana, and Radhika

Mamidi. 2020. “A Sentiwordnet Strategy for

Curriculum Learning in Sentiment Analysis.” In

Natural Language Processing and Information

Systems, edited by Elisabeth Métais, Farid

Meziane, Helmut Horacek, and Philipp Cimiano,

12089:170–78. Lecture Notes in Computer
Science. Cham: Springer International

Publishing. https://doi.org/10.1007/978-3-030-

51310-8_16.

Sachan, Mrinmaya, and Eric Xing. 2016. “Easy

Questions First? A Case Study on Curriculum

Learning for Question Answering.” In

Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics

(Volume 1: Long Papers), 453–63. Association

for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1043.

Settles, Burr. 2012. “Active Learning.” Synthesis
Lectures on Artificial Intelligence and Machine

Learning 6 (1): 1–114.

Settles, Burr, and Mark Craven. 2008. “An Analysis

of Active Learning Strategies for Sequence

Labeling Tasks.” In Proceedings of the

Conference on Empirical Methods in Natural

Language Processing - EMNLP ’08, 1070.

Honolulu, Hawaii: Association for

Computational Linguistics.

https://doi.org/10.3115/1613715.1613855.

Soviany, Petru, Radu Tudor Ionescu, Paolo Rota, and

Nicu Sebe. 2021. “Curriculum Learning: A

Survey.” ArXiv:2101.10382 [Cs], January.
http://arxiv.org/abs/2101.10382.

Tang, Ying-Peng, and Sheng-Jun Huang. 2019. “Self-

Paced Active Learning: Query the Right Thing at

the Right Time.” In Proceedings of the AAAI

Conference on Artificial Intelligence, 5117–24.

https://doi.org/10.1609/aaai.v33i01.33015117.

Tsvetkov, Yulia, Manaal Faruqui, Wang Ling, Brian

MacWhinney, and Chris Dyer. 2016. “Learning

the Curriculum with Bayesian Optimization for

Task-Specific Word Representation Learning.”

In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics

(Volume 1: Long Papers), 130–39. Association

for Computational Linguistics.

https://doi.org/10.18653/v1/P16-1013.

Xu, Benfeng, Licheng Zhang, Zhendong Mao, Quan

Wang, Hongtao Xie, and Yongdong Zhang.

2020. “Curriculum Learning for Natural

Language Understanding.” In Proceedings of the

58th Annual Meeting of the Association for

Computational Linguistics, 6095–6104.

Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.acl-main.542.
Zhang, Ye, Matthew Lease, and Byron C. Wallace.

2017. “Active Discriminative Text

Representation Learning.” In Proceedings of the

Thirty-First AAAI Conference on Artificial

Intelligence, 3386–92. AAAI’17. AAAI Press.

45

Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 46–53
August 5, 2021. ©2021 Association for Computational Linguistics

Tackling Fake News Detection by Interactively Learning Representations
using Graph Neural Networks

Nikhil Mehta
Department of Computer Science

Purdue University, West Lafayette, IN
mehta52@purdue.edu

Dan Goldwasser
Department of Computer Science

Purdue University, West Lafayette, IN
dgoldwas@purdue.edu

Abstract

Easy access, variety of content, and fast
widespread interactions are some of the rea-
sons that have made social media increasingly
popular in today’s society. However, this has
also enabled the widespread propagation of
fake news, text that is published with an in-
tent to spread misinformation and sway beliefs.
Detecting fake news is important to prevent
misinformation and maintain a healthy society.

While prior works have tackled this problem
by building supervised learning systems, auto-
matedly modeling the social media landscape
that enables the spread of fake news is chal-
lenging. On the contrary, having humans fact
check all news is not scalable. Thus, in this pa-
per, we propose to approach this problem inter-
actively, where human insight can be continu-
ally combined with an automated system, en-
abling better social media representation qual-
ity. Our experiments show performance im-
provements in this setting.

1 Introduction

Over the last decade, an increasing number of peo-
ple access news online (Amy Mitchell, 2016), of-
ten using social networking platforms to engage,
consume and propagate this content in their social
circles. Social networks provide easy means to dis-
tribute news and commentary, resulting in a sharp
increase in the number of media outlets (Ribeiro
et al., 2018), and a rapid spread of content. In par-
ticular, false news stories tend to spread at lightning
speeds, and due to the volume, cannot be checked
manually. An alternative to fact-checking claims,
which is arguably easier to scale, is to focus on
their source, and ask who can you trust?

Prior works have formulated this as a traditional
classification problem using techniques such as
feature-based SVM’s (Baly et al., 2018, 2020),
and more recently Graph Neural Networks (GNNs)

(Li and Goldwasser, 2019; Shu et al., 2019; Han
et al., 2020; Nguyen et al., 2020), which create a
better representation of social media interactions.
Graphs often consist of nodes corresponding to
news sources (associated with a discrete factuality
level - high, low, or mixed), the articles they release,
and their social context, corresponding to social
media users engaging and sharing information in
their networks. GNNs can utilize this information
by using edge interactions to create node represen-
tations contextualized by their graph neighbours.
This leads to a stronger representation of the com-
plex information landscape on social media that
enables fake news to spread, allowing it to be better
detected. For this reason, we adopt graphs as our
automated framework (1).

Despite the success of these works, fake news
detection is still a challenging research problem
and human performance is significantly higher
than fully automated systems (Shaar et al., 2020).
Clearly, having humans fact check every informa-
tion source is not scalable. Thus, our goal in this pa-
per is to explore a different form of interaction with
humans, where they can provide advice (Mehta
and Goldwasser, 2019) to the automated system.
Advice corresponds to localized judgements (pro-
vided through natural language) that help charac-
terize the content and social interactions associated
with sources. These judgements, associated with
article and social media user nodes, are then prop-
agated through the information graph using the
GNN, allowing the system to take advantage of
it to improve it’s representation. As advice is not
providing source labels directly, which is a time-
consuming process requiring a global view of the
source’s interactions, it is scalable.

For example, one challenging aspect of the prob-
lem is that low-factuality (“fake news”) sources
may not always propagate false information (some
of the articles they publish may be factual), and

46

Figure 1: Information Graph capturing interactions
between news sources, articles, and engaging users.
Advice is added to the information graph by adding
new nodes/edges(teal) based on the advice type (news
spreader or relevant claims). Advice then provides in-
formation that can useful to clear up the complex social
space the graph is modeling.

vice-versa (leading to model confusion). Human
interaction, in the form of advice, can help clean
up some of this uncertainty, by identifying claims
containing egregious falsehoods. The model could
then use this information and trust sources making
these claims less. We refer to this form of advice,
mapping a specific article to known falsehoods as
relevant claim advice. In another case, referred to
as news spreader advice, a human could inform the
system that a user that is spreading a sources’ arti-
cles frequently spreads lies, which would increase
the likelihood that that source and any other source
this user spreads articles from are fake. Fig 1 shows
how both of these advice types can be seamlessly
added to an information graph.

In this work, we show that our protocol in which
humans iteratively provide these types of advice by
interacting with the model (even after it is trained)
improves overall fake news detection performance.
In summary, we formulate fake news source detec-
tion as a reasoning problem over an information
graph. We then suggest an interactive learning
based approach for incorporating human knowl-
edge as advice to clean up uncertain graph deci-
sions, which allows us to better learn and reason on
this graph. Finally, we perform experiments that
demonstrate that this setup leads to performance
improvements on fake news source detection.

2 Model

2.1 Graph Creation and Training
We start with defining our social context informa-
tion graph. It consists of sources (S), articles they
publish (A), and Twitter users that interact with
sources/articles (U). Our goal is fake news source
factuality classification. Each node in the graph
is represented by a high dimensional feature vec-
tor, (similar to prior work (Baly et al., 2018, 2020;
Nguyen et al., 2020)) to provide knowledge to the
model that can be utilized when learning the graph
embedding. Source and user feature vectors are cre-
ated by concatenating embeddings based on their
Twitter profiles (SBERT + features, details in Ap-
pendix A.2.1). Sources also can include YouTube
profile embeddings. Articles are represented by the
encoding text into a SBERT RoBERTa embedding.

Our graph is formed by first adding all the
sources as individual nodes. We then scrape and
add up to 300 articles (ai) for each source, connect-
ing each with an edge to the source that published
it (e = {si, aj}). Next, we add social context to the
graph via Twitter users that interact with sources.
We add up to 5000 users that follow sources, and
users that tweet links to any articles in the graph
within a 3 month period of the article being pub-
lished (e = {si, uj}, e = {ai, uj}). Users that
follow/engage with sources are likely to be aligned
with/propagating the view of the sources, and mod-
eling this can be useful. Finally, in order to capture
the social interactions between users in the graph,
which is critical to capturing fake news propagation
on social media, we scrape up to 5000 followers of
each Twitter user and make an edge between a pair
of existing users if one user follows another.

In order to learn the information captured by
our information graph, we train a GNN to learn
an initial embedding, on top of which we will ap-
ply the interactive protocols (Sec 2.2). As a node
embedding function, we utilize Relational Graph
Convolutional Networks (R-GCN) (Schlichtkrull
et al., 2018) (they can handle the social media re-
lationships well). We achieve meaningful repre-
sentations and capture factuality of the different
nodes in our graph by optimizing the Node Clas-
sification (NC) objective of Fake News Detection.
After obtaining the source representations os from
the R-GCN, we pass them through the softmax ac-
tivation function σ and then train using categorical
cross-entropy loss: Lnc = −∑C

i=1 yilog(σ(os))
where the C classes for yi are either high, mixed,

47

or low factuality, and s is the current source.

2.2 Advice Protocols
We now describe the two advice protocols we uti-
lize in this paper. As mentioned in the introduction,
in this work, we define advice as a form of human
provided judgement (typically provided through
natural language) about intermediate relationships
in the information graph, that cleans up the space of
complex judgements made by the GNN, allowing
us to better capture the challenging landscape on so-
cial media that enables fake news to spread (Fig 1).
Advice is provided by humans interactively and
continuously, so that the process is scalable (not
many judgements are needed, and they can always
be provided, even after the system is deployed).
In this way, our advice protocols provide a mech-
anism for humans to interact with the automated
graph system. We use two forms of advice:

2.2.1 Relevant Claim Advice
When a human provides relevant claim advice, they
have some prior knowledge about a certain claim
(or news statement), and are telling this information
(the claim and what their belief about its’ factuality
is) to the model . For example, a human may know
that a certain claim is not factual (perhaps many
users on social media spread it and thus the human
has seen it before). The human would then pro-
vide this claim and a message about its factuality
through natural language.

Once a human has provided advice in the form
of a claim that may be relevant, the model must de-
cide which articles (if any) the claim is relevant for.
Once it does so, it can add a new node in the graph
for the claim (represented similar to the article text
node with SBERT RoBERTa embedding), and con-
nect it to the relevant article(s), allowing the advice
knowledge to easily propagate through the graph
(either by re-training the GNN or using the trained
GNN to embed the advice node appropiately →
we evaluate both setups in Sec 3). This automated
setup allows for minimal effort needed from the
human, making the advice simple to provide.

To do this, first, the model filters a subset of
sources (a process which we call filtering), whose
articles could be candidates to receive advice. As
mentioned earlier, advice cleans up complexities
in the information graph, so these sources are ones
which the model predicts the label of with low con-
fidence (we rank Softmax scores for this). Then,
for each filtered source’s article, the model decides

if the claim provided by the human is relevant, by
analyzing content in two ways. (1) First, a heuris-
tic is used to determine if the advice and article
are talking about the same event. To do this, the
model extracts the entities from the advice claim
and the article (we use the FLAIR tagger (Akbik
et al., 2019)), and determines if any of them over-
lap. If they do, the model also checks the date the
advice claim was made, and makes sure it is within
a one week period of the article being published.
(2) Then, to further check content relevance, we
use an entailment model (Parikh et al., 2016) and a
sentence selection model (Nie et al., 2019) to check
if any sentences from the article (chosen by the sen-
tence selection model) entail the advice claim. If
they do, the chance that the two are talking about
similar content is higher. If there is an entailment,
the advice statement d node is connected to the arti-
cle a with an edge. All advice is also connected to
a special label node h, m, or l, representing ‘high’,
‘low’, or ‘mixed’ factuality, based on the advice
label (which is provided by the human), so that the
model can easily represent that information.

In our interactive process, which we evaluate in
Sec 3.2, a human can continuously provide relevant
claims (through natural language) based on knowl-
edge they posses as advice, and through the process
described above, the model can determine which
articles to use it for (thus connecting the advice in
the graph). In this way, the human interacts with
the system to clear up potential confusion about
certain articles, which propagates via the graph
through sources and users, to lead to better fake
news detection performance.

2.2.2 News Spreader Advice
When providing news spreader advice, the human
informs the system that a certain user is a bad ac-
tor, meaning that they frequently spread lies. This
knowledge would increase the likelihood that arti-
cles this user tweets, and other users they interact
with, are also non-factual. The user is then con-
nected via an edge to a special ‘low’ factuality
node, signifying to the model the set of users that
are deemed to not be trusted.

2.2.3 Simulating Advice
In this preliminary work, we simulate the two pre-
vious forms of human provided advice by collect-
ing data from fact-checking websites (PolitiFact,
Snopes, USA Today, The Washington Post) and
Twitter (details in Appendix A.1). For relevant

48

Model Performance
Acc Macro F1 # of Advice

M1 : Majority class 52.43 22.93 -
M2 : Best Model from (Baly et al., 2020) 71.52 67.25 -
M3 : Our replication of (Baly et al., 2020) 69.38 63.63 -
M4 : Node classification (NC) 65.76 55.97 -
M5 : Relevant Claim All Advice 69.02 61.89 29,673
M6 : Relevant Claim Advice Filtering 25% 68.09 60.28 17,305
M7 : Relevant Claim Advice Selection 70.54 62.61 4,106
M8 : Relevant Claim Advice Filtering + Selection 50% + 50% 68.56 60.80 4,106
M9 : Relevant Claim All Advice Match Label 76.36 70.89 8,677
M10 : News Spreader Only Bad 67.40 59.57 2,643
M11 : News Spreader Bad 50% 65.91 58.65 1,350
M12 : News Spreader Bad 50% + 50% 66.35 58.26 2,643

Table 1: Final results.

claim advice, we scrape all claims fact-checked by
these websites and their factuality scores, and use
that. This simulates humans providing advice in
the real world, as a claim and some factuality in-
sight about it are given. For news spreader advice,
we use the Twitter API to determine all users that
have been suspended since we initially collected
our dataset, and use them as our news spreaders.
Twitter manually suspended most of these users af-
ter the storming of the US capitol, so using this data
allows us to accurately simulate human advice.

Although in this work we did not explicitly ask
users to provide advice based on our learned graph
model, our approximation of human advice that we
collected was provided by human experts, and is
thus relatively close to real advice that a human
could provide. Relevant claims advice is based on
real news claims that experts have associated factu-
ality labels with, and Twitter manually suspended
the users we used for news spreader advice.

3 Experiments

3.1 Dataset and Collection

To evaluate our model’s ability to predict the factu-
ality of news medium, we used the Media Bias/Fact
Check (MBFC) dataset (Baly et al., 2018, 2020)
(859 sources, each labeled on a 3-point scale based
on their factuality: low, mixed, and high). We pro-
vide graph statistics in App. A.

3.2 Fake News Classification

Table 1 shows our results. We average our mod-
els on all 5 data splits released by (Baly et al.,
2020), using 20% of the training set sources as a

development set, and report results on accuracy
and Macro F1-score for fake news source classifi-
cation. We compare our advice protocol models
to the baseline-graph based model trained only on
node classification (NC - no advice provided, M4).
For completeness, we included the results of the
SOTA (Baly et al., 2020) (M2), as well as replication
of their setup using the data we scraped (and their
code). Our results are worse than their released
performance, so we hypothesize that their data on
our setup may lead to better overall performance.

For relevant claim advice, we evaluate settings
in which we provide all the advice we scraped
(29,673 statements - M5), where we provide advice
only to the bottom 25% of sources that our model
is not confident on during train/dev/test time (M6,
all advice that passes the event filter is used →
at least one entity in the articles title matches the
advice claim and the dates are within one week
of each other), and where we provide advice to
all sources and make sure articles pass the event +
entailment + sentence selection criteria (M7 - full
setup in Sec 2.2.1). In all these setups, the advice
is provided on the best model in M4, and then pa-
rameters are reset and the model is re-trained to
learn how to incorporate the advice. M8 is different
and more interactive, as advice is first provided on
the bottom 50% of confident sources based on the
protocol in Sec 2.2.1, then the model is re-trained.
Then, the rest of the advice is provided as in M7,
except this time the model isn’t retrained. This
simulates advice being continuously provided in-
teractively by the human in the real world, and
performance still improves. In this setting, as no
re-training of the model is necessary, advice can be

49

quickly utilized. All setups improve performance
from the baseline, and using the filtering + sen-
tence selection approach (M7) leads to the best per-
formance, showing that the content of the advice
matching the article matters. Thus, in the future
when humans provide advice that is more likely to
match the content of the articles, it is likely that we
will see further performance improvements. Fur-
ther, it is likely that less advice will need to be
provided to see improvements.

For completeness, in M9 we also evaluate an up-
per bound, where advice provided by the human
would be 100% accurate, i.e. the human would
only provide advice that matched the article label
(article label based on the label of the source).

Finally, we evaluate news spreader advice, first
when all news spreaders are told to the model (M10),
then when only 50% are (M11), and finally when
50% are told, the model is retrained, and then the
rest are provided (M12, simulating true interaction).

In all advice models, performance improves
from the NC baseline, showing that these types
of advice can be helpful to the model. Furthermore,
once the advice is provided, we can add more (M8,
M12), and still see performance improvements with-
out having to retrain the model, demonstrating a
true interactive scenario, where a human can contin-
uously be interacting with an automated system. In
addition, providing advice as a localized judgement
is simple and easier than labelling an entire source,
so large amounts of advice can be collected from
different experts to improve results. In the future,
when we experiment with humans providing advice
that is more content relevant (not simulating), the
amount of advice needed could also decrease.

3.3 How Does Advice Help?

In this section, we analyze a few specific cases of
how relevant claim advice is used by the model to
improve performance. In one case, an article from
a news source labeled as spreading fake news was
discussing how a Democratic leader would become
Vice President if the President was impeached. Our
model incorrectly predicted the factuality of this
source. However, an advice claim from Snopes
stating that the 25th amendment would not lead
to this Democratic candidate immediately becom-
ing Vice President was able to push the prediction
of the source in the appropriate direction. In an-
other case, advice that a specific former President
was the first to speak against the current President

was provided through PolitiFact with a False label,
pushing a different source towards the fake news
label.

4 Summary and Future Work

In this paper, we proposed an approach to tackle
fake news detection interactively by designing a
protocol for a graph based system to continuously
solicit human advice, and take advantage of it
to improve overall information quality, which en-
ables better fake news detection performance. We
showed the benefits of two forms of advice (rele-
vant claims and news spreaders), provided either
all at once or continuously. In the future, we plan
to have humans actually provide this advice, and
explore other advice types.

5 Acknowledgments

We thank the anonymous reviewers of this paper
for all of their vital feedback. This works was
partially supported by an NSF CAREER award IIS-
2048001. Any opinions, findings and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the NSF.

6 Ethics Statement

To the best of our knowledge no code of ethics
was violated throughout the experiments done in
this paper. We reported all hyper-parameters and
other technical details necessary to reproduce our
results. For space constraint we moved some of
the technical details to the Appendix section which
is submitted with this manuscript. The results we
reported supports our claims in this paper and we
believe it is reproducible. Any qualitative result
we report is an outcome from a machine learning
model that does not represent the authors’ personal
views. Any results that we discussed on the data
we used did not include account information and
all results are anonymous. We anonymized the
Twitter, article, and advice (Politifact, Snopes, USA
Today, The Washington Post) data we collected to
respect the privacy policy of the various websites
and user data. While our overall approach does rely
on user insights, each advice statement provided
does not directly affect the final prediction, so a
system receiving advice for fake news detection
can not be easily manipulated.

50

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Michael Barthel Elisa Shearer Amy Mitchell, Jef-
frey Gottfried. 2016. The modern news consumer.
Pew Research Center.

Ramy Baly, Georgi Karadzhov, Dimitar Alexandrov,
James Glass, and Preslav Nakov. 2018. Predict-
ing factuality of reporting and bias of news media
sources. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’18, Brussels, Belgium.

Ramy Baly, Georgi Karadzhov, Jisun An, Haewoon
Kwak, Yoan Dinkov, Ahmed Ali, James Glass, and
Preslav Nakov. 2020. What was written vs. who
read it: News media profiling using text analysis and
social media context. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, ACL ’20.

Felix Hamborg, Norman Meuschke, Corinna Bre-
itinger, and Bela Gipp. 2017. news-please: A
generic news crawler and extractor. In Proceedings
of the 15th International Symposium of Information
Science, pages 218–223.

Yi Han, Shanika Karunasekera, and Christopher
Leckie. 2020. Graph neural networks with continual
learning for fake news detection from social media.
arXiv preprint arXiv:2007.03316.

Chang Li and Dan Goldwasser. 2019. Encoding so-
cial information with graph convolutional networks
forpolitical perspective detection in news media. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2594–
2604.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Nikhil Mehta and Dan Goldwasser. 2019. Improving
natural language interaction with robots using ad-
vice. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
1962–1967.

Van-Hoang Nguyen, Kazunari Sugiyama, Preslav
Nakov, and Min-Yen Kan. 2020. Fang: Leveraging
social context for fake news detection using graph
representation. In Proceedings of the 29th ACM
International Conference on Information & Knowl-
edge Management, pages 1165–1174.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2019.
Combining fact extraction and verification with neu-
ral semantic matching networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6859–6866.

Ankur P Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. arXiv preprint
arXiv:1606.01933.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Filipe N Ribeiro, Lucas Henrique, Fabricio Ben-
evenuto, Abhijnan Chakraborty, Juhi Kulshrestha,
Mahmoudreza Babaei, and Krishna P Gummadi.
2018. Media bias monitor: Quantifying biases of
social media news outlets at large-scale. In Twelfth
International AAAI Conference on Web and Social
Media.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Shaden Shaar, Alex Nikolov, Nikolay Babulkov, Firoj
Alam, Alberto Barrón-Cedeno, Tamer Elsayed,
Maram Hasanain, Reem Suwaileh, Fatima Haouari,
Giovanni Da San Martino, et al. 2020. Overview of
checkthat! 2020 english: Automatic identification
and verification of claims in social media. Cappel-
lato et al.[10].

Kai Shu, Suhang Wang, and Huan Liu. 2019. Beyond
news contents: The role of social context for fake
news detection. In Proceedings of the twelfth ACM
international conference on web search and data
mining, pages 312–320.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei
Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural
networks. arXiv preprint arXiv:1909.01315.

51

A Supplemental Material

In this section, we provide implementation details
for our models. The dataset we use has 859 sources:
452 high factuality, 245 mixed, and 162 low, and
was released publicly by (Baly et al., 2020)1. The
dataset does not include any other raw data (articles,
sources, etc.), so we must scrape our own.

A.1 Data Collection

For each source, we attempted to scrape news arti-
cles using public libraries (Newspaper3K 2, Scrapy
3, and news-please 4 (Hamborg et al., 2017)). In
the cases where the web pages of the source news
articles was removed, we used the Wayback Ma-
chine 5. Overall, our sources have an average of
109 articles with a STD of 36.

For Twitter users, we used the Twitter API6 to
scrape 5000 followers for each Twitter account
we could find (72.5% of the sources, identical to
(Baly et al., 2020). In the graph, we then connected
these users to the sources they follow. In addition,
we used the Twitter Search API to search articles
on Twitter and find any Tweets that mention the
article title or URL within 3 months of the article
being published. We then downloaded the users
that make these Tweets as well, and added them
to our graph, linking them to the respective article
they talk about. Finally, to increase the connectivity
of the graph and accurately capture the interactions
between the users, we also scraped the followers of
every Twitter user. We then made sure to only add
users to our graph that either interact with multiple
sources (through source or article connections) or
another user, so that every node would be inter-
connected.

We did not scrape YouTube accounts, but rather
used the same ones as the ones released by (Baly
et al., 2020). They found YouTube channels for
49% of sources.

For collecting relevant claim advice from news
sources (PolitiFact, Snopes, USA Today, and the
Washington Post), we used the Google FactCheck
tool7, along with scraping the PolitiFact website.
We downloaded 29,673 claims in total.

1https://github.com/ramybaly/News-Media-Reliability
2https://github.com/codelucas/newspaper
3https://github.com/scrapy/scrapy
4https://github.com/fhamborg/news-please
5https://archive.org/web/
6https://developer.twitter.com/en/docs
7https://toolbox.google.com/factcheck/explorer

A.2 Experimental Settings

A.2.1 Initial Embeddings
Our initial Twitter embedding for each source and
engaging user was a 773 dimensional vector con-
sisting the SBERT (Reimers and Gurevych, 2019)
(RoBERTa (Liu et al., 2019) Base NLI model) rep-
resentation of their bio concatenated with the fol-
lowing numerical features: a binary number repre-
senting whether the source is verified, the number
users a source follows and the number that follow
it, the number of tweets it makes, and the number
of favorites/likes its’ tweets have received. For,
YouTube, the embedding we used was the average
of the number of views, dislikes, and comments
for each video the source posted. Sources that
did not have a YouTube channel had a random
YouTube embedding. For articles, we used the
SBERT (Reimers and Gurevych, 2019) RoBERTa
(Liu et al., 2019) model to generate an embedding
for each article. For relevant claims advice, we
used the same SBERT (Reimers and Gurevych,
2019) RoBERTa (Liu et al., 2019) model to gener-
ate an embedding for each advice claim.

We also mentioned special factuality nodes in
Sec 2.2.1 that are added into the graph and con-
nected to advice claims, to allow the model to easily
represent the advice label (either the claim label or
the fact that a Twitter user is spreading bad news).
These nodes are initialized randomly with a 768
dimensional embedding that is then learned when
the graph is re-trained after the initial set of advice
is added.

A.3 Graph Statistics

We downloaded an average of 109 articles per
source, with a STD of 36, and user-engagements
(talking about articles, following sources/other
users) via the Twitter API 8(sources have an av-
erage of 27 users directly connected to them or to
their articles). Using this data we construct the
graph as described in Sec 2.1, which consists of
69,978 users, 93,191 articles, 164,034 nodes, and
7,196,808 edges. Details about the model setup we
utilized when training our graph (chosen using the
development set), and our scraping protocol are in
Appendix A.

A.3.1 Model Setup
Our models are built on top of PyTorch (Paszke
et al., 2019) and DGL (Deep Graph Library) (Wang

8https://developer.twitter.com/en/docs

52

et al., 2019) in Python. The R-GCN we use con-
sists of 5 layers, 128 hidden units, a learning rate
of 0.001, and a batch size of 128 for Node Clas-
sification. Our initial source, article, and advice
embeddings have hidden dimension 768, while the
user one has dimension 773.

We choose parameters using the development set
(20% of train sources) for one of the training data
splits, and then apply them uniformly across all the
splits, when training the final models. We choose
the stopping point for the best performing models
on which to apply advice on top of based on the
dev set. In the setups where we did not apply all
the advice at once, we determined all the advice
that could be relevant and then randomly chosen
which ones to apply based on the percentage of the
total the experiment required.

Our models were trained on a 12GB TITAN XP
GPU card and training each data split for Node
Classification takes approximately 4 hours, while
training Link Prediction Pre-training and the com-
bined initialization step takes 24 hours.

A.3.2 Replication of Prior Work
To replicate (Baly et al., 2020) (M3), we used their
released code with our features. Specifically, we
used our article, Twitter profile, Twitter Follower,
and YouTube embeddings. This setup consists of
all the data in our graph, and also provided the best
performance in (Baly et al., 2020).

53

Author Index

Boy, Susann, 7
Brown, AriaRay, 7

Chowdhury, Md Faisal Mahbub, 32

Deng, Yu, 32

Fauceglia, Nicolas Rodolfo, 32

Geiger, Luisa, 16
Glass, Michael, 32
Gliozzo, Alfio, 32
Goldwasser, Dan, 46

Harter, Leonie, 16

Jafarpour, Borna, 40

Lertvittayakumjorn, Piyawat, 1

Mahindru, Ruchi, 32
Mehta, Nikhil, 46
Mihindukulasooriya, Nandana, 32

Pogrebnyakov, Nick, 40

Sepehr, Dawn, 40
Simpson, Edwin, 25
Stein, Katharina, 16

Toni, Francesca, 1

Wixted, Morgan, 7

Ye, Yuxuan, 25

Zylberajch, Hugo, 1

55

	Program
	HILDIF: Interactive Debugging of NLI Models Using Influence Functions
	Apple Core-dination: Linguistic Feedback and Learning in a Speech-to-Action Shared World Game
	SHAPELURN: An Interactive Language Learning Game with Logical Inference
	A Proposal: Interactively Learning to Summarise Timelines by Reinforcement Learning
	Dynamic Facet Selection by Maximizing Graded Relevance
	Active Curriculum Learning
	Tackling Fake News Detection by Interactively Learning Representations using Graph Neural Networks

