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Abstract

Text variational autoencoders (VAEs) are no-
torious for posterior collapse, a phenomenon
where the model’s decoder learns to ignore
signals from the encoder. Because posterior
collapse is known to be exacerbated by ex-
pressive decoders, Transformers have seen lim-
ited adoption as components of text VAEs.
Existing studies that incorporate Transform-
ers into text VAEs (Li et al., 2020; Fang
et al., 2021) mitigate posterior collapse using
massive pretraining, a technique unavailable
to most of the research community without
extensive computing resources. We present
a simple two-phase training scheme to con-
vert a sequence-to-sequence Transformer into
a VAE with just finetuning. The resulting
language model is competitive with massively
pretrained Transformer-based VAEs in some
internal metrics while falling short on others.
To facilitate training we comprehensively ex-
plore the impact of common posterior collapse
alleviation techniques in the literature. We re-
lease our code for reproducability1.

1 Introduction

Properly tamed latent models offer explainable and
interpolatable representations of observed data. Re-
cent works have shown such models to be espe-
cially useful in unsupervised learning settings. He
et al. (2019) adapt a generative latent text model for
successful unsupervised text style transfer and ma-
chine translation. Li et al. (2020) achieve superior
language modeling performance against common
conditional counterparts.

A popular variant of deep latent models is
the variational autoencoder (VAE) (Kingma and
Welling, 2014). For each observed x, the model
assumes the existence of a corresponding multi-
dimensional latent vector z. Since the log evidence

1https://github.com/seongminp/
transformers-into-vaes

log p(x) is intractable for most interesting prob-
lems, the training process for VAEs opts instead to
minimize the log evidence lower bound (ELBO):

Ez∼q(z|x)[log(p(x|z))]−DKL(q(z|x)||p(z)) (1)

q(z|x) is a tractable, assumed posterior commonly
modeled with a parametrized encoder qφ(z|x),
while p(x|z) is the likelihood parametrized with a
decoder pθ(x|z) that optimizes against reconstruc-
tion loss. While effective in theory, a common
empirical challenge VAEs present during training
is posterior collapse – a phenomenon where the
decoder ignores the latent signal from z (and thus
the originating input) during reconstruction. Pos-
terior collapse can be diagnosed by checking if
DKL(q(z|x)||p(z)) tends to zero during training.

After Bowman et al. (2016) adopted VAE for
text, subsequent studies have been introduced with
attempts to mitigate posterior collapse in VAE lan-
guage models (LMs). However, the brittle training
process of VAE LMs remains an unsolved problem.

Li et al. (2020) present a method to utilize deep
Transformer (Vaswani et al., 2017) models as com-
ponents of VAE LMs. Transformer-based VAEs tap
into the state-of-the-art capabilities of Transform-
ers while retaining representational advantages of
VAE LMs. The paper mitigates posterior collapse
by massive pretraining and a cyclical annealing
schedule (Fu et al., 2019).

While the study presents a promising outlook
for Transformer VAEs, the suggested method is not
accessible to researchers who lack access to large,
target-domain-specific corpora or the computing
power for massive LM pretraining. Therefore, a
demand arises for a way to finetune an existing
Transformer model into a VAE LM with limited re-
sources. Our research attempts to fill this gap in the
literature, and makes the following contributions:

• We present a simple but reliable (as replicated
across several datasets) scheme to teach latent

https://github.com/seongminp/transformers-into-vaes
https://github.com/seongminp/transformers-into-vaes
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structure to a pretrained Transformer model
by just finetuning.

• We convert a pretrained sequence-to-sequence
Transformer into a VAE, instead of using two
separate encoder-only (Devlin et al., 2019)
and decoder-only (Radford et al., 2019) Trans-
formers as in previous literature. This elimi-
nates the need to maintain separate tokenizers
and configurations for encoder and decoder.

• We conduct ablation studies and extensive
experiments to gauge the effectiveness of
commonly used posterior collapse mitigation
methods in taming Transformer VAEs.

The resulting model extends existing Trans-
former architectures and can be initialized from
pretrained non-latent model checkpoints.

2 Background

2.1 Transformer Text VAEs

Most VAE LMs employ recurrent neural networks
(RNNs) as encoders and decoders. This is in
part because enforcing a latent bottleneck layer
undermines the effectiveness of encoder-decoder
cross-attention in Transformers, and in significant
part due to the co-occurrence of posterior collapse
and powerful and deep decoder layers. Li et al.
(2020) overcome such training difficulties by mas-
sively increasing the number of training samples
(104,213,036 sentences) for LM pretraining.

Liu and Liu (2019) and Fang et al. (2021) also
finds success with Transformer VAEs for text gen-
eration. To avoid posterior collapse, Fang et al.
(2021) follow the exact cyclic KL mitigation ap-
proach as that of Li et al. (2020), while Liu and Liu
(2019) introduce noise to network input.

2.2 Techniques to mitigate posterior collapse

This study identifies and explores the effect of
popular posterior collapse mitigation methods in
low-resource Transformer VAE training. We do
not examine importance-weighted autoencoders
(Burda et al., 2016) and semi-amortized autoen-
coders (Kim et al., 2018) to limit the scope of our
experiments to unsophisticated prior distributions.

2.2.1 KL Weighting / Annealing
Bowman et al. (2016) increases the KL term of the
ELBO from zero to its full value during early stages
of training, where the decoder learns to simply treat

latent signal z as noise. Fu et al. (2019) extend this
technique by cyclically manipulating the weight of
the KL term. β-VAE (Higgins et al., 2017) and Yan
et al. (2020) adopt a similar approach.

2.2.2 Encoder warm-up (Li et al., 2019)
We train the network without the KL term of the
ELBO and retain encoder weights before jointly
training the whole network.

2.2.3 Input text denoising (Shen et al., 2020)
Denoising text inputs by deleting random tokens
motivate autoencoders (AEs) to learn better latent
representations. Our study compares 0%, 15%, and
40% deletion noising schemes.

2.2.4 KL thresholding (Kingma et al., 2016)
KL-thresholding enforces a minimum λ for each
dimension of the KL term in the ELBO:

LDKL
=

∑
i

max[λ,Dkl(qφ(zi|x)||p(zi))] (2)

where zi is a single dimension of z.

2.2.5 Encoder pooling (Long et al., 2019)
Instead of using the last hidden state as encoder
output, averaging or taking the maximum of all en-
coder hidden states results in a more diverse latent
representation. We experiment with both mean-
and max-pooling schemes from the encoder.

3 Model architecture

We extend the T5 architecture (Raffel et al., 2020)
into a VAE. We modify a popular pretrained T5
model (Wolf et al., 2020) that deviates minimally
from the original Transformer (Figure 1).

Hidden states from all layers of T5’s encoder
qφ(z|x) are mean- or max-pooled into a vector
hpooled ∈ RH , where H is the encoder’s hidden
dimension.

Assumed prior q(z)’s mean µ and log variance
σ vectors of dimension L is obtained from hpooled:

µ = hpooledWµ, logσ = hpooledWσ (3)

where Wµ,Wσ ∈ RL.
As in a standard VAE, a stochastic latent vector

z is sampled using the reparameterization trick to
enable back-propagation through sampling:

z = µ+ σ � ε, ε ∼ N (0, 1) (4)

We pass z into the decoder pθ(x|z) as the only
component of decoder’s cross attention. Our
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Figure 1: Transformer VAE architecture. A "bottleneck" step (Wσ and Wµ) is placed between the encoder and
the decoder of T5. Latent information from pooled encoder hidden states is captured in the bottleneck layer
before being passed to the decoder. The network is optimized against regularization loss in the bottleneck and
reconstruction loss at the decoder.

method injects z into every layer of the decoder
as in previous literature (Li et al., 2020; Fang et al.,
2021), but deviates in two important ways: first, we
pass z as the sole key and value of encoder-decoder
cross attention, instead of self-attention; second,
we project z into the correct dimension (L×A×S,
where L is the decoder layer count,A is the number
of attention heads, and S is the embedding dimen-
sion per head) with a feed-forward network, instead
of taking a copy of z to inject to each decoder layer.

(Kca, Vca) = (zWproj , zWproj) (5)

where Wproj ∈ RL×A×S and Kca and Vca are
key and value in decoder cross-attention.

4 Experiments

During preliminary experiments, posterior collapse
was observed in all training schemes without en-
coder warmup training. The decoder learns to ig-
nore the initially noisy input signal from the en-
coder. Thus, we compose our finetuning method in
two separate phases.

Phase 1 - Encoder warmup: Weight of KL loss
is set to zero, making our model’s objective func-
tion similar to that of an AE. Different input denois-
ing percentages, encoder pooling strategies, latent
dimension sizes, and decoder freezing configura-
tions are compared.

Phase 2 - Full finetuning: KL loss is reinstated
and full VAE training are conducted. We com-
pare different input denoising percentages, encoder
pooling strategies, KL annealing schedules, and
KL thresholds.

We run our proposed two-phase finetuning train-
ing scheme on four standard VAE LM benchmark

datasets: PTB (Marcus et al., 1993), SNLI (Bow-
man et al., 2016), Yahoo (Yang et al., 2017), and
Yelp (Shen et al., 2017).

Following Li et al. (2020) and Li et al. (2019),
we perform intrinsic evaluation of our proposed
Transformer VAE architecture. We report perplex-
ity (PPL), KL-divergence between model posterior
and assumed posterior (KL), and negative ELBO
on the test set. To assess the quality of learned la-
tent codes, we also report mutual information (MI)
(Hoffman and Johnson, 2016) and the number of
active units (AU) (Burda et al., 2016). MI mea-
sures the dependence of latent codes to encoder
input. AU measures the covariance between en-
coder input and latent codes.

Experimental hyperparameters such as specific
annealing schedules and training epochs per phase
are detailed in the appendix.

5 Results

5.1 Phase 1
We find that freezing the decoder and the mem-
ory projection layer Wproj while training with an
AE objective is crucial in learning meaningful en-
coder outputs. Denoising is important for datasets
with longer inputs (Yahoo, Yelp), but not critical
in datasets with shorter input lengths (PTB, SNLI).
Mean-pooling encoder hidden states presents a
trade-off between MI and AU. Max-pooling con-
sistently learns more informative encoder represen-
tations. Changes in MI and AU during training is
illustrated in Figure 2.

Latent dimensions of 64 and 128 were also
tested. Increasing the latent dimension did not
necessarily boost representational quality in terms



32

Model PPL↓ KL -ELBO↓ MI↑ AU↑
Optimus (λ = 0.5) (Li et al., 2020) 23.11 17.45 301.21 8.85 32
GPT-2 (Radford et al., 2019) 22.00 - - - -
Encoder pretraining (λ = 3) (Li et al., 2019) 59.24 7.44 328.73 6.41 32
Ours (Max pool) 20.90 0.21 343.02 0.04 0
Ours (Max pool + Denoise) 30.13 41.49 301.86 1.32 24
Ours (Max pool + Denoise + KLT) 60.44 119.89 223.69 4.73 29
Ours (Max pool + Denoise + KLT + Deep) 54.40 155.50 140.57 5.43 28

Table 1: Phase 2 results on Yahoo. Due to space constraints, we report experimental results on other datasets in the
appendix. Results on baselines are quoted from Li et al. (2020) and (Li et al., 2019). KLT denotes KL thresholding
with λ = 3. Our models are finetuned from a pretrained 6-layer T5, except the deep variant with 12 layers.

of AU percentage. For latent dimensions of 32 and
64, 90% of latent dimension units were activated
in best-performing models. For latent dimension
of 128, around 60% of latent units were active.

Another interesting observation is that KL diver-
gence on the validation set, although not part of
the AE training objective, plateaus after repeated
training. We regard this phenomenon as the signal
of convergence in terms of representation quality.

Figure 2: Phase 1 training on Yahoo. Labels
are in the form {pooling strategy}_{denoise percent-
age}_{decoder frozen}.

5.2 Phase 2

We observe, as in previous literature, a trade-off be-
tween language modeling PPL and representation
quality metrics (MI and AU). This trade-off is ex-
acerbated when using KL thresholding. While KL
thresholding does significantly increase latent rep-
resentation capabilities, it is not in itself sufficient
in preventing posterior collapse.

Denoising and encoder pooling configurations

display the same characteristics as in Phase 1. No
version of the experiment existed where cyclical
annealing schedule was able to prevent posterior
collapse, a result not in accordance with Li et al.
(2020). Figure 3 illustrates the training progression
of Phase 2.

We also experimented with increasing model
depth from 6 layers to 12 layers. Our proposed
two-phase training scheme prevents posterior col-
lapse for deeper models as well, resulting in higher
performance in most metrics compared to 6-layer
models. Results are reported in Table 1. Note
that lower PPL does not necessarily indicate better
language modeling capabilities, since models with
collapsed posterior display better PPL.

Rows with KL above zero indicate successful
aversion of posterior collapse.

Figure 3: Phase 2 training on Yahoo. Labels are in the
form {KL threshold}_{denoise percentage}. Encoder
hidden states in plotted experiments were max-pooled.

In the literature, no consensus yet exists on the
optimal value of KL in training VAEs. Overall, we
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find that a denoising scheme between 0.15 and 0.4
in both phases, coupled with a low (0.5) KL thresh-
old strikes a good balance between reconstruction
and latent representation quality.

6 Conclusions and Future Work

This paper explores common methods in the lit-
erature for combatting posterior collapse, and the
extent to which they help in teaching latent infor-
mation to pretrained Transformer models.

Comprehensive experiments show that com-
monly employed posterior collapse mitigation tech-
niques provide meaningful benefits in transforming
existing language models into latent-aware archi-
tectures. Among the tested procedures, we find that
Li et al. (2019)’s two-step training, coupled with
Shen et al. (2020)’s denoising through token dele-
tion, was the most impactful in mitigating poste-
rior collapse. However, language models obtained
via only finetuning exhibit consistent trade-offs be-
tween their latent representation metrics (MI, AU)
and language model metrics (PPL). Optimizing our
model to be competitive with massively pretrained
baselines in one of the two metrics results in the
model falling behind in the other.

We also find that increasing training epochs fur-
ther improves the impact of tested techniques, a
result consistent with previous literature on large-
scale text VAE pretraining.

From our experiments, we identify several ques-
tions to be answered by future research. The impact
of homogenizing finetuning (as suggested in this
paper) and original pretraining objectives on lan-
guage model metrics has to be further explored.
While the original T5 architecture was also pre-
trained with a self-supervised denoising scheme,
the model employs mask tokens for denoising, con-
trary to simple token deletions suggested by this
paper.

Our findings also highlight the need for an es-
tablished heuristic to interpret the quality of latent
representations learned by language models. The
research community has yet to decide on the opti-
mal value of KL-divergence between the assumed
prior and the model posterior to target during text
VAE training. Empirical guidelines to dictate even
a vague threshold for the KL-divergence, below
which we declare the occurrence of posterior col-
lapse, will help both training and evaluation of
latent-aware language models.
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A Phase 2 results on PTB, Yelp, and
SNLI

Model PPL↓ KL -ELBO↓ MI↑ AU↑
Optimus (λ = 0.5) (Li et al., 2020) 26.69 15.72 96.82 7.64 32
GPT-2 (Radford et al., 2019) 24.23 - - - -
Encoder pretraining (λ = 3) (Li et al., 2019) 96.75 3.85 101.56 3.19 32
Ours (Max pool) 51.60 0.09 104.14 0 0
Ours (Max pool + Denoise) 57.69 3.05 101.17 11
Ours (Max pool + Denoise + KLT) 250.44 41.93 62.25 2.17 24
Ours (Max pool + Denoise + KLT + Deep) 705.73 84.28 4.95 13

Table 2: Phase 2 results on PTB

Model PPL↓ KL -ELBO↓ MI↑ AU↑
Optimus (λ = 0.5) (Li et al., 2020) 22.79 15.09 344.10 9.13 32
GPT-2 (Radford et al., 2019) 23.40 - - - -
Encoder pretraining (λ = 3) (Li et al., 2019) - - - - -
Ours (Max pool) 21.65 0.25 404.54 0 0
Ours (Max pool + Denoise) 39.09 77.85 327.17 1.06 26
Ours (Max pool + Denoise + KLT) 86.71 182.24 223.34 5.46 27
Ours (Max pool + Denoise + KLT + Deep) 53.05 178.48 166.15 5.55 10

Table 3: Phase 2 results on Yelp.

Model PPL↓ KL -ELBO↓ MI↑ AU↑
Optimus (λ = 0.5) (Li et al., 2020) 16.67 16.35 38.50 8.89 32
GPT-2 (Radford et al., 2019) 20.24 - - - -
Encoder pretraining (λ = 3) (Li et al., 2019) 21.23 5.86 33.87 5.25 32
Ours (Max pool) 12.79 0.11 34.61 0.06 0
Ours (Max pool + Denoise) 15.16 2.41 32.32 0.194 7
Ours (Max pool + Denoise + KLT) 85.88 26.12 8.62 0.88 13
Ours (Max pool + Denoise + KLT + Deep) 2358.31 74.95 43.77 5.27 17

Table 4: Phase 2 results on SNLI.

B Experimental details

For all experiments we used a AdamW optimizer
(Loshchilov and Hutter, 2019) with a starting learn-
ing rate of 1 × 10−3, β1 = 0.9, β2 = 0.999, and
ε = 1× 10−3. The linear KL annealing schedule
we used was as follows:

KL weight =
current global step

steps per epoch ∗ 50
(6)

Our slower, linear KL annealing schedule of 0 to
1 over 50 epochs yielded better empirical results
than the linear schdule used in Li et al. (2019) (0
to 1 over 10 epochs). We attribute this result to the

small number of training samples in our ex-
periments.

We train for 5 epochs on Phase 1, and 3 epochs
on Phase 2. While further training leads to in-
creased MI and AU, we limit the number of epochs
to confer to the spirit of this study, which is to learn
latent representations with minimal training. The
5 epoch limit on Phase 1 was empirically deter-
mined as the point where encoder MI begins to
plateau. Most experiments were conducted with
z dimension of 32 for comparison with previous
literature.


