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Abstract

An important part when constructing multiple-
choice questions (MCQs) for reading compre-
hension assessment are the distractors, the
incorrect but preferably plausible answer op-
tions. In this paper, we present a new BERT-
based method for automatically generating dis-
tractors using only a small-scale dataset. We
also release a new such dataset of Swedish
MCQs (used for training the model), and pro-
pose a methodology for assessing the gener-
ated distractors. Evaluation shows that from
a student’s perspective, our method generated
one or more plausible distractors for more than
50% of the MCQs in our test set. From a
teacher’s perspective, about 50% of the gener-
ated distractors were deemed appropriate. We
also do a thorough analysis of the results.

1 Introduction

Multiple-choice questions (MCQs) are widely used
for student assessments, from high-stakes gradua-
tion tests to lower-stakes reading comprehension
tests. An MCQ consists of a question (stem), the
correct answer (key) and a number of wrong, but
plausible options (distractors). The problem of
automatically generating stems with a key has re-
ceived a great deal of attention, e.g., see the sur-
vey by Amidei et al. (2018). By comparison, au-
tomatically generating distractors is substantially
less researched, although Welbl et al. (2017) re-
port that manually finding reasonable distractors
was the most time-consuming part in writing sci-
ence MCQs. Indeed, reasonable distractors should
be grammatically consistent and similar in length
compared to the key and within themselves.

Given the challenges above, we attempt using
machine learning (ML) to aid teachers in creating
distractors for reading comprehension MCQs. The
problem is not new, however most of the prior work
has been done for English. In this paper we propose

the first such solution for Swedish (although the
proposed method is novel even for English, to the
best of our knowledge). The key contributions of
this work are: proposing a BERT-based method
for generating distractors using only a small-scale
dataset, releasing SweQUAD-MC1, a dataset of
Swedish MCQs, and proposing a methodology for
conducting human evaluation aimed at assessing
the plausibility of distractors.

2 Background

2.1 BERT for NLG

Devlin et al. (2019) introduced BERT as the first ap-
plication of the Transformer architecture (Vaswani
et al., 2017) to language modelling. BERT uses
only Transformer’s encoder stacks (with multi-
head self-attention, MHSA), while the NLG com-
munity relies more on Transformer’s decoder
stacks (with masked MHSA) for text generation,
e.g., GPT (Radford et al., 2018). However, Wang
and Cho (2019) showed that BERT is a Markov
random field, meaning that BERT learns a joint
probability distribution over all sentences of a fixed
length, and one could use Gibbs sampling to gener-
ate a new sentence. The authors compared samples
generated autoregressively left-to-right by BERT
and GPT, and found the perplexity of BERT sam-
ples to be higher than GPT’s (BERT samples are
of worse quality), but the n-gram overlap between
the generated texts and texts from the dataset to be
lower (BERT samples are more diverse).

Liao et al. (2020) show a way to improve BERT’s
generation capabilities via changing the masking
scheme to a probabilistic one at training time. Prob-
abilistically masked language models (PMLMs)
assume that the masking ratio r for each sentence
is drawn from a prior distribution p(r). The au-

1The dataset and implementation of our models are avail-
able in this GitHub repository

https://github.com/dkalpakchi/SweQUAD-MC
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Property Training Development Test
# of texts 434 64 45
# of MCQs 962 126 102
# of D 2.1± 0.5 2.1± 0.4 2.0± 0.2
Len(Text) 384.9± 330.1 355.1± 233.1 357.9± 254.3
Len(A) 4.2± 3.4 4.4± 3.5 4.6± 4.5
Len(D) 4.5± 3.9 4.3± 4.0 4.0± 3.7
|Len(A) - Len(D)| 1.9± 2.4 1.9± 2.3 1.9± 2.9

Table 1: Descriptive statistics of SweQUAD-MC dataset splits. A denotes the key, D denotes a distractor, Len(X)
denotes a length of X in words. x± y shows mean x and a standard deviation y

thors proposed to train a PMLM with a uniform
prior (referred to as u-PMLM). The absence of the
left-to-right restriction allows the model to gener-
ate sequences in an word arbitrary order. In fact,
Liao et al. (2020) propose to generate sentences by
randomly selecting the masked position, predicting
a token for it, replacing the masked token with the
predicted one and repeating the process until no
masked tokens are left. The authors showed that
the perplexity of the texts generated by u-PMLM
is comparable to the ones by GPT.

2.2 Convolution partial tree kernels

As mentioned previously, plausible distractors
should be grammatically consistent with the key.
Hence, a metric measuring grammatical consis-
tency would be useful both for quantitative evalua-
tion and as a basis for a baseline method. We pro-
pose to use convolution partial tree kernels (CPTK)
for these purposes. CPTK were proposed by Mos-
chitti (2006) for dependency trees and essentially
calculate the number of common tree structures
(not only full subtrees) between two given trees.
However, CPTKs can not handle labeled edges and
were applied to dependency trees containing only
lexicals. Another solution, proposed by Croce et al.
(2011) and used in this article, is to include edge
labels, i.e., grammatical relations (GR), as sepa-
rate nodes. A resulting computational structure
is Grammatical Relation Centered Tree (GRCT),
which transforms the original dependency tree by
making each PoS-tag a child of a GR node and
a father of a lexical node. CPTKs can take any
non-negative values and are thus hard to interpret.
Hence, we use normalized CPTK (NCPTK) shown
in Equation (1), where K(T1, T2) is the CPTK ap-
plied to the dependency trees T1 and T2.

K̃(T1, T2) =
K(T1, T2)√

K(T1, T1)
√
K(T2, T2)

, (1)

Evidently, when T1 and T2 are the same, K̃(T1, T2)
equals to 1, which is the highest value it can take.

3 Data

We have collected a Swedish dataset, henceforth
referred to as SweQUAD-MC, consisting of texts
and MCQs for the given texts. The dataset was
created by three paid linguistics students instructed
to pose unambiguous and independent questions.
They were also asked to identify the key with at
least two distractors, all of which are contiguous
phrases in a given text. Additionally, as the distrac-
tors were required to be in the same grammatical
form as the key (e.g., both in plural), the students
were allowed to change the grammatical form of
phrases if they constituted plausible distractors af-
ter this change. The exact instructions given to the
students along with more details on the used texts
are provided in Appendix A.

Each datapoint in SweQUAD-MC consists of a
base text and an MCQ, i.e. a stem, the key and at
least two distractors. The same text can be reused
for different MCQs, but the sets of texts in training
(∼ 80%), development (∼ 10%) and test (∼ 10%)
datasets are disjoint. However, some overlap in
sentences is possible, since the texts might come
from the same source. Descriptive statistics of all
SweQUAD-MC splits is provided in Table 1.

4 Method

Given the small scale of SweQUAD-MC we
have decided to fine-tune a pretrained BERT2 for
Swedish (Malmsten et al., 2020) on the task of
distractor generation (DG). For achieving this, we
have added on top of BERT two linear layers with
layer normalization (Ba et al., 2016) in the mid-
dle to be trained from scratch (see architecture in
Figure 1). The last linear layer is followed by a

2bert-base-cased
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softmax activation giving probabilities over the to-
kens in the vocabulary for each position in the text.
We trained the model using cross-entropy loss only
for tokens in masked positions.

Recall that each MCQ consists of a base text
T, the stem Q based on T, the key A and (on aver-
age) two distractors D1 and D2. The DG problem
is then to generate distractors conditioned on the
context, consisting of T, Q and A. We provide all
context components as input to the BERT model,
separated from each other by the special separator
token [SEP]. Given that BERT’s maximum input
length is 512 tokens, we trim T to the first 384 to-
kens (later referred to as T 384), since that is the
average text length of the training set.

We have explored two different solution vari-
ants of DG. The first variant aims at generating
distractors autoregressively, left to right. At gener-
ation time, the input to BERT consists of a context
CTX (T 384, Q and A separated by [SEP] token),
a [SEP] token, and a [MASK] token at the end.
After a forward pass through BERT, the [MASK]
token gets replaced by the word with the highest
softmax score, which becomes the first word of the
first distractor (dubbed D11). The generation of the
first distractor continues by appending a [MASK]
token after each forward pass until the network gen-
erates a separator token [SEP], which concludes
the generation of the first distractor D1. The next
distractor D2 is generated in the same way, except
that the CTX is extended by D1. At training time,
we use the same procedure, but with teacher forc-
ing, allowing us to use the correct distractor tokens
as targets for the cross-entropy loss (see example
training datapoints for one MCQ in Table 2).

The second variant is inspired by u-PMLM, and
aims at generating distractors autoregressively, but
in an arbitrary word order. At generation time, the
input to BERT consists of a context CTX, a [SEP]
token, and a predefined number of [MASK] to-
kens (see Section 6.1). The generation proceeds
by unmasking the token at the position where the
model is most confident. This differs from un-
masking a random position, proposed by Liao et al.
(2020). The training procedure largely follows a
masking scheme employed by u-PMLM by draw-
ing the masking ratio from the uniform distribution
(see example training datapoints for one MCQ in
Table 2). Note that we do not include the [SEP]
token when training, since we found that the trained
model would constantly generate [SEP] tokens.

LinearGELU
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Figure 1: The DG model architecture. B is the batch
size and V is the vocabulary size. The light green
blocks represent the activation functions for the respec-
tive linear layers. The purple block represents parts of
the network initialized with the pretrained weights.

Each sampled masking ratio r for the u-PMLM
variant means that each token in the distractors
from the dataset has a probability r to be masked.
Hence, different r will potentially result in different
number of masked tokens and at different positions.
The number of times we draw r per distractor DX
is proposed to be min(Len(DX), MAX MASKINGS).

4.1 Baseline

As mentioned in Section 2.2, NCPTK measures
grammatical consistency between the key and a
distractor. Our baseline uses NCPTK on Universal
Dependencies (UD) trees (Nivre et al., 2020) in the
following way. For each given MCQ, we exclude
the sentence containing the key from the base text
and then parse each remaining sentence si of the
text, and the key using the UD parser for Swedish.
Let Tsi and Tk denote a dependency tree corre-
sponding to si and the key respectively. For each
Tsi , we find all subtrees with the root having the
same universal PoS-tag and the same universal fea-
tures (representing morphological properties of the
token) as the root of Tk. If no subtrees are found,
no distractors can be suggested for this MCQ. Oth-
erwise, we calculate NCPTK between each found
subtree and Tk (both as GRCT, but without lexi-
cals). Then we take the textual representation of
the K subtrees with the highest NCPTK as the
distractor suggestions.
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Input for left-to-right variant Target
[CLS] CTX [SEP] [MASK] D11
[CLS] CTX [SEP] D11 [MASK] D12
[CLS] CTX [SEP] D11 D12 [MASK] [SEP]
[CLS] CTX [SEP] D11 D12 [SEP] [MASK] D21
[CLS] CTX [SEP] D11 D12 [SEP] D21 [MASK] D22
[CLS] CTX [SEP] D11 D12 [SEP] D21 D22 [MASK] D23
[CLS] CTX [SEP] D11 D12 [SEP] D21 D22 D23 [MASK] [SEP]

Input for u-PMLM variant Target(s)
[CLS] CTX [SEP] D11 [MASK] D12
[CLS] CTX [SEP] [MASK] D12 D11
[CLS] CTX [SEP] D11 D12 [SEP] D21 [MASK] [MASK] D22, D23
[CLS] CTX [SEP] D11 D12 [SEP] D21 [MASK] D23 D22
[CLS] CTX [SEP] D11 D12 [SEP] [MASK] D22 [MASK] D21, D23

Table 2: Example datapoints extracted from one MCQ if training the autoregressive left-to-right variant (top table)
or u-PMLM variant (bottom table). D1 and D2 are distractors, assumed to have 2 and 3 words, respectively. CTX
represents the context, i.e., the sequence T 384 [SEP] Q [SEP] A, where T 384 is the first 384 tokens of
the text, Q is a stem and A is the key.

5 Experimental setup

We have used Huggingface’s Transformers library
(Wolf et al., 2020) for implementing the DG model.
The training hardware setup included 16 Intel Xeon
CPU E5-2620 v4 (2.10GHz), 64 GB of RAM and
1 NVIDIA GeForce RTX 2080 Ti (11 GB VRAM).
For this setup, we have fixed the random seed
to 42, the number of training epochs to 6, the
batch size to 4 (for both training and dev sets) and
MAX MASKINGS to 20 (for u-PMLM variant only).
With these settings, training took about 3.67h for
the left-to-right and 3h for the u-PMLM variant.

UD trees for the baseline were obtained using
Stanza package (Qi et al., 2020) and convolution
partial tree kernels on the UD trees were calculated
using UDon2 library (Kalpakchi and Boye, 2020).
Baseline requires no training and running our im-
plementation of the baseline takes about a minute
on the development or test set.

6 Evaluation

Following the analysis of Rodriguez (2005), we
generate three distractors per MCQ for each model.
Due to prohibitively high costs of human evalua-
tion, we have divided the evaluation process into
two stages. The first stage is quantitative evalu-
ation, which gives limited information about the
model’s quality, but is sufficient for model selec-
tion. The second stage is human evaluation of the
best model, selected during the first stage.

6.1 Quantitative evaluation
Automatic evaluation metrics, such as BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), METEOR
(Denkowski and Lavie, 2014), CIDEr (Vedantam
et al., 2015), became popular in NLG in recent
years. Essentially, these metrics rely on comparing
word overlap between a generated distractor and a
reference one. Such metrics can yield a low score
even if the generated distractor is valid but just hap-
pens to be different from the reference one, or a
high score even though the distractor is ungrammat-
ical but happens to have a high word overlap with
the reference one (see the article by Callison-Burch
et al. (2006) for a further discussion). Furthermore,
they do not take into account how well a generated
distractor is aligned with the key grammatically
or how challenging the whole group of generated
distractors would be.

To account for the properties mentioned above,
we have experimented with a number of quantita-
tive metrics and propose the following set to be
used (the whole list is available in Appendix B).
In the following list MCQ% means “Percentage of
MCQ” and DIS means “generated distractor(s)”.

1. DisRecall. Distractor recall.

2. AnyDisRefMatch. MCQ% with at least 1 DIS
matching a reference one.

3. AnyDisInText. MCQ% with at least 1 DIS
appearing in the base text.
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4. KeyInDis. MCQ% with key being among DIS.

5. AnySameDis. MCQ% with ≥ 2 identical DIS.

6. AllSameDis. MCQ% with all identical DIS.

7. AnyDisRep. MCQ% with ≥ 1 DIS containing
repetitive words contiguously.

8. AnyDisEmpty. MCQ% with ≥ 1 DIS being
an empty string3.

9. AnyDisFromTrainDis. MCQ% with at least 1
DIS matching with a distractor from training
data, but not appearing in the base text.

10. MeanNCPTK, MedianNCPTK, ModeNCPTK.
Mean, median, and mode NCPTK for pairs of
UD trees for DIS and keys (all trees as GRCT,
but ignoring nodes corresponding to lexicals).

The first group consists of metrics 1-3. The first
two metrics count exact matches between generated
and reference distractors. The rationale behind met-
ric 3 is our assumption that distractors coming from
the same text are more challenging. The higher the
values of all these metrics are, the better.

The second group contains metrics 4-8, which
give an idea of how challenging the whole group
of distractors would be. For instance, duplicate
distractors or ones with word repetitions could be
excluded by students using common sense. The
lower the metrics in this group are, the better.

The third group consists only of metric 9, serving
as an overfitting indicator. The metric accounts for
the distractors appearing as distractors in training
data and high percentage indicates an overfitting
possibility. The lower the values, the better.

The final group (item 10) measures how syntac-
tically aligned generated distractors and the respec-
tive keys are. We employ NCPTK to measure the
similarity of syntactic structures between each dis-
tractor and the respective key. Then we take mean,
median and mode of the sequence of NCPTKs ob-
tained in the previous step. The higher the values
of these metrics are, the better.

Based on these metrics, we performed a model
selection on the development set and chose the
models performing best on the most of these met-
rics. Left-to-right model generated distractors to-
ken by token until either a [SEP] token was gen-
erated or the length of the distractor was 20 tokens.

3After excluding the special tokens, e.g., [SEP]

Metric Baseline u-PMLM
DisRecall ↑ 1.44% 15.31%
AnyDisRefMatch ↑ 2.94% 26.47%
AnyDisInText ↑ 100.0% 72.55%
KeyInDis ↓ 0.00% 4.9%
AnySameDis ↓ 4.9% 13.73%
AllSameDis ↓ 0.00% 1.96%
AnyDisRep ↓ 0.00% 2.94%
AnyDisEmpty ↓ 11.76% 0.00%
AnyDisFromTrainDis ↓ NA 0.98%
MeanNCPTK ↑ 0.43 0.43
MedianNCPTK ↑ 0.28 0.28

ModeNCPTK ↑ 1.0 1.0
(20.56%) (20.69%)

Table 3: Evaluation of DG models on the test set.
When using u-PMLM, shortest distractors were gener-
ated first. ↑ (↓) means “the higher (lower), the better”.

In contrast, u-PMLM needs the lengths of the dis-
tractors to be decided in beforehand, which we
set to be the lengths of the two reference distrac-
tors and the length of the key4. Surprisingly, the
order of distractors in terms of their length also
matters for generation with u-PMLM, so we have
tested three options: shortest first, longest first and
random order. According to the results of model se-
lection on the development set (presented in detail
in Appendix C), u-PMLM models outperformed
left-to-right models by a substantial margin.

The best u-PMLM model (generating shortest
distractors first) and the baseline have been evalu-
ated on the test set (see Table 3). Interestingly, the
similarity of syntactic structures between the key
and distractors (assessed by NCPTK) is the same
for both baseline (that actually relies on NCPTK)
and u-PMLM. At the same time, u-PMLM gener-
ates more distractors matching the reference ones
compared to the baseline (as seen from DisRecall
and AnyDisRefMatch). The baseline generates at
least one empty string as a distractor 11.76% of
the time (compared to no such cases for u-PMLM)
limiting possibilities of using the baseline in the
real-life applications.

6.2 Human evaluation
We have used distractors generated on the test set
by the best u-PMLM model (selected after quanti-
tative evaluation in Section 6.1) to conduct human

4If reference distractors are not available, we propose to
generate distractors with the length differing by at most two
words compared to the length of the key.
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evaluation in 2 stages: from a perspective of a stu-
dent and a teacher.

6.2.1 Student’s perspective
A desirable property of reading comprehension
MCQs is that the students should be unable to an-
swer them correctly without reading the actual text.
To put more formally, the average number of cor-
rectly answered MCQs without reading the actual
text (denoted N s) should not differ significantly
from the average number of correctly answered
MCQs when choosing the answer uniformly at ran-
dom (denoted N r). To test for this property, we
have formulated the following two hypotheses.5

H0: N s = N r.
H1: N s 6= N r.

For N MCQs with 4 options, N r = 0.25N ,
which for our test set would be equal to N r =
0.25 · 102 = 25.5. The appropriate statistical test
in this case is one-sample two-tailed t-test with
the aim of not being able to reject H0. Given that
the purpose is to show that the data supports H0,
we have set both the probability α of type I errors
and the probability β of type II errors to be 0.05.
Then we have used G*Power (Faul et al., 2009)
to calculate the required sample size for finding a
medium effect size (0.5) and the given α and β,
which turned out to be 54 subjects.

Following the calculations above, we have re-
cruited 54 subjects on the Prolific platform6, and in-
structed them to choose the most plausible answer
to a number of reading comprehension MCQs with-
out providing the original texts. The collected data
did not violate any assumptions for a one-sample
t-test (see Appendix D.1 for more details). On aver-
age, the subjects correctly answered a significantly
larger number of questions than N r (N s = 62.26,
SE = 1.09, t(53) = 33.51, p < 0.05, r = 0.98).
To summarize, the chances of this sample to be
collected are very low ifH0 were true.

However, evidently some of the generated dis-
tractors were actually plausible, given that N s 6=
N . To investigate the matter we have plotted the
histogram of the frequency of choice of distractors
by the subjects in Figure 2. As suggested by Ha-
ladyna and Downing (1993), distractors that are
chosen by less than 5% of students should not be
used, which in our case amounts to 39% of the dis-

5Preregistration is available here
6https://www.prolific.co/
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Figure 2: A histogram showing the frequency of choice
of distractors in subjects’ answers
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Figure 3: A histogram showing the entropy distribution
per question

tractors (the leftmost bar in Figure 2). If we elimi-
nate these low-frequency distractors (LF-DIS), 68
MCQs (66.67%) will lose at least one distractor, 10
MCQs (9.8%) will lose all distractors and thus 34
MCQs (33.33%) will keep all 3 distractors.

A more relaxed question is how many MCQs
had at least one plausible distractor, which can be
estimated by calculating the entropy for each ques-
tion as shown in Equation (2), where A is the key,
D is a distractor, Q is the stem, PQ(A) (PQ(D))
is the probability that the key (any distractor) is
chosen for Q by a subject.

H(Q) = −
∑

O∈{A,D}

pQ(O) log(pQ(O)) (2)

The distribution of entropies per question is shown
in Figure 3. Assuming the natural logarithm, the
highest theoretically possible value for H(Q) is
0.69, if pQ(A) = pQ(D) = 0.5. 32% of MCQs
had an entropy larger than 0.65, whereas 51% had
an entropy larger than 0.6, which means that half
of MCQs had at least one plausible distractor.

https://osf.io/b7pjm
https://www.prolific.co/
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6.2.2 Teacher’s perspective

Bearing in mind the findings of Section 6.2.1, it
is interesting to see which of the proposed distrac-
tors (especially, among LF-DIS) teachers would
mark as acceptable. Given the complexity of such
evaluation, using the whole test set was infeasible.
To get a representative sample, we used entropy
per question (shown in Figure 3). All MCQs were
divided into 5 equally sized buckets by entropy and
9 MCQs were sampled uniformly at random from
each bucket, resulting in 45 MCQs in total.

We asked 5 teachers to evaluate each MCQ (pre-
sented in a random order for each of them). Each
MCQ contained the base text, the stem, the key
and the generated distractors. The teachers were
instructed to select those of generated distractors
(if any) deemed suitable for testing reading com-
prehension. Additionally, we asked to provide their
reasons for each rejected distractor in a free-text
input. The inter-annotator agreement (IAA) was
estimated using Goodman-Kruskal’s γ (Goodman
and Kruskal, 1979), specifically its multirater ver-
sion γN proposed by Kalpakchi and Boye (2021).
On the scale proposed by Rosenthal (1996), we
have found a very large agreement (γN = 0.85,
see Appendix D.2.2 for more details on IAA calcu-
lations).

On average, 1.47 distractors per MCQ were ac-
cepted by a teacher. Their reasons for rejections
are distributed as shown in Figure 4. All teachers
accepted at least one generated distractor for 39
MCQs (86.7%), whereas the majority of teachers
did so for 27 MCQs (60%). Interestingly, there
are no MCQs in which all 5 teachers have either
accepted or rejected all generated distractors. How-
ever, the majority of teachers has accepted or re-
jected all distractors for 4 MCQs (8.9%) and 6
MCQs (13.3%) respectively.

Out of 45 MCQs, 31 (68.9%) had at least one
LF-DIS, as defined in Section 6.2.1. For these 31
MCQs we report a distribution of accepted/rejected
LF-DIS by the majority of teachers in Figure 5. Let
us call the 15 MCQs with all LF-DIS accepted by
the majority of teachers as mismatch MCQs (low-
est row in Figure 5). Interestingly, 12 of the 15
mismatch MCQs had at least one more distractor in
addition to LF-DIS being accepted by the majority
of teachers. Furthermore, all mismatch MCQs had
entropy higher than 0.3. This entails that almost a
half of LF-DIS should not necessarily be thrown
away, since they were accepted by teachers, but
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Figure 4: A histogram showing the distribution of
teachers’ reasons behind rejecting distractors.
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Figure 5: A bi-variate histogram showing the distribu-
tion of the 31 MCQs (the numbers on the bars sum to
31) with at least 1 LF-DIS, with respect to their LF-DIS
being accepted/rejected by the majority of teachers.

the MCQs either happened to have more plausi-
ble distractors or subjects might have had relevant
background knowledge to answer the questions.

7 Related work

We employed a systematic process to get a compre-
hensive overview of DG methods (see Appendix E
for more details). Out of the resulting 28 articles
(see an overview in Table 4), only 2 worked with a
language other than English (Chinese and Basque).
In this paper we work on reading comprehension
MCQs, which makes only 12 papers, dealing with
factual questions, relevant.

Two of these used rule-based approaches. Ma-
jumder and Saha (2015) generated MCQs for
cricket domain and used a number of hand-crafted
rules based on gazeteers and Wikipedia entries to
generate distractors. Mitkov and Ha (2003) pro-
posed to generate distractors for MCQs on elec-
tronic instructional documents using WordNet.

Six of these relied on extractive approaches.



394

Liang et al. (2018), Welbl et al. (2017), and Ha
and Yaneva (2018) formulated choosing a distrac-
tor as a ranking problem from the given candidate
set. In the first two articles the candidate set consti-
tuted all distractors from the available MCQ dataset.
The authors then trained ML-based ranker(s) for
choosing the best distractors. In the last one, the
candidate set was created using content engineers.
Distractors with a high similarity of their concept
embeddings (summed for multiple words) and ap-
pearing in the same document as the key are ranked
higher. Stasaski and Hearst (2017) and Araki et al.
(2016) worked in the domain of biology. The for-
mer used an ontology and the latter employed event
graphs containing information about coreferences
to generate distractors. Karamanis et al. (2006)
used thesaurus and tf-idf to identify key concepts
in the given text and then select as distractors those
having the same semantic type as the key.

The remaining four employed neural meth-
ods and are most relevant among the surveyed.
Qiu et al. (2020) trained a sequence-to-sequence
(seq2seq) model with a number of attention layers.
Zhou et al. (2020) also employed a seq2seq model,
but with a hierarchical attention to capture the in-
teraction between a text and a question, as well as
semantic similarity loss. Both articles used a beam
search combined with filtering based on Jaccard co-
efficient at generation time. Offerijns et al. (2020)
trained a GPT-2 model to generate 3 distractors
for a given MCQ, and used BERT-based question
answering model for quantitative evaluation (along
with human evaluation).

Finally, Chung et al. (2020) proposed a BERT-
based method for English with answer-negative
regularization, penalizing distractors for containing

Problem/method property #
� Extractive 14
� Generative, rule-based 7
� Generative, neural 7
 Only automatic evaluation 5
 Only human evaluation 19
 Automatic and human evaluattion 4
N Cloze-style, single-word answers 14
N Cloze-style, continue the sentence 2
N Factual questions 12

Table 4: 28 related works broken down by method (�),
type of evaluation ( ) and types of questions for which
distractors have been generated (N)

the same words as the key, and training a sequential
and a parallel MLM model simultaneously. At
generation time, they generate one distractor, and
then create a distractor set of the predefined size
based on sampling from the probability distribution
returned by BERT for each token of the distractor.
Then they rank every triple of distractors based on
the entropy of a separately trained QA model.

Our method also relies on BERT, but has a num-
ber of differences beyond being applied to Swedish.
Firstly, we did not include answer-negative regular-
ization, since it is not always a good strategy. For
instance, given the stem “When should you pay a
fee if you apply for a visa?” and a key “before you
have submitted the application”, the best distractor
would be “after you have submitted the applica-
tion”, which shares most of the words with the
key. Secondly, we generate distractors in arbitrary
word order compared to left-to-right generation in
(Chung et al., 2020). Thirdly, at generation time,
we use previously generated distractors as input for
generating next ones, and always take tokens with
a maximum probability. This lowers the risk of
generating ungrammatical distractors. Finally, our
training set is 100 times smaller compared to the
training set used by Chung et al. (2020).

8 Conclusion

We have collected SweQUAD-MC, the first dataset
of Swedish MCQs, and showed the possibility of
training usable BERT-based DG models, despite
the small scale of the dataset. We have showed
that a u-PMLM variant of the BERT-based DG
model performs best on the dataset, and proposed a
novel methodology of evaluating the plausibility of
generated distractors. Around half of the generated
distractors were found acceptable by the majority
of teachers, and more than 50% of MCQs had at
least one plausible generated distractor, judging by
the entropy of students’ responses.

Bearing in mind that the aim of the proposed
method is to support (not replace) teachers, we
deem that our method works well for MCQs in
Swedish (and potentially in other languages with a
pretrained BERT and a dataset of a similar scale).

Furthermore, we have presented a baseline ap-
plicable to any language with a UD treebank (cur-
rently about 100 languages). Although its perfor-
mance is nowhere near the u-PMLM variant, we be-
lieve that it can serve as a good point of comparison
to emerging neural methods for other languages.
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A SweQUAD-MC data collection details

We have used publicly available texts from the web-
sites of Swedish government agencies. The exact
list of URLs is provided in the GitHub repository
associated with the paper. The exact instructions
given to students recruited to collect SweQUAD-
MC dataset (and their translation to English) are
presented in Figure 6. In addition to the given in-
structions, the students were also given the oppor-
tunity to slightly reformulate the distractors found
in the text in order to align the syntactic structure
with that of the key.

B Quantitative metrics

In addition to the metrics 1–10 presented in Section
6.1, we have also looked at the following ones
(MCQ% means “Percentage of MCQ” and DIS
means “generated distractor(s)”)

11. MCQ% with at least 1 DIS being capitalized
differently from the key

12. MCQ% with at least 1 DIS being a distractor
from training data.

13. MCQ% with at least 1 DIS is in any base text
from training data.

14. MCQ% with at least 1 DIS appearing in at
least 1 base text from training data, but not in
their own base text.

15. MCQ% with all distractors appearing in the
base text.

16. MCQ% with all distractors appearing in at
least 1 base text from training data.

17. MCQ% with all DIS being distractors from
training data.

The rationale behind metric 11 was that capital-
ized answers are named entities and thus one would
like distractors also to be named entities. However,
it does not always hold. For instance, consider
the stem “Who gets an e-mail with a confirmation

of a successful submission of the application for
the work permit?” and the key “you and your em-
ployer”. A distractor “Migration Agency” would
suit the question perfectly, although capitalization
is clearly different.

Metrics 12-17 were candidates to become over-
fitting indicators. However, metric 2 was excluded,
since AnyDisFromTrainDis is more informative,
given phrases used as distractors in training data
can be repeated in other texts. Metrics 13-14 were
excluded, since it’s unclear whether the higher or
lower values are better. For instance, if a text from
the training data and the given text are thematically
similar, would copying a distractor from training
data be considered overfitting? Metrics 15-17 were
rejected as too strict, leaving the possibility of ac-
tually missing overfitting if only 2 of 3 distractors
would meet the criteria.

C Model selection

We have trained both left-to-right and u-PMLM
variants for 6 epochs (fixing a random seed for u-
PMLM masking procedure to 42). The quantitative
performance metrics on the development set for
the top-3 models for each variant are presented
in Table 5. The best u-PMLM model (i-14000)
outperformed the best left-to-right model (i-18000)
on most of the quantitative metrics.

The next experiment concerned the order in
which distractors are generated, which we tested
only for the best u-PMLM model. We tried gen-
erating shortest distractors first (SF), longest first
(LF) or in a random order with a fixed seed of 42
(RND). The results of the experiment are presented
in Table 6. Evidently, models with SF-generation
consistently outperform ones with LF-generation.
SF-generation also performs on-par or better than
RND-generation. However, fixing a seed is not a
generalizable solution, which is why we opted for
SF-generation.

D Human evaluation details

D.1 Student’s perspective

Evaluation from the student’s perspective has been
conducted on the Prolific platform7. We used Pro-
lific’s pre-screening feature and required each sub-
ject to have Swedish as the first language and hold
at least a high school diploma (A-levels). Descrip-
tive statistics about the recruited sample of subjects

7https://www.prolific.co/

https://www.prolific.co/
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Imagine that you are a teacher checking reading comprehension skills of your students. Given a
text, your task is to create one or more multiple choice questions based on the text, i.e.:

1. formulate a question with the correct answer in the text;

2. mark the correct answer in the text;

3. mark some wrong, but plausible options in the text.

When you have written your questions, marked the correct answer (CA) and the wrong alternatives
in the text, click on “Submit”. When you formulate the question, think about the following aspects.

• The question must be independent, i.e., one should not require additional information (on top
of the given text) to be able to answer the question.

• The question should be unambiguous and have only one possible interpretation.

• One should not be able to answer your question without reading the text, which is why even
wrong alternatives should be plausible.

• Wrong options must be in the same grammatical form as the CA. For instance, if the CA
begins with a verb in Past Simple, all wrong options must begin with a verb in Past Simple.

Find as many questions as you can (+ the correct answer and wrong alternatives) on each text and
then get a new text when you can’t find more.

Figure 6: An English translation of the original instructions for SweQUAD-MC data collection (the original in-
structions in Swedish can be found in the GitHub repository)

Metric
left-to-right u-PMLM

i-10000 i-14000 i-18000 i-10000 i-14000 i-16000
e-3.02 e-4.23 e-5.43 e-3.59 e-5.02 e-5.74

M1: DisRecall ↑ 9.77% 14.29% 12.41% 17.67% 21.43% 18.80%
M2: AnyDisRefMatch ↑ 18.25% 26.19% 21.43% 30.95% 37.30% 31.75%
M3: AnyDisInText ↑ 64.29% 69.84% 73.81% 68.25% 72.22% 73.81%
M4: KeyInDis ↓ 0.79% 1.59% 3.17% 2.38% 5.56% 5.56%
M5: AnySameDis ↓ 34.13% 27.78% 19.84% 9.52% 10.32% 11.90%
M6: AllSameDis ↓ 3.17% 1.59% 0.79% 1.59% 0.79% 0.79%
M7: AnyDisRep ↓ 0.00% 0.00% 0.00% 0.00% 1.59% 1.59%
M8: AnyDisEmpty ↓ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
M9: AnyDisFromTrainDis ↓ 5.56% 5.56% 6.35% 5.56% 2.38% 2.38%
M10: MeanNCPTK ↑ 0.33 0.38 0.39 0.41 0.41 0.41
M11: MedianNCPTK ↑ 0.18 0.19 0.21 0.27 0.26 0.27

M12: ModeNCPTK ↑ 1.0 1.0 1.0 1.0 1.0 1.0
(13.3%) (18.8%) (17.6%) (18.1%) (20.3%) (19.6%)

Table 5: TOP-3 models for left-to-right and u-PMLM variants after model selection on the dev set. i-XXXXX
shows a number of iterations since training start, e-X.XX shows a number of epochs corresponding to i-XXXXX.
Floating point epochs are due to checkpoints being saved every 2000 iterations.
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Metric i-10000, e-3.59 i-14000, e-5.02 i-16000, e-5.74
SF LF RND SF LF RND SF LF RND

M1 ↑ 15.8% 13.9% 15.8% 20.7% 14.7% 19.9% 19.9% 15.0% 17.7%
M2 ↑ 25.4% 25.4% 29.4% 36.5% 27.8% 34.1% 34.1% 27.0% 30.1%
M3 ↑ 64.3% 63.5% 65.9% 73.0% 66.7% 69.8% 72.2% 66.7% 70.6%
M4 ↓ 2.4% 2.4% 3.2% 4.0% 4.8% 5.6% 4.8% 5.6% 4.8%
M5 ↓ 7.9% 11.1% 7.9% 10.3% 9.5% 10.3% 10.3% 8.7% 10.3%
M6 ↓ 1.6% 1.6% 1.6% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
M7 ↓ 0.0% 1.6% 0.0% 0.0% 1.6% 1.6% 0.8% 0.8% 3.2%
M8 ↓ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
M9 ↓ 5.6% 4.8% 6.3% 4.8% 5.6% 4.0% 4.0% 4.0% 3.2%

M10 ↑ 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
M11 ↑ 0.24 0.22 0.25 0.26 0.21 0.22 0.29 0.22 0.22

M12 ↑ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(18%) (17%) (19%) (20%) (18%) (20%) (19%) (18%) (19%)

Table 6: Results of model selection by the generation order of distractors for the TOP-3 u-PMLM models.
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Figure 7: Descriptive statistics of the sample of subjects on Prolific

Thank you for participating in our study! You will be presented with a number of multiple choice
questions. Your task is to answer as many of these questions correctly as possible. If you don’t
know which alternative is correct, choose the one that seems the most plausible. You are allowed
to use ONLY your own prior knowledge and common sense. Please, do NOT consult any other
external sources of information.

Figure 8: An English translation of the original instructions given to subjects on the Prolific platform (the original
instructions in Swedish can be found in the GitHub repository)
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is presented in Figure 7. The exact guidelines given
to the subjects (and their translation to English) are
presented in Figure 8. MCQs were presented in
a random order, but the order of options for each
MCQs was the same for each subject.

D.1.1 Check of the t-test assumptions
We used one sample t-test for conducting our
analysis and thus the following assumptions were
checked for.

1. The variable under study should be either
an interval or ratio variable. Our variable,
the number of correctly answered MCQs, is
clearly on a ratio scale.

2. The observations in the sample should be
independent. Subjects have performed the
task independently of each other through a
Prolific platform, hence the observations are
independent.

3. The variable under study should be ap-
proximately normally distributed. The dis-
tribution of the number of correctly answered
MCQs is presented in Figure 7 (the plot in
the last row and the last column with the ti-
tle “num correct”). The distribution is indeed
approximately normal.

4. The variable under study should have no
extreme outliers. Outliers are typically de-
fined in terms of the interquartile range (IQR),
which equals to Q3 - Q1. The datapoints
outside 1.5IQR are deemed mild outliers,
whereas those outside 3IQR are considered
extreme outliers. Boxplots for our data with
whiskers within both 1.5IQR and 3IQR are
presented in Figure 9. Two datapoints can be
considered mild outliers, but no extreme out-
liers are present, which means this assumption
for the one sample t-test is not violated.

D.2 Teacher’s perspective

D.2.1 Instructions
The exact guidelines given to the teachers and their
translation to English, are presented in Figure 10.

D.2.2 Inter-annotator agreement
To evaluate the inter-annotator agreement (IAA)
between the teachers, we have reformulated the
problem into a ranking problem, where all accepted

distractors were given the rank of 1 and those re-
jected - the rank of 2. IAA was then estimated us-
ing Goodman-Kruskal’s γ (Goodman and Kruskal,
1979), specifically its multirater version γN pro-
posed by Kalpakchi and Boye (2021). The total
number of concordant and discordant pairs were
summed for each pair of teachers for each MCQ.
The resulting γN equals to 0.85, indicating a very
large agreement on the scale proposed by Rosen-
thal (1996).

E Details on surveying related work

To get a comprehensive overview of methods for
generating distractors for MCQs, we employed a
two-step process. The first step was to issue queries
“distractor generation” and “multiple choice ques-
tion generation” to ACL Anthology and Google
Scholar. The result was 20 articles from ACL An-
thology and 4 additional ones from Google Scholar.
The second step was to select relevant references
from the “Related work” sections of these articles.
This resulted into 15 additional articles. Out of
found 39 articles, 11 were filtered out (8 focused
only on generating questions, 1 relied mostly on
expert knowledge, 1 on the auxiliary relation ex-
traction task and 1 was a demo paper), leaving 28
articles in total. Only 2 of these 28 papers worked
with a language other than English (Chinese and
Basque).

F Generated samples

A number of generated distractors along with the
respective stems and keys from the dataset are pre-
sented in Figures 11, 12, 13, 14, 15. The questions
are sampled based on the entropy of student’s an-
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Figure 9: Boxplots for the number of correctly an-
swered questions
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Thank you for participating in our study! You will be presented with a number of tests. Each
test contains a text, a reading comprehension question based on the text, the explicitly marked
correct answer to this question and a number of suggestions for wrong, but plausible alternatives
(distractors).
Suppose you would like to use the given question for testing reading comprehension of the given
text. Your task is to judge which of the suggested distractors (if any) you would fit the purpose.
Select suitable distractors by simply ticking the respective checkboxes. For the other distractors
(that you didn’t select), please briefly state your reasons why these distractors were inappropriate
in the respective text fields (max 1 sentence).

Figure 10: An English translation of the original instructions given to teachers (the original instructions in Swedish
can be found in the GitHub repository)

swers using the same 5 buckets as in sampling for
teachers’ evaluation. Recall that distractors are said
to be low frequency (LF-DIS) if they were chosen
by less than 5% of students. Hence, a red cross
in the column “F-DIS > 5%” entails that a given
distractor is in fact an LF-DIS.

The MCQ in sample 1 has an entropy of 0,
meaning all students have selected the same op-
tion, which in this case was the key. In this case,
two of three distractors were accepted by the major-
ity of teachers, although all of them were LF-DIS.
This is a good example of an MCQ with plausible
distractors, but where the stem is too easy.

The MCQ in sample 2 presents an interesting
case, when the distractor contains an obvious gram-
matical error (comma before the first word in the
distractor 3). While the distractor was rightfully
rejected by the majority of teachers, it was still
selected by more than 5% of students.

The MCQ in sample 3 is a good example of
longer distractors. In this case, two distractors
were accepted by teachers and two were selected by
more than 5% of students. However, interestingly
these sets are disjoint, meaning that all three dis-
tractors could potentially be useful. Another more
general observation, requiring future research, is
that our model seems to struggle more when gen-
erating longer distractors in general, resulting in
non-finished sentences or repetitions of words.

The MCQ in sample 4 is somewhat opposite to
sample 3, since one distractor that was accepted by
the teachers turned out to be an LF-DIS. This either
means that the stem was too easy or that none of
the distractors were potentially useful.

The MCQ in sample 5 is the one with a highest
theoretically possible entropy between selecting
the correct or a wrong option. Note that it might

still happen that some of the distractors is LF-DIS,
since the entropy is calculated not between all four
options, but only between the key and the distrac-
tors as a group.
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Stem
Vad täcker över hälften av Sveriges yta?
(What covers more than half of the surface of Sweden?)

Key: skog (forest)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

vattendrag water 4 8

miljöer environments 8 8

djur - och växtarter plant and animal species 4 8

Figure 11: Sample 1 (entropy 0). “F-DIS” denotes the frequency of choice of a distractors by the students, “Ac-
cepted by teachers” indicates if a distractor was accepted by the majority of teachers.

Stem
Vad förvaras på en torkanläggning?
(What is stored in a drying facility?)

Key: spannmål, hö eller halm (grains, hay or straw)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

ogräs weeds 4 8

balpressar balers 4 4

, harvar och sår , harrows and sows 8 8

Figure 12: Sample 2 (entropy 0.31). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.

Stem
När betalar du avgiften om du ansöker på en ambassad?
(When do you pay the fee when you are applying at an embassy?)

Key: när du lämnar in din ansökan (when you are handing in your application)

Distractor (sv) Distractor (en) Accepted
by

teachers?

F-DIS > 5%

när du får uppehållstillstånd when you receive your residence
permit

4 4

när du ansöker för första
gången

when you are applying for the
first time

8 4

när du ansöker innan tiden för
ditt tidigare tillstånd har gått ut

when you are applying before
your previous permit has expired

4 8

Figure 13: Sample 3 (entropy 0.57). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.
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Stem
Vad är negativt för flera marina miljöer?
(What is negative for several marine environments?)

Key: kommersiellt fiske (commercial fishing)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

klimatförändringar climate change 8 4

många olika miljöer many different environments 8 8

äldre brukningsmetoder older cultivation methods 4 8

Figure 14: Sample 4 (entropy 0.675). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.

Stem
Vilka kan utfärda medicinska rapporter för kabinbesättning?
(Who can issue medical reports for cabin crew?)

Key: företagsläkare (company physicians)

Distractor (sv) Distractor (en) Accepted by
teachers?

F-DIS > 5%

företagssköterskor company nurses 4 4

flygläkare aviation physicians 8 4

gymnasieinfo.se gymnasieinfo.se 8 8

Figure 15: Sample 5 (entropy 0.69). “F-DIS” denotes the frequency of choice of a distractors by the students,
“Accepted by teachers” indicates if a distractor was accepted by the majority of teachers.


