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Abstract

Story generation is a task that aims to automat-
ically generate a meaningful story. This task is
challenging because it requires high-level un-
derstanding of the semantic meaning of sen-
tences and causality of story events. Naive
sequence-to-sequence models generally fail to
acquire such knowledge, as it is difficult to
guarantee logical correctness in a text gener-
ation model without strategic planning. In this
study, we focus on planning a sequence of
events assisted by event graphs and use the
events to guide the generator. Rather than us-
ing a sequence-to-sequence model to output a
sequence, as in some existing works, we pro-
pose to generate an event sequence by walk-
ing on an event graph. The event graphs are
built automatically based on the corpus. To
evaluate the proposed approach, we incorpo-
rate human participation, both in event plan-
ning and story generation. Based on the large-
scale human annotation results, our proposed
approach has been shown to provide more log-
ically correct event sequences and stories com-
pared with previous approaches.

1 Introduction

Narrative intelligence (Mateas and Sengers, 2003)
is a form of humanistic artificial intelligence that
requires the system to organize, comprehend, and
reason about narratives, and then, produce mean-
ingful responses. Story generation tasks can be
considered as a test bed for examining whether a
system develops a good understanding of the nar-
ratives. In addition to leaving the model to output
random sequences, the model is usually given a
specific topic (e.g., title or prompt) or visual in-
formation (e.g., image or video). One straightfor-
ward approach for these story generation tasks is
to leverage a sequence-to-sequence model to pre-
dict sentences sequentially. Although the model
can be trained to capture the word-prediction dis-
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Figure 1: Comparison between sequence-to-sequence
model and GraphPlan (ours). Two problems occur
in the sequence-to-sequence model when generating
events: repetition and logical inconsistency. Repeated
words (e.g., play) in the storyline result in repeated sen-
tences in the generated stories. In addition, the logic
between “land” and “snap” lacks causality, thus gener-
ating incoherent stories. On the contrary, our Graph-
Plan method does not rely on any language model, and
applies beam search on the event graph based on a
well-designed score function. The mutually exclusive
set further ensures global logical consistency for the
planned events.

tribution from the training data, it has two serious
drawbacks when applied to generating stories: 1)
A conditional language model (i.e., the decoder)
tends to assign high probabilities to generic, repeti-
tive words, especially when beam search is applied
in the decoding phase (Holtzman et al., 2019); and
2) sequence-to-sequence models often fail to pro-
duce logically correct stories.

Recently, there has been significant interest in de-
composing story generation into two phases: Plan-
ning and generation (Yao et al., 2019; Goldfarb-
Tarrant et al., 2019; Xu et al., 2018; Fan et al.,
2019). Planning (Meehan, 1976; Riedl and Young,
2010) creates a high-level abstraction or a blueprint
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that encourages the generator to focus on the flow
of a story, similar to making an outline before writ-
ing. The planned elements are referred to as events
in several papers. However, the detailed defini-
tion of events varies. For instance, an event can
be represented as a verb argument pair (e.g., (ad-
mits, subj)) (Chambers and Jurafsky, 2008): tu-
ple of subject, verb, object and modifier or “wild-
card” (e.g., (PERSONO, correspond-36.1, empty,
PERSONI1)) (Martin et al., 2018; Ammanabrolu
et al., 2020) or reconstructed verb phrase (e.g., de-
cide(go)) (Peng and Roth, 2016). In this paper, we
follow Peng and Roth (2016) to represent an event
with verb phrases.

Existing approaches (Goldfarb-Tarrant et al.,
2019; Martin et al., 2018; Ammanabrolu et al.,
2020) regard event generation as an abstracted case
of story generation. In other words, they treat each
event as one token and use a sequence-to-sequence
model to plan the events. Our preliminary exper-
iments show that repetition and logical inconsis-
tency problems occur in the event sequence; fur-
ther, the same problems occur in the generated sto-
ries. Figure 1 shows an example using sequence-to-
sequence event planning. Both events and stories
are repeated and illogical.

In this study, instead of a sequence-to-sequence
model for event planning, we propose a planning
method, GraphPlan. To plan the event, GraphPlan
walks on a topic-specific event graph with a beam
search. Event graphs have been adopted for story
generation even before the emergence of neural-
based models (Weyhrauch, 1997; Chen et al., 2009;
Regneri et al., 2010; McIntyre and Lapata, 2010; Li
et al., 2013). An event graph represents the logical
flow of events based on the facts presented in a
corpus. We can walk on a learned event graph and
produce a reasonable event sequence. We follow
the graph setting in Li et al. (2013), wherein each
graph is composed of event nodes, functions and a
set of mutually exclusive events.

To generate a story, we first identify the topic
based on the input (e.g., title or image), and sub-
sequently, retrieve a related event graph. We then
plan the events by running a beam search with a
score function that considers event-event coherence
and input-event coherence into account. Finally,
a story generation module transforms the planned
event sequence into a readable story. Figure 2 de-
picts the entire pipeline of our proposed approach.

We conducted experiments on open story genera-
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Figure 2: Overview of our approach. In the prepro-
cessing step, we cluster the stories into K topics and
build an event graph for each topic. In the planning
step, an event graph selection module selects an event
graph based on the input. Then, a related event graph
is retrieved. The event planning model generates a
sequence of events. Finally, based on the input and
planned events, a story generation module generates
the story. The dashed line denotes mutually exclusive
events that are difficult to coexist in the same storyline.

tion to evaluate how event graphs benefit tasks. Our
approach significantly outperforms baseline mod-
els that generate events with sequence-to-sequence
models in terms of logical consistency. We also
conducted Story Cloze Test (SCT) to further vali-
date the effectiveness of the event graphs and the
mutually exclusive sets. Our contributions can be
summarized as follows:

* We propose a score-based beam search approach
to plan story events with an event graph.

* Compared with baseline models, our graph-based
planning approach results in much better logical
correctness in story generation tasks according
to human evaluation.

» Experiments on SCT directly confirm the high ac-
curacy of the proposed event planning approach.

2 Related Work

Planning for Story Generation Several ap-
proaches have been explored to plan the skeleton of
a story before its generation. Before the emergence
of neural-based models, Reiter and Dale (1997) and
Riedl (2010) attempted to use hand crafted rules to
arrange actions into character sequences. Recently,
with the help of neural sequence-to-sequence mod-
els, Xu et al. (2018) proposed to generate multiple
key phrases and expand them into a complete story.
A built-in key phrases generation module is used
in their model architecture. In contrast to Xu et al.



(2018), some works have explicitly plan a sequence
of events (Martin et al., 2018; Ammanabrolu et al.,
2020; Tambwekar et al., 2019; Fan et al., 2018;
Rashkin et al., 2020; Ammanabrolu et al., 2021),
keywords (Yao et al., 2019; Ippolito et al., 2019;
Goldfarb-Tarrant et al., 2020) or actions (Fan et al.,
2019) before generating the story based on the
planned items.

All of these planning models rely on a language
model for planning, without following an external
structure of events, which results in degraded per-
formance (Holtzman et al., 2019). Compared with
these works, the main contribution of this paper is
to propose a planning method based on automati-
cally created event graphs. Instead of a language
model, we use score-based beam search to generate
a sequence of events by walking on the graph.

Graph-based Story Planning An event graph
is a variant of a plot graph whose nodes represent
events. Previous research has made progress on
generating stories from plot graphs (Weyhrauch,
1997; Chen et al., 2009; Regneri et al., 2010; Mcln-
tyre and Lapata, 2010; Li et al., 2019). Li et al.
(2013) proposed a plot graph on story generation
tasks, which is relevant to our work. They crowd-
sourced the story corpus and manually created plot
nodes and edges in the graph. In their graph, mutu-
ally exclusive events are not allowed to be present
in the same story.

In this work, both the event graphs and mutually
exclusive sets are automatically generated. We fur-
ther propose an event planning method that consid-
ers the relations between events and various inputs
(i.e., title or image).

3 Event Graph Construction

As a preprocessing step, we first extract events
automatically from a corpus. Then, we divide the
corpus into several topics. Finally, we build an
event graph for each topic.

Data-based Event Extraction Following Peng
and Roth (2016), we represent each event with a
verb phrase. Unlike other representations, a verb
phrase is the minimum unit in one sentence that
is abstract, simple, and comprehensible for hu-
mans. From our observation, this representation
does not have a severe sparseness problem. In
statistics, each event in the graph can link to over
three next possible events on average. Note that
our work does not investigate event representation;
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instead, we focus on planning a more logical event
sequence. Specifically, as a preprocessing step,
we parse all sentences with semantic role label-
ing ! and extract the verb phrases. If an extracted
verb has an argument with the semantic role “AM-
NEG” (negation) for a verb, we add (not) before it
(e.g., (not)take). If a verb is followed by a preposi-
tion, we append the prepositional word to the verb
(e.g., take(over)). If the label is “AM-PRD” (sec-
ondary predicate), we make an event from it (e.g.,
be(excite)). Finally, if two verbs are close to each
other within five-word distance in the corpus, we
combine them to make an event (e.g., decide(buy)).
All words in the event are stemmed using NLTK
(Bird et al., 2009).

Topic Modelling Generally, a story dataset con-
tains various topics, ranging from animals to health
to robbery. Here, we use Latent Dirichlet Alloca-
tion (LDA) (Blei et al., 2003) to infer the topics in
the corpus. Considering that the relation between
events drastically changes according to the topic,
in this study, we build an independent event graph
for each topic. Formally, we denote e’f, ..., el the
event set from the stories that belong to the k-th
topic 7" in the corpus. These events would be used
as nodes for the event graph of 7%. LDA clusters
the stories and thus reduces the amount of unique
events in each graph, which will make the graph
walking algorithm more efficient.

Event Connection After collecting events from
a corpus for each topic, we need to determine
connections among these events to build a graph.
The connections are represented as directed edges
whose direction indicates possible next events. In
practice, if events e; and e; occur adjacently in the
text, we add an edge e; — ej. An example of an
event graph is presented in Figure 2.

Mutually Exclusive Set Following the graph set-
ting in Li et al. (2013), there are events (e.g. “die”
and “be(happy)”) that are mutually exclusive, and
thus, cannot be placed in the same story. These
mutually exclusive relations are considered as ex-
ceptions, which are difficult to represent along with
the event graph. We create a held-out set consisting
of mutually exclusive event pairs for each graph.
To identify these mutually exclusive events from
the constructed graphs, we prepare an event-event

"https://demo.allennlp.org/semantic-role-
labeling/semantic-role-labeling
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Figure 3: Coherence models were used in this study.
The event-event coherence model outputs a coherence
score for two events. The input-event coherence model
takes a title and an event as input. Both coherence mod-
els finally produce a score within O to 1. These co-
herence scores determine the next event when running
beam search.

coherence model to detect the coherence score be-
tween two events. Consequently, we prevent two
events with low coherence scores from coexisting
in the planned events. The model architecture is
based on compositional neural networks (Granroth-
Wilding and Clark, 2016), as shown in Figure 3.
The model takes two events (e;, ej) represented
with unique embeddings, and outputs a coher-
ence score normalized with the sigmoid function
fevent(€i,€5) € [0,1]. We use contrastive training
to optimize the model. Here, positive examples are
the events extracted from the same story or title,
whereas negative samples are randomly sampled
from the events in different stories. Let (e;, €;)
denote a positive pair of events, and €; denotes a
randomly sampled event. The training loss for the
event-event coherence model is defined as

Levent = max(O, _fevent(ela 62) + fevent(eh éZ) + m)v

)
where m is a fixed margin. Finally, we consider
two events as mutually exclusive if the coherence
score falls below a certain threshold 7.

On average, after considering the mutually exclu-
sive sets, each event graph can still plan over one
million different possible event sequences. Please
refer to the supplementary materials for more sta-
tistical details on event graphs. Additionally, these
in-topic event graphs can be hierarchically com-
bined into a larger graph, if the model is required
to generate longer discourse-level stories. This will
be a future direction for our work.

4 GraphPlan: Planned Story Generation
using Event Graph

In this section, we describe our approach for
planned story generation. We separated the entire
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pipeline into two steps: 1) Our GraphPlan walks on
the event graph and produces a sequence of events
as a blueprint of the story. 2) The story genera-
tion module then finalizes the text following the
planned events.

4.1 GraphPlan

Each topic has had a corresponding event graph.
Before story generation, we propose GraphPlan to
plan event sequences from the event graph. These
planned events will be used to guide the story gener-
ation module in the next step. GraphPlan comprises
two steps. 1) Selecting an event graph for the input
(i.e. title or image); and 2) generating an event
sequence by walking on the graph.

Event Graph Selection First, we identify the
topic of inputs to retrieve the corresponding event
graph. Depending on the tasks, the inputs can be
titles for open story generation, or images for the
visual storytelling task. If the input is a piece of
text, we directly use the LDA model, trained earlier,
to identify the topic.

Event Sequence Generation Once we identify
the topic of input, we walk on the corresponding
event graph to generate a sequence of events. In
our experiments, we found that an autoregressive
language model tends to produce repetitions, result-
ing in degraded performance. Hence, we propose
to use a score-based generation method. The al-
gorithm can be seen as a type of beam search, in
which the candidate event sequences are ranked by
a score function. Starting from a random event e,
we progressively search for the next event e, in the
following candidate set:

{e: | e € Graph(e;_1),
Lem1)),  (2)

where Graph(-) returns a set of possible next events
in the graph, and Exclusive(-) returns a set of mu-
tually exclusive events. This filtering step signifi-
cantly reduces the number of candidate events.

To select the event from the candidate set, we
rank all remaining candidate events with the fol-
lowing score function:

er ¢ Exclusive(ey, ..

t—1
1 ,
Score(et) :WE A'10g fevent(€i, €t) 3)
=0\ =0

+10g finput (7, €1)
where the first term of the score function sums
the event-event coherence score of candidate event
e; to each partially generated event e; and gives



more weight to recent events. A denotes the decay
rate. Then, a decayed average is applied over the
score. The model used in producing the event-
event coherence is the same model that is used
to detect mutually exclusive events. The second
term is an input-event coherence score finput (2, €t),
which indicates the coherence score between event
e; and the input x. We propose an input-event
coherence model to compute this score; refer to
Figure 3 for details about parameterization. For
the task of open story generation, the input-event
coherence model is implemented via compositional
neural networks, where input « in Equation (3) is
the title. As common practice for beam search,
we set a budget for the number of candidates to
explore (i.e., beam size). The candidates with the
highest scores are maintained in the beam. The
final candidate with the highest score is selected as
the result.

4.2 Story Generation Module

The generated event sequence will be sent to a
story generation module, which converts the events
into a story; this module can be any type of model.
Recently, large pre-trained language models show
remarkable capacity for generating knowledge-
able and informative sentences. Utilizing these
advantages, the planned events are more likely
to be logically connected in the generated story.
Therefore, we apply GPT2-small (Radford et al.,
2019) as our story generation module. During
the training, we feed the module with the title
words and events. A special token “<EOT>" sep-
arates the title and events and another special to-
ken “<SEP>" is placed in every interval of the
events. “<|endofinput|>" token is added at the end
of the input. In addition, we train an RNN-based
sequence-to-sequence model that is fed with the
same inputs for comparison.

However, as stated in Yao et al. (2019); Tan et al.
(2020), the exposure bias problem occurs when
plan-write strategy is applied. To mitigate this prob-
lem, we alternatively add two types of noises into
the inputs: 1) Mask 20% events with a “[MASK]”
token; and 2) mask all events. The first noise en-
courages the model to generate sentences, referring
to all planned events, while, the second noise pro-
motes the model to generate more stories related
to the title. The effectiveness of two noises are
analyzed in the supplementary material.

381

5 Experiment

5.1 Experiment Settings

We design two experiments to explicitly evaluate
event and story quality. First, we calculate the di-
versity score and conduct human evaluation on the
planned events. Secondly, we use the story gen-
eration module to transform the events into full
stories and conduct human evaluation to evaluate
the story quality. Moreover, to further verify the
correctness of our GraphPlan, we conduct experi-
ments on Story Cloze Test. The details of model
implementations for all experiments can be found
in the supplementary material.

5.2 Dataset

ROCStories Corpora (Mostafazadeh et al., 2017)
consists of 98,162 stories with titles that we use as
the input and a five-sentence story that we use as
the target. We chose this dataset as a testbed since
the sentences included inside are simple, making
it easier to accurately capture the events. We split
these stories into 8:1:1 for training, validation and
testing. We applied clustering to the training split
(i.e., 8 of 8:1:1) and obtained 500 topics, in which
each topic represents one specific domain. Each
story is generated from one specific domain in the
following experiments. Gold event sequences that
are used in planning methods are extracted from
the stories in the corpus.

5.3 Baseline

S2S Following Yao et al. (2019), we use a sequence-
to-sequence model (Bahdanau et al., 2015), which
straightforwardly generates events by the titles.
S2S(R) To build a more competitive baseline, we
adopt reward shaping in the sequence-to-sequence
model. As in (Tambwekar et al.), we apply a policy
gradient on

VoJ(0) = R(e;) Vglog P (e; | e1,...,€i-1;0)
R(v) = a x ri(v) X ra(v)
1 (v) =108 finput (¢, v) 4)
ro(v) = ZeGE/\&;é})Vlo_g {event(e7v)

where e denotes the set of the events in the plan-
ning sequence; F denotes the events in the story;
N denotes the number of events in the story; x
denotes the input title and « denotes the normal-
ization constant across the events in each training
sample. During training, the gradient from e; is
multiplied by the reward R(e;), which is propor-



Diversity | 525 | S25(R) | GP ]| GOLD
Dist-1__ | 10.17% | 11.35% | 20.54% || 24.92%
Dist2 | 56.55% | 58.92% | 78.12% || 87.75%

Table 1: Diversity of planned events. Both sequence-
to-sequence models achieve low diversity, while Graph-
Plan can achieve high diversity.

tional to 1 (e;) and ra(e;). In brief, ;1 (e;) increases
when e; is more related to the input z, while r5(e;)
become larger when e; is more likely to coexist
with all events {e|le € E A e # ¢;}. This method
forces the model to focus on the event that has a
high coherence score with the input and events in
each training sample.

GR In this method, we apply random walk on the
event graphs while considering mutually exclusive
sets. We aim to show the importance of using co-
herence models by comparing it with this method.
GP(Ours) This is our proposed method that plans
events on an event graph via mutually exclusive set
and coherence models.

5.4 Event Quality

We plan the events on 1000 randomly selected test
data with different baselines models and our pro-
posed model. We first tested the diversity of the
generated sequences and calculate Distinct-1 and
Distinct-2 scores to measure the diversity for all
generated events. Table 1 shows that the sequence-
to-sequence model suffers from producing repeated
unigram and bigram events. Graph plan produces
more events in the full event set (more unigrams)
and produces more combinations between events
(more bigrams).

To further evaluate the quality of planned events,
we conduct human evaluation. Instead of using
overly abstract event representation, as in (Tamb-
wekar et al., 2019), we use the verb phrase, which
is more easily understood by humans. Thus, we
request the annotators to compare the event se-
quences using two criteria: Relevance and logi-
cality. Table 2 shows the human evaluation results.
These results show that our planned events (i.e.,
verb phrases) are more related to the input title and
can be easily transformed into a story.

Table 3 shows some of the examples gener-
ated by different methods. The results show
that sequence-to-sequence models tend to generate
repetitive events. Specifically, they tend to out-
put the events that occur with high frequency in
the corpus, such as “be”(there is sth.) and “go”
(sb. go somewhere). This is common for a model
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Choices(%) GP vs S2S GP vs S2S(R) GP vs GR
GP | S2S GP | S2S(R) GP GR

Relevance | 47.0 | 17.8 || 52.0 26.0 56.3 | 12.9

Logical 535 | 149 || 55.2 26.0 515 | 17.8

Table 2: Human evaluation of event planning. Cohen’s
Kappa coefficient (x) for all annotations is in moderate
agreement (0.4-0.6). Sign tests show that p-values are
< 0.01 for all pairwise comparisons.

Title Married too fast

S2S be—be—be—fall+marry

S2S(R) | be—go(up)—ask—say—marry

GR want(do)— go—sit—wonder—call

GP feel —+decide—begin— start—regret

Title New glasses

S2S sit—be(unhappy)—have—go—find
S2S(R) | break—need—go— get—be(glad)

GR wake(up)—be—(not)care—take— make
GP buy—wear—break—shatter—decide(buy)
Title Grilled cheese

S2S love—be—decide—forget—end(up)
S2S(R) | make— get—go—go—rlook—see

GR feel(comfortable)—like—smile—decide—feel(full)
GP melt—put—decide(roast)—burn—taste

Table 3: Examples of the planned events.

trained under the framework of the maximum likeli-
hood estimation method. Although reward shaping
(S2S(R)) helps with this problem substantially, it
is still not eliminated. Without the limitation of
the coherence score, GR walks on graphs randomly
to produce a sequence. As the graph is not small,
achieving a good event sequence is extremely chal-
lenging. Our proposed GP produces more logical
and diverse events, using which humans can easily
tell a story based on these given events.

5.5 Open Story Generation

The goal of event planning is to generate more
related and logical coherent stories. Human evalua-
tion of the event sequence is subjective and tricky
since the event is highly abstract. To prove that
better event planning improves the story quality,
we generate stories using the planned events and
conduct human evaluation to assess the relevance,
logicality, interestingness and overall scores. We
use the story generation module (i.e. GPT2 and
RNN) to transform these planned events into the
full stories. We compare the following methods:

GPT2. This is a large scale language model that has
shown remarkable performance in generating sto-
ries in recent research. In this method, we directly
input the title to GPT2 and generate full stories.

*+GPT2. We associate the event planning meth-



Choices(%) GP vs GPT2 GP vs S2S GP vs S2S(R) GP vs GR GP vs GP+RNN
GP GPT2 GP S2S GP S2S(R) GP GR GP GP+RNN
Relevance 333 41.6 38.4 28.3 40.8 20.3 67.8%*% | 23.2 37.2% 23.3
Interestingness 47.9 41.6 40.1 30.8 43.2 34.0 60.7% | 39.3 || 44.2%* 24.5
Logicality 64.6%* | 27.1 42.6*%* | 19.5 || 44.6* 25.0 62.5%*% | 339 37.2 32.6
Overall 56.3* 354 42.6%% | 21.6 || 42.3* 24.6 64.3%*% | 30.4 46.5 37.2

Table 4: Human evaluation of open story generation. (+GPT2) are omitted for all methods, except for GP+RNN.
We calculate Cohen’s Kappa coefficient (). All the results are in moderate agreement (0.4-0.6). We conduct sign
tests to show the significant difference. (*) and (**) denotes p-value is < 0.05 and < 0.01 respectively. The results
show that our method achieves significant improvement on logicality, thereby getting better overall performance.

Title: Fire next door

After the fire, the fire was out. The family who lived
next door started to panic, so they followed it. [The
firehouse across the street was still burning. The fire
house was still burning next door.] (Repetition)
make — think — go — see — get — apologize
Lisa’s new neighbor made a big fire outside his
house. Lisa thought she would be sorry. She went
outside to check on him. She saw that he was not
there. Lisa’s neighbor could not get a word with him
and apologized.

try — tell — leave — throw — take

Sally tried to fight a burning bush. The homeowner
told her she couldn’t do it. She left a piece of wood
in the bush next door. A woman threw the wood at
sally. Sally took the wood to the fire department.
quit — be — look(buy) — find — go

I quit my job when i was 16. The only thing I ever
didn’t do was take care of my children. Now I'm
looking to buy a car. I found a cheap car on ebay.
Now i can go out in the sun every day.

catch(on) — come — go(off) — evacuate — extin-
guish

The fire alarm was caught on. The firefighters came
to help. The fire alarm went off. Everyone evacu-
ated. The firemen extinguished it before it could go
catch(on) — come — go(off) — evacuate — extin-
guish

The house next door caught on fire. The fire depart-
ment came to the scene. The fire alarm went off. The
entire neighborhood evacuated. The fire department
extinguished the fire.

John woke up smelling like something was burning.
He went outside. He saw the fire next door. He called
the authorities. The firemen came to put out the fire.

GPT-2

S2S

S2S(R)

GR

GP+RNN

GP

Gold

Table 5: Examples of open story generation. Red words
represent the events.

ods with GPT2, which is used in the story gen-
eration module. Thus, we compare S2S+GPT2,
S2S(R)+GPT2, GR+GPT2, and GP+GPT2.
GP+RNN. In this method, we use an RNN-based
sequence-to-sequence model to generate the full
story, which takes the title and events as inputs.
We compare this method to GP+GPT2 to show
the effectiveness of large scale language models in
transforming the events into the stories.

We conducted human evaluation on Amazon Me-
chanical Turk (AMT) over four aspects: relevance
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(whether the story is related to the topic), interest-
ingness (whether the story content and style are
interesting), logicality (whether the story is logical),
and overall (overall quality). The full details of the
human evaluation are listed in the supplementary
materials. We randomly sampled 300 titles from
the testing set and generated stories using each
method. Pairwise comparison was conducted for
each criterion and each sample was assigned to two
different workers to avoid randomness or personal
bias. Table 4 shows that our approach performs bet-
ter with respect to logicality and overall. In particu-
lar, our method greatly outperforms other planning
methods in the logicality measure, which suggests
that our planned events are logically sound. We be-
lieve that the following two factors are the primary
reasons for improved logic: 1) Each event graph is
built from the corpus; thus, walking on the graph
retains the events’ logical relations; and 2) the co-
herence models filter the candidates, and the mutu-
ally exclusive set further eliminates the non-logical
combinations when planning the events. Table 5
shows examples of stories generated using these
methods. We show both the planned events and
stories. Directly using GPT2 produces repeated
sentences. Both equipped with an auto-regressive
model for event planning, the events planned by
S2S and S2S(R) fail to output satisfactory results,
leading to a low logicality score in the generated
sentences. Because there is no restriction on the
event selection in GR, the event produced could
be irrelevant to the title and even mutually contra-
dictory. Using our proposed method, GP can plan
a reasonable set of events, and thus, generate the
most logical story.

5.6 Story Cloze Test (SCT)

To better validate the effectiveness of our event
graphs and the mutually exclusive relation between
events, we conducted SCT. This task aims to select
the correct ending sentence from two candidates.
We incorporated the event features generated by



ACC(%) Test v1.0 | Testvl.5
DiffNet 77.60 64.45
DiffNet+Origin 78.87 67.64
DiffNet+RandomWalk 79.36 68.09
DiftNet+GraphPlan 80.15 69.45

Table 6: Results on story cloze test. From the results,
events planned by our event graphs and mutually exclu-
sive sets have positive effects on this task.

different methods into the SCT. The accuracy of
SCT reflects the quality of the event features. The
event feature is learned by a mask language model
(MLM) (i.e., the BERT model with fewer param-
eters) (Devlin et al., 2019). If the training event
sequence is more logical and reasonable, the fea-
ture learned by MLM would better fit the SCT. To
prove that our event graph and mutually exclusive
relation can help us to generate reasonable event
sequences, we compared the features generated
by the MLM model with different training data:
(1) Origin: Event sequences extracted from ROC-
Stories Corpora. (2) RandomWalk: Random walk
on the event graphs and sample training data. (3)
GraphPlan: Using our planning method to generate
training data. Note that the input-event coherence
score is excluded in the score function because
no input being given. We then use the event fea-
ture and adopt the state-of-the-art model, DiffNet
(Cui et al., 2020) for SCT. For fair comparison,
RandomWalk and GraphPlan included the same
number of event chains in the dataset during train-
ing. Further details of the model can be found in
the supplementary material.

Table 6 presents the results of SCT. This shows
that RandomWalk and GraphPlan achieve better
scores in both SCTv1.0 and v1.5, proving that our
event graphs and mutually exclusive events have
positive effects on event planning.

6 Discussion

As mentioned before, the stories can be easily con-
trolled by modifying the events. Table 7 shows
an example. Selecting different upcoming events
for “feel(sick)” will change the following storyline.
Moreover, our experiment shows that event graphs
can produce more logical stories than planning via
language models. Here, we give an empirical ex-
planation. Sequence-to-sequence models usually
fail to capture long-term relations and order infor-
mation in the event sequence. The decoder is not
guaranteed to account for all previous events during

[ cough Hbe(sick) }-—»[feel(sick)

Mutual Exclusion

(1) The man was coughing a lot. He was sick. He felt
sick for days. He vomited on the couch. He was later
diagnosed with the flu.

(2) The man was coughing a lot. He was sick. He felt
sick. He tried to rest for an hour. The man felt better !
(3) The man was coughing a lot. He was sick. He felt
sick. He couldn’t eat anything. He starved himself.

Table 7: Example of controllable generation. (1) and
(2) extends different events after “feel sick” to achieve
different endings and (3) shows logical inconsistency
when generating with two mutually exclusive events

decoding. At this point, our approach applies event-
event coherence scores, which forces the model to
consider long-term relations during planning. In
addition, the order of events is captured from the
gold cases, which can be guaranteed in our event
graphs. Moreover, mutually exclusive sets help us
to determine whether two events can co-occur in
one sequence regardless of the distance between
two events. Table 7 provides an example. Note
that “cough” and “‘starve” are considered mutually
exclusive events in our event graph. If we generate
a story based on this event chain, the last sentence
“he starved himself” is unreasonable in this case.

7 Conclusion

In this study, we demonstrate that a graph-based
event planning approach can indeed produce more
natural event sequences compared with conven-
tional language models. We propose to walk on
automatically learned event graphs by performing
beam search using a score function dedicated for
event planning. Then, the story is generated fol-
lows the planned events.

We evaluate our approach on event planning
and open story generation with large-scale human
judgements. The results show that our proposed ap-
proach clearly outperforms the non-planning base-
line and the sequence-to-sequence model-based
planning models. In human evaluation, the events
and the stories generated by our proposed method
are believed to be more logical and coherent. An
additional experiment on Story Cloze Test further
proves the advantages of event graphs and mutually
exclusive sets.
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