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Abstract

We motivate and propose a suite of simple
but effective improvements for concept-to-text
generation called SAPPHIRE: Set Augmenta-
tion and Post-hoc PHrase Infilling and REcom-
bination. We demonstrate their effectiveness
on generative commonsense reasoning, a.k.a.
the CommonGen task, through experiments us-
ing both BART and T5 models. Through ex-
tensive automatic and human evaluation, we
show that SAPPHIRE noticeably improves
model performance. An in-depth qualitative
analysis illustrates that SAPPHIRE effectively
addresses many issues of the baseline model
generations, including lack of commonsense,
insufficient specificity, and poor fluency.

1 Introduction

There has been increasing interest in constrained
text generation tasks which involve construct-
ing natural language outputs under certain pre-
conditions, such as particular words that must ap-
pear in the output sentences. A related area of
work is data-to-text natural language generation
(NLG), which requires generating natural language
descriptions of structured or semi-structured data
inputs. Many constrained text generation and NLG
tasks share commonalities, one of which is their
task formulation: a set of inputs must be converted
into natural language sentences. This set of inputs
can be, in many cases, thought of as concepts, e.g.
higher-level words or structures that play an impor-
tant role in the generated text.

With the increased popularity of Transformer-
based models and their application to many NLP
tasks, performance on many text generation tasks
has improved considerably. Much progress in re-
cent years has been from the investigation of model
improvements, such as larger and more effectively
pretrained language generation models. However,

are there simple and effective approaches to im-
proving performance on these tasks that can come
from the data itself? Further, can we potentially
use the outputs of these models themselves to
further improve their task performance - a “self-
introspection” of sorts?

In this paper, we show that the answer is yes.
We propose a suite of simple but effective improve-
ments for concept-to-text generation called SAP-
PHIRE: Set Augmentation and Post-hoc PHrase
Infilling and REcombination. Specifically, SAP-
PHIRE is composed of two major approaches: 1)
the augmentation of input concept sets (§4.1), 2)
the recombination of phrases extracted from base-
line generations into more fluent and logical text
(§4.2). These are mainly model-agnostic improve-
ments that rely on the data itself and the model’s
own initial generations, respectively.1

We focus on generative commonsense reasoning,
or CommonGen (Lin et al., 2020), which involves
generating logical sentences describing an every-
day scenario from a set of concepts, which in this
case are individual words that must be represented
in the output text in some form. CommonGen is a
challenging instance of constrained text generation
that assesses 1) relational reasoning abilities using
commonsense knowledge, and 2) compositional
generalization capabilities to piece together con-
cept combinations. Further, CommonGen’s task
formulation and evaluation methodology are quite
broadly applicable and encompassing, making it a
good benchmark for general constrained text gen-
eration capability. Further, this is an opportune mo-
ment to investigate this task as commonsense abil-
ity of NLP models, particularly for generation, has
received increasing community attention through
works like COMET (Bosselut et al., 2019).

We perform experiments on varying sizes of two

1Code at https://github.com/styfeng/SAPPHIRE

https://github.com/styfeng/SAPPHIRE
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Dataset Stats TrainCG DevO TestO DevCG TestCG

# concept sets 32,651 993 1,497 240 360
size = 3 25,020 493 - 120 -
size = 4 4,240 250 747 60 180
size = 5 3,391 250 750 60 180
# sentences 67,389 4,018 7,644 984 1583

Table 1: CommonGen dataset statistics.

state-of-the-art Transformer-based language gener-
ation models: BART (Lewis et al., 2020) and T5
(Raffel et al., 2020). We first conduct an exten-
sive correlation study (§3.1) and qualitative anal-
ysis (§3.2) of these models’ generations after sim-
ply training on CommonGen. We find that perfor-
mance is positively correlated with concept set size,
motivating concept set augmentation. We also find
that generations contain issues related to common-
sense and fluency which can possibly be addressed
through piecing the texts back together in different
ways, motivating phrase recombination.

Fleshing out our first intuition - we devise two
methods to augment concepts from references dur-
ing training through extracted keywords (§4.1.1)
and attention matrices (§4.1.2). For the phrase re-
combination intuition, we propose two realizations
based on a new training stage (§4.2.1) and masked
infilling (§4.2.2). Finally, through comprehensive
evaluation (§6), we show how the SAPPHIRE suite
drives up model performance across metrics, be-
sides addressing aforementioned baseline deficien-
cies on commonsense, specificity, and fluency.

2 Dataset, Models, and Metrics

2.1 CommonGen Dataset

The CommonGen dataset is split into train, dev, and
test splits, covering a total of 35,141 concept sets
and 79,051 sentences. The concept sets range from
3 keywords to 5 keywords long. As the original test
set is hidden, we split the provided dev set into a
new dev and test split for the majority of our exper-
iments while keeping the training split untouched.
Note that we also evaluate our SAPPHIRE models
on the original test set with help from the Common-
Gen authors (see §6.1). We will henceforth refer
to these new splits as trainCG, devCG, and testCG,
and the original dev and test splits as devO and
testO. The statistics of our new splits compared to
the originals can be found in Table 1. We attempt to
keep the relative sizes of the new dev and test splits
and the distribution of concept set sizes within each
split similar to the originals.

Model\Metrics BLEU-4 CIDEr SPICE
Reported BART-large 27.50 14.12 30.00

Reported T5-base 18.00 9.73 23.40
Reported T5-Large 30.60 15.84 31.80

Our BART-base 28.30 15.07 30.35
Our BART-large 30.20 15.72 31.20

Our T5-base 31.00 16.37 32.05
Our T5-large 33.60 17.02 33.45

Table 2: Performance of our re-implemented CommonGen
models on devO compared to a subset of original numbers
reported in Lin et al. (2020). For our models, results are aver-
aged over two seeds. The original authors did not experiment
with BART-base. Bold indicates where we match or exceed
the reported metric. See §2.3 for explanations of the metrics
and Appendix B for a full metric comparison table.

2.2 Models: T5 and BART
We perform experiments using pretrained language
generators, specifically BART and T5 (both base
and large versions). BART (Lewis et al., 2020) is
a Transformer-based seq2seq model trained as a
denoising autoencoder to reconstruct original text
from noised text. T5 (Raffel et al., 2020) is an-
other seq2seq Transformer with strong multitask
pretraining. We use their HuggingFace codebases.

We train two seeded instances of each model
on trainCG, evaluating their performance on devO,
and comparing our numbers to those reported in
Lin et al. (2020) to benchmark our implementa-
tions. These essentially serve as the four baseline
models for our ensuing experiments. We follow
the hyperparameters from Lin et al. (2020), choose
the epoch reaching highest ROUGE-2 on the dev
split, and use beam search for decoding.2 From
Table 2, we see that our re-implemented models
match or exceed the original reported results on
most metrics across different models.

2.3 Evaluation Metrics
For our experiments, we use a gamut of automatic
evaluation metrics. These include those used by
Lin et al. (2020), such as BLEU (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015), SPICE (An-
derson et al., 2016), and Coverage (Cov). Barring
Cov, these metrics measure the similarity between
generated text and human references. Cov mea-
sures the average % of input concepts covered by
the generated text. We also introduce BERTScore
(Zhang et al., 2020), which measures token-by-
token BERT (Devlin et al., 2019) embeddings sim-
ilarity. It also measures the similarity between the
generated text and human references, but on a more
semantic (rather than surface token) level. When

2See Appendix A for further details.
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reporting BERTScore, we multiply by 100. For all
metrics, higher corresponds to better performance.

3 Initial Analysis

3.1 Correlation Study

We begin by conducting an analysis of the four
baselines implemented and discussed in §2.2,
which we refer to henceforth as BART-base-BL,
BART-large-BL, T5-base-BL, and T5-large-BL.
One aspect we were interested in is whether the
number of input concepts affects the quality of gen-
erated text. We conduct a comprehensive correla-
tion study of the performance of the four baselines
on devO w.r.t. the number of input concepts.

As seen from Table 3, the majority of the met-
rics are positively correlated with concept set size
across the models. ROUGE-L, CIDEr, and SPICE
have small correlations that are mainly statistically
insignificant, demonstrating that they are likely
uncorrelated with concept set size. Coverage is
strongly negatively correlated, showing that there
is a higher probability of concepts missing from
the generated text as concept set size increases.

There are two major takeaways from this. Firstly,
increased concept set size results in greater over-
all performance. Secondly, models have difficulty
with coverage given increased concept set size.
This motivates our first set of improvements, which
involves augmenting the concept sets with addi-
tional words in hopes of 1) increasing performance
of the models and 2) improving their coverage, as
we hope that training with more input concepts
will help models learn to better cover them in the
generated text. This is discussed more in §4.1.

3.2 Qualitative Analysis

We conduct a qualitative analysis of the baseline
model outputs. We observe that several outputs
are more like phrases than full coherent sentences,
e.g. “body of water on a raft”. Some generated
texts are also missing important words, e.g. “A
listening music and dancing in a dark room” is
clearly missing a noun before listening. A large
portion of generated texts are quite generic and
bland, e.g. “Someone sits and listens to someone
talk”, while more detailed and specific statements
are present in the human references. This can be
seen as an instance of the noted “dull response”
problem faced by generation models (Du and Black,
2019; Li et al., 2016), where they prefer safe, short,
and frequent responses independent of the input.

Another issue is the way sentences are pieced
together. Certain phrases in the outputs are either
joined in the wrong order or with incorrect con-
nectors, leading to sentences that appear to lack
commonsense. For example, “body of water on
a raft” is illogical, and the phrases “body of wa-
ter” and “a raft” are pieced together incorrectly.
Example corrections include “body of water carry-
ing a raft” and “a raft on a body of water”. The
first changes the adverb on joining them to the verb
carrying, and the second pieces them together in
the opposite order. A similar issue occurs with the
{horse, carriage, draw} example in Table 4.

Some major takeaways are that many genera-
tions are: 1) phrases rather than full sentences and
2) poorly pieced together and lack fluency and logic
compared to human references. This motivates our
second set of improvements, which involves recom-
bining extracted phrases from baseline generations
into hopefully more fluent and logical sentences.
This is discussed more in §4.2.

4 SAPPHIRE Methodology

4.1 Concept Set Augmentation

The first set of improvements is concept set aug-
mentation, which involves augmenting the input
concept sets. We try augmentation using up to 1
to 5 additional words, and train-time augmentation
both with and without test-time augmentation. We
observed that test-time augmentation resulted in
inconsistent results that were not as effective, and
stick with train-time only augmentation. During
training, rather than feeding in the original concept
sets as inputs, we instead feed in these augmented
concept sets which consist of more words. The
expected outputs are the same human references.
During test-time, we simply feed in the original
concept sets (without augmentation) as inputs.

4.1.1 Keyword-based Augmentation

The first type of augmentation we try is keyword-
based, or Kw-aug. We augment the trainCG con-
cept sets with keywords extracted from the human
references using KeyBERT3 (Grootendorst, 2020).
We calculate the average semantic similarity (using
cosine similarity of BERT embeddings) of the can-
didate keywords to the original concept set. At each
stage of augmentation, we add the remaining can-

3https://github.com/MaartenGr/KeyBERT

https://github.com/MaartenGr/KeyBERT
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BART-base BART-large T5-base T5-large
Correlation PCC ρ τ PCC ρ τ PCC ρ τ PCC ρ τ
ROUGE-1 0.08 0.09 0.07 0.10 0.12 0.09 0.04 0.05 0.04 0.10 0.11 0.09
ROUGE-2 0.05 0.08 0.07 0.05 0.10 0.07 0.03 0.07 0.05 0.06 0.09 0.07
ROUGE-L 0.00* 0.01* 0.01* 0.00* 0.02* 0.01* -0.03 -0.01* -0.01* 0.02* 0.04 0.03
BLEU-1 0.08 0.08 0.06 0.14 0.14 0.11 0.00* 0.03* 0.02* 0.08 0.11 0.09
BLEU-2 0.06 0.06 0.04 0.11 0.11 0.08 0.03* 0.04* 0.03* 0.09 0.10 0.07
BLEU-3 0.08 0.06 0.05 0.09 0.09 0.06 0.04* 0.03* 0.02* 0.09 0.08 0.06
BLEU-4 0.05 0.05 0.04 0.05 0.07 0.05 0.04* 0.02* 0.02* 0.08 0.08 0.06
METEOR 0.05 0.08 0.06 0.06 0.09 0.07 0.02* 0.04 0.03 0.06 0.08 0.06
CIDEr -0.02* -0.03* -0.02* 0.01* 0.02* 0.02* -0.08 -0.10 -0.07 0.00* 0.00* 0.00*
SPICE -0.02* -0.01* -0.01* 0.01* 0.02* 0.01* -0.02* -0.02* -0.02* 0.02* 0.03* 0.02*
BERTScore 0.04 0.03 0.02 0.06 0.06 0.05 0.04 0.03 0.02 0.05 0.04 0.03
Coverage -0.26 -0.31 -0.27 -0.07 -0.13 -0.11 -0.38 -0.42 -0.37 -0.26 -0.31 -0.28

Table 3: Correlations on devO between concept set size and evaluation metrics for our four baseline models (over the results
from both seeds); values marked with * are statistically insignificant. PCC refers to Pearson correlation coefficient, ρ to
Spearman’s rank correlation coefficient, and τ to Kendall rank correlation coefficient.

Concept Set Baseline Generation Human Reference
{horse, carriage, draw} horse drawn in a carriage The carriage is drawn by the horse.
{fish, catch, pole} fish caught on a pole The man used a fishing pole to catch fish.

{listen, talk, sit} Someone sits and listens to someone talk. The man told the boy to sit down
and listen to him talk.

{bathtub, bath, dog, give} A dog giving a bath in a bathtub. The teenager made a big mess in the
bathtub giving her dog a bath.

Table 4: Example generations from our baseline models versus human references.

Method Original Concept Set Added Words
Kw-aug {match, stadium, watch} {soccer, league, fans}
Kw-aug {family, time, spend} {holidays}
Kw-aug {head, skier, slope} {cabin}
Att-aug {boat, lake, drive} {fisherman}
Att-aug {family, time, spend} {at, holidays}
Att-aug {player, match, look} {tennis, on, during}

Table 5: Example trainCG concept set augmentations.

didate with the highest similarity.4 Some augmen-
tation examples can be found in Table 5. We train
our BART and T5 models using these augmented
sets, and call the resulting models BART-base-KW,
BART-large-KW, T5-base-KW, and T5-large-KW.

4.1.2 Attention-based Augmentation
We also try attention-based augmentation, or Att-
aug. We augment the trainCG concept sets with
the words that have been most attended upon in
aggregate by the other words in the human refer-
ences. We pass the reference texts through BERT
and return the attention weights at the last layer. At
each stage of augmentation, we add the remaining
candidate word with the highest attention. Adding
the least attended words would not be effective as
many are words with little meaning (e.g. simple
articles such as “a” and “the”). Some augmenta-
tion examples can be found in Table 5. We train
our BART and T5 models using these augmented

4We also tried using the least semantically similar key-
words, but results were noticeably worse.

sets, and call the resulting models BART-base-Att,
BART-large-Att, T5-base-Att, and T5-large-Att.

4.2 Phrase Recombination
The second set of improvements is phrase recom-
bination, which involves breaking down sentences
into phrases and reconstructing them into new sen-
tences which are hopefully more logical and coher-
ent. For training, we use YAKE (Campos et al.,
2018) to break down the trainCG human references
into phrases of up to 2, 3, and 5 n-grams long,
and ensure extracted phrases have as little overlap
as possible. During validation and testing, since
we assume no access to ground-truth human refer-
ences, we instead use YAKE to extract keyphrases
from our baseline model generations.

We ignore extracted 1-grams as this approach fo-
cuses on phrases. We find words from the original
concept set which are not covered by our extracted
keyphrases and include them to ensure that cover-
age is maintained. Essentially, we form a new con-
cept set which can also consist of phrases. Some
examples can be found in Table 6.

4.2.1 Phrase-to-text (P2T)
To piece the phrases back together, we try phrase-
to-text (P2T) generation by training BART and
T5 to generate full sentences given our new input
sets, and call these models BART-base-P2T, BART-
large-P2T, T5-base-P2T, and T5-large-P2T. During
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Original Text Extracted Keyphrases New Input Concept Set
A dog wags his tail at the boy. dog wags his tail {dog wags his tail}

hanging a painting on a wall at home hanging a painting {hanging a painting, wall}
a herd of many sheep crowded together in a stable herd of many sheep crowded {herd of many sheep crowded,

waiting to be dipped for ticks and other pests dip, waiting}
a soldier takes a knee while providing security knee while providing security, {knee while providing security,

during a patrol outside of the village. patrol outside of the village patrol outside of the village, take}

Table 6: Example keyphrases (up to 5-grams) extracted using YAKE from human-written training references.

training, we choose a single random permutation
of each training input set (consisting of extracted
keyphrases from the human references), with the
elements separated by <s>, and the human refer-
ences as the outputs. This is in order for the models
to learn to be order-agnostic, which is important
as one desired property of phrase recombination
is the ability to combine phrases in different or-
ders, as motivated by the qualitative analysis in
§3.2. During inference or test-time, we feed in a
single random permutation of each test-time input
set, consisting of extracted keyphrases from the
corresponding baseline model’s outputs.

4.2.2 Mask Infilling (MI)
This method interpolates text between test-time in-
put set elements with no training required. For
example, given a test-time input set {c1,c2}, we
feed in “<mask> c1 <mask> c2 <mask>” and

“<mask> c2 <mask> c1 <mask>” to an MI model
to fill the <mask> tokens with text. We use
BART-base and BART-large for MI, and call the
approaches BART-base-MI and BART-large-MI,
respectively. We use BART-base-MI on input sets
consisting of extracted keyphrases from BART-
base-BL and T5-base-BL, and BART-large-MI on
input sets consisting of extracted keyphrases from
BART-large-BL and T5-large-BL. We also try MI
on the original concept sets (with no phrases).

One difficulty is determining the right input set
permutation. Many contain ≥5 elements (mean-
ing ≥5!=120 permutations), making exhaustive MI
infeasible. Order of elements for infilling can re-
sult in vastly different outputs (see §6.3), as certain
orders are more natural. Humans perform their
own intuitive reordering of given inputs when writ-
ing, and the baselines and other approaches (e.g.
Kw-aug, P2T) learn to mainly be order agnostic.

We use perplexity (PPL) from GPT-2 (Radford
et al., 2019) to pick the “best” permutations for
MI. We feed up to 120 permutations of each input
set (with elements separated by spaces) to GPT-2
to extract their PPL, and keep the 10 with lowest
PPL per example. This is not a perfect approach,

but is likely better than random sampling. For each
example, we perform MI on these ten permutations,
and select the output with lowest GPT-2 PPL.

We found BART-large-MI outputs contain URLs,
news agency names in brackets, etc. Hence, we
post-process before output selection and evalua-
tion. BART-base-MI does not do this. One possi-
ble explanation is that BART-large may have been
pretrained on more social media and news data.

5 Experiments

5.1 Model Training and Selection

For training Kw-aug, Att-aug, and P2T models, we
follow baseline hyperparameters, barring learning
rate (LR) which is tuned per-method. We train two
seeds per model. See Appendix A for more.

For each model, we choose the epoch corre-
sponding to highest ROUGE-2 on the dev split,
and use beam search for decoding. The dev and
test splits are different. For Kw-aug and Att-aug
models, the splits are simply devCG and testCG (or
testO), as we do not perform test-time augmenta-
tion. For P2T, the splits are devCG and testCG (or
testO) but with the input sets replaced with new
ones that include keyphrases extracted from the
corresponding baseline model’s outputs.

The number of words to augment for Kw-aug
and Att-aug (from 1 to 5) and maximum n-gram
length of extracted keyphrases for P2T (2, 3, or
5) are hyperparameters. While we train separate
versions of each model corresponding to different
values of these, the final chosen model per method
and model combination (such as BART-base-KW)
is the one corresponding to the hyperparameter
value that performs best on the dev split when aver-
aged over both seeds. For MI, which involves no
training, we select the variation (MI on the origi-
nal concept set or new input sets with keyphrases
up to 2, 3, or 5 n-grams) per model that performs
best on the dev split, and only perform infilling
using extracted keyphrases from the first seed base-
line generations. These are the selected models we
report the testCG and testO results of in §6.
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5.2 Human Evaluation

We ask annotators to evaluate 48 testCG examples
from the human references, baseline outputs, and
various method (excluding MI) outputs for BART-
large and T5-base. We choose these two as they
cover both model types and sizes, and exclude MI
as it performs noticeably worse on the automatic
evaluation (see §6.1). See Appendix §C for more.

The annotators evaluate fluency and common-
sense of the texts on 1-5 scales. Fluency, also
known as naturalness, is a measure of how human-
like a text is. Commonsense is the plausibility of
the events described. We do not evaluate cover-
age as automatic metrics suffice; coverage is more
objective compared to fluency and commonsense.

6 Results and Analysis

Automatic evaluation results on testCG can be
found in Tables 7, 8, 9, 10, and results on testO
in Table 12. Human evaluation results on testCG

can be found in Table 13. Single keyword aug-
mentation performs best for Kw-aug across mod-
els. Two word augmentation performs best for
Att-aug, except T5-base where three word augmen-
tation performs best. Keyphrases up to 2-grams
long perform best for P2T, except T5-large where
3-grams perform best. All models perform best
with keyphrases up to 5-grams long for MI. These
are the results reported here, and graphs displaying
other hyperparameter results on testCG are in Ap-
pendix D. Table 14 contains qualitative examples,
and more can be found in Appendix §E.

6.1 Automatic Evaluation

We see from Tables 7 to 10 that SAPPHIRE meth-
ods outperform the baselines on most/all metrics
across the models on testCG. The only exception
is MI, which performs worse other than coverage.

For BART-base, Kw-aug, Att-aug, and P2T all
outperform the baseline across the metrics. For
BART-large, Att-aug and P2T outperform the base-
line heaviest, with noticeable increases to all met-
rics. For T5-base, all methods outperform the base-
line, with Kw-aug performing best. Att-aug per-
forms best for T5-large, and SAPPHIRE appears
relatively less effective for T5-large. T5-large is
the strongest baseline, and hence further improving
its performance is possibly more difficult.

MI performs worse across most metrics except
coverage, likely as MI almost always keeps inputs
intact in their exact form. This is however possibly

one reason for its low performance; it is less flex-
ible. Further, as discussed in §4.2.2, MI is highly
dependent on the input order. See §6.3 for more.

Table 11 contains statistical significance p-
values from Pitman’s permutation tests (Pitman,
1937) for what we adjudged to be the best perform-
ing method(s) per model compared to correspond-
ing baselines on testCG. Most metrics across the
methods are significant compared to the baselines.

From Table 12, we see that SAPPHIRE models
outperform the corresponding baselines reported in
Lin et al. (2020) on testO. T5-large-KW and P2T
outperform EKI-BART (Fan et al., 2020) and KG-
BART (Liu et al., 2021) on both SPICE and BLEU-
4, which are two SOTA published CommonGen
models that use external knowledge from corpora
and KGs. As SPICE is used to rank the Common-
Gen leaderboard5, T5-large-KW and P2T would
place highly. SAPPHIRE models do lag behind
the SOTA published RE-T5 (Wang et al., 2021),
showing potential for further improvement. Fur-
ther, the BART-large SAPPHIRE models perform
worse than EKI-BART and KG-BART, but not by a
substantial margin. We emphasize again that SAP-
PHIRE simply uses the data itself and the base-
line generations, rather than external knowledge.
Hence, SAPPHIRE’s performance gains over the
baselines and certain SAPPHIRE models match-
ing or outperforming SOTA models that leverage
external information is quite impressive.

6.2 Human Evaluation

Table 13 shows human evaluation results on testCG

for human references and methods (excluding MI)
using BART-large and T5-base. SAPPHIRE gen-
erally outperforms the baselines. BART-large-P2T
performs noticeably higher on both fluency and
commonsense. For T5-base, all three methods out-
perform the baseline across both metrics. Com-
pared to humans, our best methods have compa-
rable fluency, but still lag noticeably on common-
sense, demonstrating that human-level generative
commonsense reasoning is indeed challenging.

6.3 Qualitative Analysis

We see from Table 14 that many baseline outputs
contain issues found in §3.2, e.g. incomplete or
illogical sentences. Human references are fluent,
logical, and sometimes more creative (e.g. example
5), which all methods still lack in comparison.

5https://inklab.usc.edu/CommonGen/leaderboard.html

https://inklab.usc.edu/CommonGen/leaderboard.html
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BART-base
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-base-MI

ROUGE-1 43.96±0.03 45.01±0.00 44.99±0.10 44.87±0.42 44.83
ROUGE-2 17.31±0.02 18.33±0.06 18.18±0.04 18.04±0.13 17.44
ROUGE-L 36.65±0.00 37.28±0.24 37.76±0.12 37.28±0.11 34.47
BLEU-1 73.20±0.28 73.00±0.85 73.00±0.14 73.15±1.06 69.90
BLEU-2 54.50±0.14 55.35±0.49 55.70±0.28 55.65±0.35 49.00
BLEU-3 40.40±0.14 41.35±0.21 41.40±0.28 41.85±0.35 34.70
BLEU-4 30.10±0.14 31.10±0.14 30.95±0.07 31.75±0.35 24.70

METEOR 30.35±0.35 30.50±0.28 30.70±0.14 31.05±0.49 29.70
CIDEr 15.56±0.10 16.18±0.12 15.68±0.00 16.14±0.33 14.43
SPICE 30.05±0.07 30.45±0.07 30.65±0.35 30.95±0.21 28.40

BERTScore 59.19±0.32 59.32±0.25 59.72±0.03 59.54±0.05 53.73
Coverage 90.43±0.17 91.44±0.95 91.23±0.21 91.47±2.93 96.23

Table 7: Automatic evaluation results (with standard deviations) for BART-base on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

BART-large
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-large-MI

ROUGE-1 45.67±0.25 46.71±0.05 46.78±0.14 46.26±0.29 41.69
ROUGE-2 18.77±0.04 19.64±0.05 19.92±0.19 19.37±0.17 15.40
ROUGE-L 37.83±0.29 38.38±0.01 38.53±0.03 38.22±0.16 33.32
BLEU-1 74.45±0.21 76.20±0.99 76.55±0.92 77.10±0.85 63.90
BLEU-2 56.25±0.78 58.60±0.14 59.60±0.00 58.95±0.64 42.40
BLEU-3 42.15±0.49 44.00±0.00 45.20±0.42 44.70±0.14 29.20
BLEU-4 32.10±0.42 33.40±0.28 34.50±0.42 34.25±0.21 20.50

METEOR 31.70±0.14 32.60±0.57 32.65±0.49 33.00±0.14 28.30
CIDEr 16.42±0.09 17.37±0.08 17.49±0.49 17.50±0.02 12.32
SPICE 31.85±0.21 33.15±0.49 33.30±0.28 33.60±0.00 26.10

BERTScore 59.95±0.29 60.83±0.29 60.87±0.45 61.30±0.66 48.56
Coverage 94.49±0.53 96.74±1.20 96.02±1.17 97.02±0.15 95.33

Table 8: Automatic evaluation results (with standard deviations) for BART-large on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

T5-base
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-base-MI

ROUGE-1 44.63±0.13 46.42±0.01 46.75±0.11 45.73±0.27 44.92
ROUGE-2 18.40±0.14 19.36±0.24 19.20±0.17 18.51±0.11 17.98
ROUGE-L 37.60±0.16 38.68±0.08 38.51±0.21 38.07±0.10 34.88
BLEU-1 73.60±0.85 76.25±0.35 76.00±0.28 75.65±1.20 70.20
BLEU-2 57.00±0.71 59.55±0.64 58.75±0.35 58.15±0.64 50.50
BLEU-3 42.75±0.49 45.10±0.85 44.00±0.28 43.45±0.07 36.20
BLEU-4 32.70±0.42 34.45±0.92 33.30±0.28 33.10±0.28 26.10

METEOR 31.05±0.49 31.85±0.07 31.90±0.14 32.05±0.35 30.20
CIDEr 16.26±0.25 17.37±0.04 17.04±0.21 16.84±0.11 14.83
SPICE 31.95±0.07 32.75±0.21 32.85±0.21 33.20±0.14 29.70

BERTScore 61.40±0.34 61.88±0.06 61.28±0.10 61.46±0.01 55.04
Coverage 90.96±1.77 94.92±0.45 96.00±0.03 94.78±0.83 96.03

Table 9: Automatic evaluation results (with standard deviations) for T5-base on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.

T5-large
Metrics\Methods Baseline Kw-aug Att-aug P2T BART-large-MI

ROUGE-1 46.26±0.17 47.47±0.16 47.40±0.12 46.72±0.26 42.78
ROUGE-2 19.62±0.17 20.02±0.07 20.19±0.01 19.76±0.22 16.61
ROUGE-L 39.21±0.22 39.84±0.12 39.97±0.06 39.19±0.09 34.52
BLEU-1 77.45±0.21 78.70±0.28 78.95±0.07 77.90±0.57 66.80
BLEU-2 60.75±0.21 62.10±0.14 62.35±0.07 61.00±0.42 45.90
BLEU-3 46.60±0.14 47.65±0.21 47.95±0.21 46.75±0.49 32.70
BLEU-4 36.30±0.00 36.80±0.28 37.35±0.49 36.10±0.42 23.90

METEOR 33.30±0.14 33.55±0.07 33.70±0.00 33.35±0.21 29.10
CIDEr 17.90±0.15 18.40±0.18 18.43±0.10 17.89±0.08 13.34
SPICE 34.25±0.07 34.50±0.28 33.70±0.14 34.00±0.28 28.00

BERTScore 62.65±0.07 62.91±0.15 62.78±0.21 62.46±0.11 50.57
Coverage 94.23±0.21 95.92±0.02 96.08±0.09 95.44±0.58 96.03

Table 10: Automatic evaluation results (with standard deviations) for T5-large on testCG, averaged over two seeds for trained
models. Bold corresponds to best performance on that metric.
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BART-base BART-large T5-base T5-large
p-values P2T Att-aug P2T Kw-aug Att-aug
ROUGE-1 1.58E-05 1.58E-05 7.58E-04 1.58E-05 1.58E-05
ROUGE-2 6.32E-05 1.58E-05 2.18E-03 1.58E-05 2.20E-03
ROUGE-L 6.32E-05 8.53E-04 2.78E-02 1.58E-05 1.58E-05
BLEU-1 3.63E-01 1.39E-04 6.94E-05 6.94E-05 1.11E-03
BLEU-2 1.11E-03 6.94E-05 6.94E-05 6.94E-05 5.69E-03
BLEU-3 3.26E-02 1.04E-03 9.03E-04 4.17E-04 3.40E-02
BLEU-4 5.68E-02 1.57E-01 8.40E-03 1.83E-02 2.66E-01
METEOR 1.57E-02 9.03E-04 6.94E-05 2.08E-04 7.27E-01
CIDEr 6.25E-04 2.08E-04 6.94E-05 6.94E-05 5.07E-03
SPICE 1.53E-03 6.25E-04 6.94E-05 1.43E-02 9.16E-01
BERTScore 3.33E-03 1.58E-05 1.58E-05 1.58E-05 1.42E-01
Coverage 3.16E-05 1.58E-05 1.58E-05 1.58E-05 1.58E-05

Table 11: Statistical significance p-values (from Pitman’s
permutation tests) for the best performing method(s) per model
compared to the corresponding baselines. Insignificant p-
values (using α = 0.05 or 5E-02) are bolded.

For example 1, the baseline generation “hands
sitting on a chair” misses the concept “toy”,
whereas our methods do not. Kw-aug and Att-
aug output complete and logical sentences. For
example 2, the baseline generation of “a camel
rides a camel” is illogical. Our methods output
more logical and specific sentences. For example 3,
our methods generate more complete and coherent
sentences than the baseline, which lacks a subject
(does not mention who is “walking”). For example
4, the baseline generation “bus sits on the tracks”
is illogical as buses park on roads. Our methods do
not suffer from this and output more reasonable text.
For example 5, the baseline generation “A lady sits
in a sunglass.” is completely illogical. Kw-aug,
Att-aug, and P2T all output logical text. For exam-
ple 6, the baseline output “Someone stands in front
of someone holding a hand” is generic and bland.
Kw-aug, Att-aug, and P2T all output more specific
and detailed text rather than simply referring to

“someone”. Overall, SAPPHIRE generates text that
is more complete, fluent, logical, and with greater
coverage, addressing many baseline issues (§3.2).

However, SAPPHIRE methods are imperfect.
P2T relies heavily on the original generation. For
example 1, the baseline output “hands sitting on a
chair” is extracted as a keyphrase, and used in the
P2T output “hands sitting on a chair with toys”.
While coverage improves, the text is still illogical.
For example 2, P2T still misses the “walk” con-
cept. While the Att-aug output of “A man is riding
camel as he walks through the desert.” is more log-
ical than the baseline’s, it is still not entirely logical
as the man cannot ride the camel and walk at the
same time. MI outputs logical and fluent text for
examples 2 and 3. For the other examples, the gen-
erated texts are illogical, not fluent, or incomplete.

This is likely due to input permutation having
a strong effect on output quality. For example,

“wave” before “falls off a surf board” leads to an
illogical output “A wave falls off a surf board.”,
where the reverse order results in a more logical
output “A man falls off a surf board and hits a
wave.” As discussed in §4.2.2, our method of se-
lecting best permutations is likely imperfect. Fur-
ther, BART-MI usually does not inflect inputs and
retains them in exact form, unlike the baselines
and other methods which learn to inflect words
(e.g. singular to plural). We believe BART-MI has
potential if these weaknesses can be addressed.

7 Related Work

Constrained Text Generation: There has been
more work on constrained text generation. Miao
et al. (2019) use Metropolis-Hastings sampling to
determine token-level edits at each step of gener-
ation. Feng et al. (2019) introduce Semantic Text
Exchange to adjust the semantics of a text given a
replacement entity. Gangal et al. (2021a) propose
narrative reordering (NAREOR) to rewrite stories
in different narrative orders while preserving plot.

Data-to-text NLG: A wide range of data-to-text
NLG benchmarks have been proposed, e.g. for gen-
erating weather reports (Liang et al., 2009), game
commentary (Jhamtani et al., 2018), and recipes
(Kiddon et al., 2016). E2E-NLG (Dušek et al.,
2018) and WebNLG (Gardent et al., 2017) are
two benchmarks that involve generating text from
meaning representation (MR) and triple sequences.
Montella et al. (2020) use target Wiki sentences
with parsed OpenIE triples as weak supervision for
WebNLG. Tandon et al. (2018) permute input MRs
to augment examples for E2E-NLG.

Commonsense Reasoning and Incorporation:
Talmor et al. (2020) show that not all pretrained
LMs can reason through commonsense tasks.
Other works investigate commonsense injection
into models; one popular way is through knowl-
edge graphs (KGs). One large commonsense KG
is COMET, which trains on KG edges to learn
connections between words and phrases. COS-
MIC (Ghosal et al., 2020) uses COMET to inject
commonsense. EKI-BART (Fan et al., 2020) and
KG-BART (Liu et al., 2021) show that external
knowledge (from corpora and KGs) can improve
performance on CommonGen. Distinctly, SAP-
PHIRE obviates reliance on external knowledge.
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Models\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Coverage
T5-base (reported baseline) 14.63 34.56 28.76 18.54 23.94 9.40 19.87 76.67

BART-large (reported baseline) 22.02 41.78 39.52 29.01 31.83 13.98 28.00 97.35
T5-large (reported baseline) 21.74 42.75 43.01 31.96 31.12 15.13 28.86 95.29
EKI-BART (Fan et al., 2020) - - - 35.945 - 16.999 29.583 -
KG-BART (Liu et al., 2021) - - - 33.867 - 16.927 29.634 -
RE-T5 (Wang et al., 2021) - - - 40.863 - 17.663 31.079 -

BART-base-P2T 20.83 42.91 40.74 29.918 30.61 14.670 26.960 92.84
T5-base-P2T 22.38 44.59 44.97 33.577 31.95 16.152 29.104 95.55

BART-large-KW 22.25 43.38 43.87 32.956 32.26 16.065 28.335 96.16
BART-large-Att 22.22 43.80 44.61 33.405 32.03 16.036 28.452 96.43
BART-large-P2T 22.65 43.84 44.78 33.961 32.18 16.174 28.462 96.20

T5-large-KW 23.79 45.73 48.06 37.023 32.85 16.987 29.659 95.32
T5-large-Att 23.94 45.87 47.99 36.947 32.79 16.943 29.607 95.43
T5-large-P2T 23.89 45.77 48.08 37.119 32.94 16.901 29.751 94.82

Table 12: Automatic evaluation results of select SAPPHIRE models on testO (evaluated by the CommonGen authors). For
BART-base and T5-base, we report the best SAPPHIRE model on testO (P2T), and all three models for BART-large and T5-large.
We compare to Lin et al. (2020)’s reported baseline numbers, noting that they did not report BART-base, and published models
on their leaderboard5 that outperform the baselines at the time of writing. Bold corresponds to best performance (for BLEU-4,
CIDEr, and SPICE, since their leaderboard only reports these three), and underline corresponds to second best performance.

Model Method Fluency Commonsense

BART-large

Baseline 3.92 4.06
Kw-aug 4.13 3.92
Att-aug 4.10 4.06

P2T 4.17 4.13

T5-base

Baseline 4.02 3.83
Kw-aug 4.04 4.04
Att-aug 4.13 3.98

P2T 4.02 4.08
Human 4.14 4.32

Table 13: Avg. human eval results on testCG, rated on 1-5
scales. Bold corresponds to best performance for that model.

8 Conclusion and Future Work

In conclusion, we motivated and proposed sev-
eral improvements for concept-to-text generation
which we call SAPPHIRE: Set Augmentation and
Post-hoc PHrase Infilling and REcombination. We
demonstrated their effectiveness on CommonGen
through experiments on BART and T5. Exten-
sive evaluation showed that SAPPHIRE improves
model performance, addresses many issues of the
baselines, and has potential for further exploration.

Potential future work includes improving mask
infilling performance, and trying combinations
of SAPPHIRE techniques as they could be com-
plementary. Better exploiting regularities of
CommonGen-like tasks, e.g. invariance to input
order, presents another avenue. SAPPHIRE meth-
ods can also be investigated for other data-to-text
NLG tasks, e.g. WebNLG, and explored for ap-
plications such as improving the commonsense
reasoning of personalized dialog agents (Li et al.,
2020), data augmentation for NLG (Feng et al.,
2020, 2021), and constructing pseudo-references
for long-context NLG (Gangal et al., 2021b).

Method Text
Concept Set {sit, chair, toy, hand} (example 1)
BART-base-BL hands sitting on a chair
BART-base-KW A boy sits on a chair with a toy in his hand.
BART-base-Att A child sits on a chair with a toy in his hand.
BART-base-P2T hands sitting on a chair with toys
BART-base-MI Children’s hands sit on a chair with a toy.
Human A baby sits on a chair with a toy in one of its hands.
Concept Set {camel, desert, ride, walk} (example 2)
BART-base-BL a camel rides a camel in the desert
BART-base-KW A camel rides down a walkway in the desert.
BART-base-Att A man is riding camel as he walks through the desert.
BART-base-P2T A camel rides down a trail in the desert.
BART-base-MI In the desert, a man rides a camel for a walk.
Human A loud group of people walk around the desert and ride camels.
Concept Set {jacket, wear, snow, walk} (example 3)
BART-large-BL walking in the snow wearing a furry jacket
BART-large-KW A man wearing a jacket is walking in the snow.
BART-large-Att A man in a blue jacket is walking in the snow.
BART-large-P2T A man is wearing a furry jacket as he walks in the snow.
BART-large-MI A walk in the snow wearing a furry jacket
Human A man wears a jacket and walks in the snow.
Concept Set {bench, bus, wait, sit} (example 4)
BART-large-BL A bus sits on the tracks with people waiting on benches.
BART-large-KW A bus sits next to a bench waiting for passengers.
BART-large-Att A woman sits on a bench waiting for a bus.
BART-large-P2T A bus sits at a stop waiting for passengers to get off the bench.

BART-large-MI There are people waiting on benches outside bus stops
to sit down. pic.twitter.

Human The man sat on the bench waiting for the bus.
Concept Set {sunglass, wear, lady, sit} (example 5)
T5-base-BL A lady sits in a sunglass.
T5-base-KW A lady sits next to a man wearing sunglasses.
T5-base-Att A lady sits wearing sunglasses.
T5-base-P2T A lady sits next to a man wearing sunglasses.
BART-base-MI A young lady sits in a sunglass to wear.

Human The lady wants to wear sunglasses, sit, relax,
and enjoy her afternoon.

Concept Set {hold, hand, stand, front} (example 6)
T5-large-BL Someone stands in front of someone holding a hand.
T5-large-KW Two men stand in front of each other holding hands.
T5-large-Att A man stands in front of a woman holding a hand.
T5-large-P2T A man standing in front of a man holding a hand.
BART-large-MI Mr. Trump holding a hand to stand in front of
Human A man stands and holds his hands out in front of him.

Table 14: Qualitative examples for testCG. Color coded:
baseline, Kw-aug, Att-aug, P2T, MI, and human reference.
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Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with neural
checklist models. In Proceedings of the 2016 con-
ference on empirical methods in natural language
processing, pages 329–339.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/P19-1470
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1005
https://doi.org/10.18653/v1/P19-1005
https://doi.org/10.18653/v1/W18-6539
https://doi.org/10.18653/v1/2020.coling-main.182
https://doi.org/10.18653/v1/2020.coling-main.182
https://doi.org/10.18653/v1/2020.deelio-1.4
https://doi.org/10.18653/v1/2020.deelio-1.4
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://aclanthology.org/D19-1272/
https://aclanthology.org/D19-1272/
http://arxiv.org/abs/2104.06669
http://arxiv.org/abs/2104.06669
https://doi.org/10.18653/v1/2021.findings-acl.357
https://doi.org/10.18653/v1/2021.findings-acl.357
https://doi.org/10.18653/v1/2021.findings-acl.357
https://doi.org/10.18653/v1/2020.findings-emnlp.224
https://doi.org/10.18653/v1/2020.findings-emnlp.224
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


222

Aaron W. Li, Veronica Jiang, Steven Y. Feng, Julia
Sprague, Wei Zhou, and Jesse Hoey. 2020. ALOHA:
Artificial learning of human attributes for dialogue
agents. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 34(05):8155–8163.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, pages 91–99.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823–1840,
Online. Association for Computational Linguistics.

Ye Liu, Yao Wan, Lifang He, Hao Peng, and Philip S.
Yu. 2021. KG-BART: Knowledge graph-augmented
bart for generative commonsense reasoning. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 35(7):6418–6425.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. CGMH: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6834–6842.

Sebastien Montella, Betty Fabre, Tanguy Urvoy, Jo-
hannes Heinecke, and Lina Rojas-Barahona. 2020.
Denoising pre-training and data augmentation strate-
gies for enhanced RDF verbalization with transform-
ers. In Proceedings of the 3rd International Work-
shop on Natural Language Generation from the Se-
mantic Web (WebNLG+), pages 89–99, Dublin, Ire-
land (Virtual). Association for Computational Lin-
guistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th annual meeting of the Association for Compu-
tational Linguistics, pages 311–318.

Edwin JG Pitman. 1937. Significance tests which may
be applied to samples from any populations. Supple-
ment to the Journal of the Royal Statistical Society,
4(1):119–130.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743–758.

Shubhangi Tandon, TS Sharath, Shereen Oraby, Lena
Reed, Stephanie Lukin, and Marilyn Walker. 2018.
TNT-NLG, System 2: Data repetition and meaning
representation manipulation to improve neural gen-
eration. E2E NLG Challenge System Descriptions.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4566–4575.

Han Wang, Yang Liu, Chenguang Zhu, Linjun Shou,
Ming Gong, Yichong Xu, and Michael Zeng. 2021.
Retrieval enhanced model for commonsense gener-
ation. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 3056–
3062, Online. Association for Computational Lin-
guistics.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with BERT. In Inter-
national Conference on Learning Representations
2020.

https://doi.org/10.1609/aaai.v34i05.6328
https://doi.org/10.1609/aaai.v34i05.6328
https://doi.org/10.1609/aaai.v34i05.6328
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://ojs.aaai.org/index.php/AAAI/article/view/16796
https://ojs.aaai.org/index.php/AAAI/article/view/16796
https://www.aclweb.org/anthology/2020.webnlg-1.9
https://www.aclweb.org/anthology/2020.webnlg-1.9
https://www.aclweb.org/anthology/2020.webnlg-1.9
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1162/tacl_a_00342
https://doi.org/10.1162/tacl_a_00342
http://www.macs.hw.ac.uk/InteractionLab/E2E/final_papers/E2E-TNT_NLG2.pdf
http://www.macs.hw.ac.uk/InteractionLab/E2E/final_papers/E2E-TNT_NLG2.pdf
http://www.macs.hw.ac.uk/InteractionLab/E2E/final_papers/E2E-TNT_NLG2.pdf
https://doi.org/10.18653/v1/2021.findings-acl.269
https://doi.org/10.18653/v1/2021.findings-acl.269


223

Appendices

A Model Training and Generation
Details

T5-large consists of 770M params, T5-base 220M
params, BART-large 406M params, and BART-
base 139M params. We train two seeded versions
of each baseline model and SAPPHIRE model. For
all models, we use beam search with a beam size of
5, decoder early stopping, a decoder length penalty
of 0.6, encoder and decoder maximum lengths of
32, and a decoder minimum length of 1. For model
training, we use a batch size of 128 for T5-base
and BART-base, 32 for BART-large, and 16 for
T5-large. For T5-base, T5-large, and BART-base,
we use 400 warmup steps, and 500 for BART-large.
We train all models up to a reasonable number of
epochs (e.g. 10 or 20) and perform early stopping
using our best judgment (e.g. if metrics have contin-
ually decreased for multiple epochs). The learning
rates for SAPPHIRE models were determined by
trying a range of values (e.g. from 1e-6 to 1e-4),
and finding ones which led to good convergence
behavior (e.g. validation metrics increase at a de-
cently steady rate and reach max. after a reasonable
number of epochs). For the best-performing mod-
els, learning rates are as follows (each set consists
of {baseline,Kw-aug,Att-aug,P2T}): BART-base
= {3e-05,2e-05,3e-05,1e-05}, BART-large = {3e-
05,2e-05,2e-05,5e-06}, T5-base = {5e-05,5e-05,5e-
05,1e-05}, T5-large = {2e-05,2e-05,2e-05,5e-06}.

Training was done using single RTX 2080 Ti and
Titan Xp GPUs, and Google Colab instances which
alternately used a single V100, P100, or Tesla T4
GPU. The vast majority of the training was done on
a single V100 per model. T5-base models trained
in approx. 1 hour, BART-base models in approx.
45 minutes, T5-large models in approx. 4 hours,
and BART-large models in approx. 1.5-2 hours.

B Full Re-implementation versus
Reported Model Numbers

See Table 16 for full comparison of our re-
implemented CommonGen models compared to
the original reported numbers in Lin et al. (2020).

C Human Evaluation Details

Human evaluation was done via paid crowdwork-
ers on AMT, who were from Anglophone countries
with lifetime approval rates > 97% . Each exam-
ple was evaluated by 2 annotators. The time given

Method Text
Concept Set {food, eat, hand, bird}
BART-base-BL hands of a bird eating food
BART-base-KW a bird eats food from a hand
BART-base-Att hand of a bird eating food
BART-base-P2T A bird is eating food with its hand.
BART-base-MI The food is in the hands of a bird eating it.
Human A small bird eats food from someone’s hand.
Concept Set {front, dance, routine, perform}
BART-base-BL A woman performs a routine in front of a dance.
BART-base-KW A man performs a routine in front of a group of people.
BART-base-Att A man is performing a routine in front of a group of people.
BART-base-P2T A woman performs a routine in front of a group of people.
BART-base-MI In this dance, a man performs a routine in front of a mirror.
Human The girl performed her dance routine in front of the audience.
Concept Set {chase, ball, owner, dog, throw}
BART-base-BL A dog is throwing a ball into a chase.
BART-base-KW A dog is about to throw a ball to its owner.
BART-base-Att A dog is trying to throw a ball at its owner.
BART-base-P2T A dog is chasing the owner of a ball.
BART-base-MI The dog was trained to throw balls and the dog would chase

after the owner.
Human The owner threw the ball for the dog to chase after.
Concept Set {music, dance, room, listen}
BART-large-BL A listening music and dancing in a dark room
BART-large-KW A group of people dance and listen to music in a room.
BART-large-Att A group of people are dancing and listening to music in a room.
BART-large-P2T Two people are dancing and listening to music in a dark room.
BART-large-MI Music and dancing in the dance floor.
Human A boy danced around the room while listening to music.
Concept Set {cheer, team, crowd, goal}
T5-base-BL the crowd cheered after the goal.
T5-base-KW the crowd cheered after the goal by football team
T5-base-Att the crowd cheered after the goal by the team.
T5-base-P2T the crowd cheered as the team scored their first goal.
BART-base-MI The team and the crowd cheered after the goal.
Human The crowd cheered when their team scored a goal.
Concept Set {bag, put, apple, tree, pick}
T5-base-BL A man puts a bag of apples on a tree.
T5-base-KW A man puts a bag under a tree and picks an apple.
T5-base-Att A man puts a bag under a tree and picks an apple.
T5-base-P2T A man puts a bag of apples on a tree and picks them.
BART-base-MI A man puts a bag of apple juice on a tree to pick it up
Human I picked an apple from the tree and put it in my bag.
Concept Set {circle, ball, throw, turn, hold}
T5-large-BL Someone turns and throws a ball in a circle.
T5-large-KW A man holds a ball and turns to throw it into a circle.
T5-large-Att A man holds a ball in a circle and throws it.
T5-large-P2T A man holds a ball, turns and throws it into a circle.
BART-large-MI He turns and throws a ball into the circle to hold it.
Human A girl holds the ball tightly, then turns to the left and throws

the ball into the net which is in the shape of a circle.
Concept Set {hair, sink, lay, wash}
T5-large-BL A woman is washing her hair in a sink.
T5-large-KW A woman lays down to wash her hair in a sink.
T5-large-Att A man lays down to wash his hair in a sink.
T5-large-P2T A woman is washing her hair in a sink.
BART-large-MI A woman is washing her hair in the sink. She lay the sink down
Human The woman laid back in the salon chair, letting the hairdresser

wash her hair in the sink.
Concept Set {wash, dry, towel, face}
T5-large-BL A man is washing his face with a towel.
T5-large-KW A man washes his face with a towel and then dries it.
T5-large-Att A man is washing his face with a towel and drying it.
T5-large-P2T A man is washing his face with a towel and drying it off.
BART-large-MI A man is washing his face with a towel to dry it.
Human The woman will wash the baby’s face and dry it with a towel.

Table 15: Qualitative examples for testCG. Color coded:
baseline, Kw-aug, Att-aug, P2T, MI, and human reference.

for each AMT task instance or HIT was 8 minutes.
Sufficient time to read instructions, as calibrated by
authors, was also considered in the maximum time
limit for performing each HIT. Annotators were
paid 98 cents per HIT. This rate (7.35$/hr) exceeds
the minimum wage for the USA (7.2$/hr) and con-
stitutes fair pay. We neither solicit, record, request,
or predict any personal information pertaining to
the AMT crowdworkers. Specific instructions and
a question snippet can be seen in Figure 1.
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Model\Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE BERTScore Cov
Reported BART-large 22.13 43.02 37.00 27.50 31.00 14.12 30.00 - 97.56

Reported T5-base 15.33 36.20 28.10 18.00 24.60 9.73 23.40 - 83.77
Reported T5-Large 21.98 44.41 40.80 30.60 31.00 15.84 31.80 - 97.04

Our BART-base 15.91 36.15 38.30 28.30 30.20 15.07 30.35 58.26 93.44
Our BART-large 17.27 37.32 39.95 30.20 31.15 15.72 31.20 58.58 95.03

Our T5-base 17.27 37.69 41.15 31.00 31.10 16.37 32.05 60.32 94.44
Our T5-large 17.90 38.31 43.80 33.60 32.70 17.02 33.45 61.39 96.26

Table 16: Performance of our re-implemented CommonGen models on devO compared to the original numbers reported in Lin
et al. (2020). Note that for our models, results are averaged over two seeds, and that the original authors did not experiment with
BART-base. Bold indicates where we match or exceed the reported metric.

(a)

(b)

Figure 1: Snapshots of human evaluation: a) instructions seen by annotator and b) an example with questions.

D Graphs Displaying Other
Hyperparameter Results

Figures 2, 3, 4, and 5 contain graphs displaying
other hyperparameter results for Kw-aug, Att-aug,
P2T, and Mask Infilling (MI), respectively.

E Further Qualitative Examples

See Table 15 for further qualitative examples.
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Figure 2: Kw-aug: graphs of BLEU-4, CIDEr, and SPICE results on testCG over different numbers of augmented keywords for
BART-base and T5-base. These are only first seed results, and we only went above three augmented keywords for the base size
models. BL refers to the baseline results with no augmented keywords.
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Figure 3: Att-aug: graphs of BLEU-4, CIDEr, and SPICE results on testCG over different numbers of augmented words for
BART-base and T5-base. These are only first seed results, and we only went above three augmented words for the base size
models. BL refers to the baseline results with no augmented words.
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Figure 4: P2T: graphs of BLEU-4, CIDEr, and SPICE results on testCG over different max n-gram lengths of augmented
keyphrases. These are results averaged over two seeds. BL refers to the baseline results with no augmented keyphrases.
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Figure 5: Mask Infilling (MI): graphs of BLEU-4, CIDEr, and SPICE results on testCG over different max n-gram lengths of
augmented keyphrases. These are first seed results only. BL refers to the baseline results, and KW refers to mask infilling on the
original keywords only (with no augmented keyphrases).


