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Abstract

Sub-tasks of intent classification, such as ro-
bustness to distribution shift, adaptation to spe-
cific user groups and personalization, out-of-
domain detection, require extensive and flex-
ible datasets for experiments and evaluation.
As collecting such datasets is time- and labor-
consuming, we propose to use text generation
methods to gather datasets. The generator
should be trained to generate utterances that
belong to the given intent. We explore two
approaches to generating task-oriented utter-
ances. In the zero-shot approach, the model
is trained to generate utterances from seen in-
tents and is further used to generate utterances
for intents unseen during training. In the one-
shot approach, the model is presented with a
single utterance from a test intent. We perform
a thorough automatic, and human evaluation
of the dataset generated utilizing two proposed
approaches. Our results reveal that the at-
tributes of the generated data are close to orig-
inal test sets, collected via crowd-sourcing.

1 Introduction

Training dialogue systems used by virtual assis-
tants in task-oriented applications requires large
annotated datasets. The core machine learning task
to every dialogue system is infent detection, which
aims to detect what the intention of the user is. New
intents emerge when new applications, supported
by the dialogue systems, are launched. However,
an extension to new intents may require annotating
additional data, which may be time-consuming and
costly. What is more, when developing a new dia-
logue system, one may face the cold start problem
if little training data is available. Open sources
provide general domain annotated datasets, primar-
ily collected via crowd-sourcing or released from
commercial systems, such as Snips NLU bench-
mark (Coucke et al., 2018). However, it is usually
problematic to gather more specific data from any
source, including user logs, protected by the pri-
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vacy policy in real-life settings.

For all these reasons, we suggest a learnable ap-
proach to create training data for intent detection.
We simulate a real-life situation in which no anno-
tated data but rather only a short description of a
new intent is available. To this end, we propose to
use methods for zero-shot conditional text gener-
ation to generate plausible utterances from intent
descriptions. The generated utterances should be
in line with the intent’s meaning.

Our contributions are:

1. We propose a zero-shot generation method
to generate a task-oriented utterance from an
intent description;

2. We evaluate the generated utterances and
compare them to the original crowd-sourced
datasets. The proposed zero-shot method
achieves high scores in fluency and diversity
as per our human evaluation;

3. We provide experimental evidence of a seman-
tic shift when generating utterances for unseen
classes using the zero-shot approach;

4. We apply reinforcement learning for the one-
shot generation to eliminate the semantic shift
problem. The one-shot approach retains se-
mantic accuracy without sacrificing fluency
and diversity.

2 Related work

Conditional language modelling generalizes
the task of language modelling. Given some con-
ditioning context z, it assigns probabilities to a
sequence of tokens (Mikolov and Zweig, 2012).
Machine translation (Sutskever et al., 2014; Cho
etal., 2014) and image captioning (You et al., 2016)
are seen as typical conditional language modelling
tasks. More sophisticated tasks include text ab-
stractive summarization (Nallapati et al., 2017;
Narayan et al., 2019) and simplification (Zhang
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and Lapata, 2017), generating textual comments to
source code (Richardson et al., 2017) and dialogue
modelling (Lowe et al., 2017). Structured data
may act as a conditioning context as well. Knowl-
edge base (KB) entries (Vougiouklis et al., 2018)
or DBPedia triples (Colin et al., 2016) serve as
condition to generated plausible factual sentences.
Neural models for conditional language modelling
rely on encoder-decoder architectures and can be
learned both jointly from scratch (Vaswani et al.,
2017) or by fine-tuning pre-trained encoder and
decoder models (Budzianowski and Vuli¢, 2019;
Lewis et al., 2020).

Zero-shot learning (ZSL) has formed as a rec-
ognized training paradigm with neural models be-
coming more potent in the majority of downstream
tasks. In the NLP domain, the ZSL scenario aims
at assigning a label to a piece of text based on the
label description. The learned classifier becomes
able to assign class labels, which were unseen dur-
ing the training time. The classification task is then
reformulated in the form of question answering
(Levy et al., 2017) or textual entailment (Yin et al.,
2019). Other techniques for ZSL leverage metric
learning and make use of capsule networks (Du
et al., 2019) and prototyping networks (Yu et al.,
2019).

Zero-shot conditional text generation implies
that the model is trained in such a way that it can
generalize to an unseen condition, for which only a
description is provided. A few recent works in this
direction show-case dialog generation from unseen
domains (Zhao and Eskenazi, 2018) and question
generation from KB’s from unseen predicates and
entity types (Elsahar et al., 2018). CTRL (Keskar
etal., 2019), pre-trained on so-called control codes,
which can be combined to govern style, content,
and surface form, provides for zero-shot generation
for unseen codes combinations. PPLM (Dathathri
et al., 2019) uses signals, representing the class,
e.g., bag-of-words, during inference, and can gener-
ate examples with given semantic attributes without
pre-training.

Training data generation can be treated as form
of data augmentation, a research direction being in-
creasingly in demand. It enlarges datasets for train-
ing neural models and help avoid labor-intensive
and costly manual annotation. Common tech-
niques for textual data augmentation include back-
translation (Sennrich et al., 2016), sampling from

latent distributions (Xia et al., 2021), simple heuris-
tics, such as synonym replacement (Wei and Zou,
2019) and oversampling (Chawla et al., 2002). Few-
shot text generation has been applied to natural lan-
guage generation from structured data, such as ta-
bles (Chen et al., 2020) and to intent detection data
augmentation (Xia et al., 2021). However, these
methods are incompatible with ZSL, requiring at
least a few labeled examples for the class being aug-
mented. An alternative approach suggests to use a
model to generate data for the target class based on
task-specific world knowledge (Chen et al., 2017)
and linguistic features (Iyyer et al., 2018).

Deep reinforcement learning (RL) methods
prove to be effective in a variety of NLP tasks.
Early works approach the tasks of machine trans-
lation (Grissom II et al., 2014), image captioning
(Rennie et al., 2017) and abstractive summariza-
tion (Paulus et al., 2017), assessed with not differen-
tiable metrics. (Wu et al., 2021) tries to improve the
quality of transformer-derived pre-trained models
for generation by leveraging proximal policy opti-
mization. Other applications of deep RL include
dialogue modeling (Li et al., 2016b) and open-
domain question answering (Wang et al., 2018).

3 Methods

Our main goal is to generate plausible and coherent
utterances, which relate to unseen intents, lever-
aging the description of the intent only. These
utterances should clearly express the desired intent.
For example, if conditioned on the intent “delivery
from the grocery store” the model should generate
an utterance close to “Hi! Please bring me milk
and eggs from the nearest convenience store” or
similar.

Two scenarios can be used to achieve this goal. In
the zero-shot scenario, we train the model on a
set of seen intents S to generate utterances. If the
generation model generalizes well, the utterances
generated for unseen intents U/ are diverse and flu-
ent and retain intents’ semantics. In the one-shot
scenario, we utilize one utterance per unseen in-
tent U/ to train the generation model and learn the
semantics of this particular intent.

3.1 Zero-shot generation

Our model as depicted in Figure 1) aims to generate
plausible utterances conditioned on the intent de-
scription. We fine-tune the GPT-2 medium model
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(Radford et al., 2019) on task-oriented utterances,
collected from several NLU benchmarks (see Sec-
tion 5.1 for more details on the dataset).

Output
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Intent

description

Utterance

Input

Figure 1: Training setup. The input an intent descrip-
tion and an utterance concatenated, the output is the
utterance.

Our approach to fine-tuning the GPT-2 model fol-
lows (Budzianowski and Vuli¢, 2019). Two pieces
of information, the intent description and the utter-
ance are concatenated to form the input. More pre-
cisely, the input has the following format: [intent
description] utterance. During the training phase,
the model is presented with the output obtained
from the input by masking the intent description.
The output has the following format: <MASK>, ...,
<MASK> utterance. The full list of intents is pro-
vided in Table 4 in Appendix.

Such input allows the model to pay attention to
intent tokens while generating. The standard lan-
guage modeling objective, negative log-likelihood
loss, is used to train the model:

<)
L) =— Z Z log pg <x51)|intent,x2> .
i t=1

We fine-tuned the model for one epoch to avoid
over-fitting. Otherwise, the model tends to repeat
redundant semantic constructions of the input utter-
ances. At the same time, a bias towards the words
from the training set gets formed. The parameters
of the training used were set to the following val-
ues: batch size equals to 32, learning rate equals to
5e-5, the optimizer chosen is Adam (Kingma and
Ba, 2015) with default parameters.

3.2 One-shot Generation

Motivation. The zero-shot approach to conditional
generation may degrade or even fail if (i) the in-
tent description is too short to properly reflect the
semantics of the intent, (ii) the intent description

is ambiguous or contains ambiguous words. Pro-
duced utterances may distort the initial meaning
of the intent or be meaningless at all. The model
may generate an utterance “Count the number of
people in the United States” for the intent “cal-
culator”, or “Add a book by Shakespeare to the
calendar” for a “book reading” service. Although
such examples can be treated not as outliers but
rather as real-life whimsical utterances, this is not
the desired behavior for the generation model. We
address this phenomenon as Semantic Shift and
provide experimental evidence of it in Section 5.4.

Based on these observations, we hypothesize that
the problem could be solved if we provide a single
training example to improve models’ generaliza-
tion abilities. A single example can give the model
a clue about what the virtual assistant can do with
books and which entities our calculator is designed
to calculate by gaining better world knowledge.
For this purpose, we are moving from the zero-shot
to the one-shot setting. We propose a method for
improving zero-shot generation by leveraging just
one example.

Our approach is inspired by the recent TextGAIL
(Wu et al., 2021) approach. It addresses the prob-
lem of exposure bias in pre-trained language mod-
els and proposes a GAN-like style scheme for fine-
tuning GPT-2 to produce appropriate story end-
ings using a reinforcement algorithm. As a reward,
TextGAIL uses a discriminator output trained to
distinguish real samples from generated samples.
As we are limited in using learnable discriminators
because of the lack of training data, we propose an
objective function based on a similarity score. Our
objective function produces utterances, which are
close to the reference example. At the same time,
it forces the model to generate more diverse and
plausible utterances. Table 5 in Appendix provides
reference examples used for the one-shot genera-
tion method.

Method. After zero-shot fine-tuning, we perform
a one-shot model update for each intent separately.
We perform several steps of the Proximal Policy
Optimization algorithm (Schulman et al., 2017)
with the objective function described further.

Reward. Our reward function is based on
BERTScore (Zhang et al., 2019), which serves
as the measure of contextual similarity between
generated sentences and the reference example.
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BERTScore correlates better with human judg-
ments than other existing metrics, used to control
semantics of generated texts and detect paraphrases.
Given a reference and a candidate sentence, we em-
bed them using ROBERTa model (Liu et al., 2019).
The BERTScore F1 calculated on top of these em-
beddings is used as a part of the final reward.

It is not enough to reward the model only for the
similarity of the generated utterance to the refer-
ence one. If so, the model tends to repeat the ref-
erence example and receives the maximal reword.
We add the negative sum of frequencies of all n-
grams in the utterance to the reward function, forc-
ing the model to generate less frequent sequences.

Given an intent / and a reference example 7,

the reward for the sentence x is calculated by the
formula:

Ry (%) = Rsim (¥, ) + Raio (@)
Rgim(xL;, ) = BERTScore(zL;, x)

Rdiv($) = Z (_Vs)

sen-grams(z)

where v; is the n-gram frequency, calculated from
all the generated utterances inside one batch.

Objective function. First, we plug this reward into
standard PPO objective function, getting intent-
specific term L' (6). Following the TextGAIL
approach, we add KL divergence with the model
without zero-shot fine-tuning to prevent forgetting
the information from the pre-trained model. We
add an entropy regularizer, making the distribution
smoother, which leads to more diverse and fluent
sentences. According to our experiments, this term
helps avoid similar prefixes for all generated sen-
tences as n-gram reward only does not cope with
this issue. The final generator objective for maxi-
mization in the one-shot scenario for the intent /
can be written as follows:

L(I;0) =LY (0) + B, [BH(poys (-]s1))
_OCKL[pO;I(' ’315)7 q("st)ﬂv

where s; is intent description, pg.; is the con-
ditional distribution py(-|I)(distribution, derived
from model with updates from PPO policy), ¢ is an
unconditional LM distribution, calculated by GPT-
2 language model without fine-tuning. The entropy
and KL are calculated per each token, while the
LPOleY term is calculated for the whole sentence.

3.3 Decoding strategies

Recent studies show that a properly chosen decod-
ing strategy significantly improves consistency and
diversity metrics and human scores of generated
samples for multiple generation tasks, such as story
generation (Holtzman et al., 2019), open-domain
dialogues, and image captioning (Ippolito et al.,
2019). However, to the best of our knowledge, no
method proved to be a one-size-fits-all one. We
perform experiments with several decoding strate-
gies, which improve diversity while preserving the
desired meaning. We perform an experimental eval-
uation of different decoding parameters.

Beam Search, a standard decoding mechanism,
keeps the top b partial hypotheses at every time
step and eventually chooses the hypothesis that has
the overall highest probability.

Random Sampling (top-k) (Fan et al., 2018)
greedily samples at each time step one of the top-k
most likely tokens in the distribution.

Nucleus Sampling (top-p) (Holtzman et al., 2019)
samples from the most likely tokens whose cumu-
lative probability does not exceed p.

Post Decoding Clustering (Ippolito et al., 2019)
(i) clusters generated samples using BERT-based
similarity and (ii) selects samples with the highest
probability from each cluster. It can be combined
with any decoding strategy.

4 Performance evaluation

We use several quality metrics to assess the gener-
ated data: (i) we use multiple fluency and diversity
metrics, (ii) we account for the performance of the
classifiers trained on the generated data.

Fluency. We consider fluency dependent upon the
number of spelling and grammar mistakes: the
utterance is treated as a fluent one if there are no
misspellings and no grammar mistakes. We utilize
LanguageTool (Mitkowski, 2010), a free and open-
source grammar checker, to check spelling and
correct grammar mistakes.

Diversity. Following (Ippolito et al., 2019), we
consider two types of diversity metrics:

Dist-k (Li et al., 2016a) is the total number of
distinct k-grams divided by the total number of
produced tokens in all of the utterances for an in-
tent;
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Ent-k (Zhang et al., 2018) is an entropy of k-
grams distribution. This metric takes into consid-
eration that infrequent k-grams contribute more to
diversity than frequent ones.

Accuracy. After we obtain a large amount of gen-
erated data, we train a RoOBERTa-based classifier
(Liu et al., 2019) to distinguish between different in-
tents, based on the generated utterances. As usual,
we split the generated data into two parts so that the
first part is used for training, and the second part
serves as the held-out validation set to compute the
classification accuracy accysy. High accy,y val-
ues mean that the intents are well distinguishable,
and the utterances that belong to the same intent
are semantically consistent.

Human evaluation We perform two crowd-
sourcing studies to evaluate the quality of generated
utterances, which aim at the evaluation of semantic
correctness and fluency.

First, we asked crowd workers to evaluate semantic
correctness. We gave crowd workers an utterance
and asked them to assign one of the four provided
intent descriptions; a correct option was among
them (i.e., the one used to generate this very ut-
terance). For the sake of completeness, we added
a fifth option, “none of above”. We assess the re-
sults of this study by two metrics, accuracy and
recall@4. Accuracy acc.rqnq measures the num-
ber of correct answers, while recall@4 measures
the number of answers which are different from the
last “none of above” option.

Second, we asked crowd workers to evaluate the
fluency of generated utterances. Crowd workers
were provided with an utterance and were asked to
score it on a Likert-type scale from 1 to 5, where (5)
means that the utterance sounds natural, (3) means
that the utterance contains some errors, (1) means
that it is hard or even impossible to understand the
utterance. We assess the results of this study by
computing the average score.

5 Zero-shot generation experiments

5.1 Data preparation

Data for fine-tuning. We combined two NLU
datasets, namely The Schema-Guided Dialogue
Dataset (SGD) (Rastogi et al., 2020) and Natu-
ral Language Understanding Benchmark (NLU-
bench) (Coucke et al., 2018) for the fine-tuning
stage. Both datasets have a two-level hierarchical
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structure: they are organized according to services
(in SGD) or scenarios (in NLU-Bench). Each ser-
vice/scenario contains several intents, typically 2-5
intents per high-level class. For example, the ser-
vice Buses_1 is divided into two intents FindBus
and BuyBusTickets.

SGD dataset consists of multi-turn task-oriented
dialogues between user and system; each user utter-
ance is labeled by service and intent. We adopted
only those utterances from each dialog in which
a new intent arose, which means the user clearly
announced a new intention. This is a common tech-
nique to remove sentences that do not express any
intents. As a result, we got three utterances per
dialog on average.

As NLU-Bench consists of user utterances, each
marked up with a scenario and intent label, we
used it without filtering. Summary statistics of the
dataset used is provided in Table 1.

SGD NLU- Total
bench
No. of utterances 49986 25607 75593
No. of services 32 18 50
No. of intents 67 68 135
Total tokens ~550k ~170k ~720k
Unique tokens ~10.8k ~83k  ~17.4k

Table 1: The total number of utterances, intents, ser-
vices and words across datasets and final statistics of
our fine-tuning data.

Intent set for generation. For the evaluation of
our generation methods, we created a set of 38
services and 105 intents' covering the most com-
mon requirements of a typical user of a modern
dialogue system. The set includes services dedi-
cated to browsing the Internet, adjusting mobile
device settings, searching for vehicles, and others.
To adopt a zero-shot setup, we split the data into
train and test sets in the following way. Some of
the services are unseen (s € Uf), i.e., are present
in the test set only. There are no seen services in
the train set related to unseen services. The rest
of the services are seen, i.e., present in both train
and test set (s € &), but different intents put in
train and test sets. For example, Flight services
are present in the train data and Plane service is

IThe full list of services and intents in both sets presented
in the Appendix



Zero-shot generation

Decodine strate Automated metrics Human evaluation
& &y accesf  Dist-4  Ent-4 | acCerowq 7Tecall@4  Fluency score
Random Sampling (b = 4) 0.82 0.50 6.20 0.63 0.87 4.77
Nucleus Sampling (p = 0.6) + PDC | 0.82 0.40 5.77 0.68 0.85 4.95
Beam Search (b = 3) + PDC 0.85 0.22 4.92 0.67 0.85 4.88
Beam Search (b = 3) 0.88 0.15 4.76 0.60 0.80 4.76
Nucleus Sampling (p = 0.4) 0.89 0.25 4.95 0.72 0.90 4.81
One-shot generation
Nucleus Sampling (p = 0.4) ‘ 0.94 0.39 5.88 0.78 0.91 4.86

Table 2: Decoding strategies for zero-shot and one-shot generation. PDC stands for Post Decoding Clustering.

‘acccrowd recallQ4 Dist-4 FEnt-4

SGD+NLU-bench |  0.83

0.95 0.53 5.92

Table 3: Evaluation of the test dataset, created by merging and re-splitting two datasets under consideration.

used in the test set; from Music services, intents
Lookup song and Play song were used for training,
and Create playlist and Turn on music for a testing.
To form the intent description for fine-tuning and
generation, we join service and intent labels.

5.2 Evaluation

We generated 100 examples per intent using differ-
ent decoding strategies and their parameters. For
the more detailed evaluation, we picked up the gen-
eration methods of different decoding strategies
that achieved good scores (accqsp > 80% and
Ent-4 > 4). For these utterances, we performed
a human evaluation of semantic correctness and
diversity; Table 2 compares the decoding strategies
according to various quality metrics. For a more de-
tailed evaluation of decoding strategies, see Table
2 in Appendix.

To compare the diversity of human-generated ut-
terances to our generated utterances, we evaluate
the fine-tuning dataset with Ent-4 and Dist-4 met-
rics. The semantics of generated data is assessed
by accerowq and recall@4. We present metrics for
this dataset in Table 3.

5.3 Analysis and model comparison

Fluency. Spell checking results reveal the follow-
ing issues of the generated utterances. The major
issues are related to casing: an utterance may start
in lower case, the first-person singular personal
pronoun “I” is frequently generated in lower case,
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too. Punctuation issues include missing quotes,
question marks, periods, or repeated punctuation
marks. Common mistakes are omitting of a hy-
phen in the word “Wi-Fi” and “e-mail” and con-
fusing definite and indefinite articles, as well as
confusing “a”/“an”. These issues are more or less
natural to humans and thus do not prevent further
use of generated utterances. The only unnatural
issues found by LanguageTool are phrase repeti-
tion in small numbers (4 errors of this type per
10000 utterances). For examples of fluency issues
in generated data, see Table 1 in Appendix.

Diversity. Table 4 shows examples of the phrases
generated by means of different decoding strategies,
conditioning on the intent Show message, along
with diversity metrics, Dist and Ent. Higher Ent
and Dist scores indeed correspond to a more di-
verse decoding strategy. At the same time, ex-
tremely high diversity may generate utterances un-
related to the intent, expressing non-clear meaning
and lack of common sense.

Diversity / Accuracy trade-off. Figure 2 shows
the trade-off between the diversity (Ent-4) and the
accuracy (accsf) of the generated data.

Every point corresponds to sentences generated
using different zero-shot strategies. The human
level stands for the diversity and accuracy metrics
computed for the test set as is. The beam search
scores are mainly in the top-left corner of the plane,
leading to high accuracy and low diversity values.



Beam Search (3)
Ent-4 = 4.26

Random Sampling (3)
Ent-4 =5.93

Nucleus Sampling (0.98)
Ent-4 = 6.86

i need to know what’s going on
with my phone

i want you show me the mes-
sage from my phone

i want you show me my mes-
sages on my phone

i want you to show my mes-
sages on my smart phone

i want to read a new message
from my friend

i want to see my messages in
the phone book

show me my most recent mes-
sages from my phone number
show me the messages from the
device 1 was using

show me the message from my
friend jane that i sent to her
can you please show me the
messages from my phone

show me a message from jean lee
for my favorite apple company
how can you tell me mike with the
message

could you check to see if my friends
are in a group that is gossiping

list all messages in my bbq menu
from ausy

just turn on the smart mute this mon-
day night

Table 4: Utterances, generated by different decoding strategies and the diversity scores of the decoding strategies.

Ap0.3
0.90
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55
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Figure 2: The trade-off between diversity (Ent-4) and
accuracy.

Top-k Random Sampling strategy does not achieve
the highest levels of accuracy. Nucleus Sampling
can generate datasets with a large range of diver-
sity and accuracy scores, depending on the cho-
sen parameter. Post-decoding clustering increases
diversity for low-diverse decoding strategies and
decreases it for high-diverse ones, moving the gen-
erator closer to the human level.

Two ways to assess accuracy. Table 2 shows
that there is no clear correspondence between
automated accuracy accqs¢ and human accuracy
aCCerowd- Therefore accysy cannot serve as the
final measure for the semantic consistency of the
generator. The Semantic shift problem cannot be
captured by the automated accuracy accqsy: the
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model generates examples which are consistent in-
side each class, and classes are well-separated, but
the generated examples do not correspond well to
the intent descriptions.

5.4 Semantic shift problem

The semantic consistency is crucial: how well do
the generated utterances correspond to the intent
description? In most cases, zero-shot generation
is quite reliable: accerowa > 0.8 for 57% of in-
tents, recall@4 > 0.9 for 72% of intents. How-
ever, generated utterances are distinguishable from
other classes for some intents, but they do not com-
pletely correspond to the intent description. Several
generated utterances below illustrate this issue.

Intent: Buy train tickets

Utterance: I want to buy a bus ticket. I want to
leave on the 12th of this month.

Intent: Put default wallpapers

Utterance: Put the default wallpaper for the bed-
room. I want to see it on the wall.

Intent: Calculator Find sum

Utterance: I need to find a calculator. I need to
know the value of one dollar.

For example, The bias in the fine-tuning data
causes this issue. For example, travel-related in-
tents mainly correspond to bus travel. So the model
confuses buses and trains. In other cases, the model
gets wrong the intent description due to the lack of
world knowledge. E. g. the generated phrases for
Wallpaper may be related to wallpapers in a house;
utterances for Calculator may be related to finding
some numbers like the average price of houses in
the area.



Intent description and reference examples Undesirable meaning Zero- One-
shot  shot

Intent description Train Buy train ticket Meaning Get bus ticket 97 23
Reference Make a purchase of the train ticket, not Example I need a bus to go there.
bus. Buy a train ticket for a specific date to some I need to leave on the 3rd of this
location month.
Intent description Wallpapers Put default wallpaper Meaning Put new wall cover in 74 1
Reference Change the background picture of the de- a house
vice display to the default one. Replace current back- Example I want to put the wall-
ground on the device with the default one paper for my bedroom on the

wall.
Intent description Calculator Find sum Meaning Find some amount of 57 0
Reference Compute, calculate the sum of the given money

numbers. Open the calculator and compute the sum

of the following numbers

Example I need to find the aver-
age price of a house.

Table 5: Evaluation of semantic shift reduction by one-shot generation. The first column contains intent description
and reference utterances used for one-shot generation. The second column shows examples of typical undesirable
meaning. The last two columns show the percentage of examples with given incorrect meaning among 100 gener-
ated utterances by zero-shot and one-shot generation. Nucleus sampling (p = 0.4) is used for both methods.

6 One-shot generation experiments

Based on human evaluation of zero-shot generated
data, we select Nucleus Sampling (p = 0.4) as the
best decoding strategy and apply it further in the
one-shot scenario. Indeed, Table 2 confirms that
the one-shot generation improves all evaluation
metrics, both human and automated. The resulting
one-shot utterances are more fluent than zero-shot
utterances. The classifier trained on one-shot utter-
ances has higher accuracy values when compared
to the one trained on zero-shot utterances.

At the same time, one-shot generation restricts the
semantics of the generated utterances and reduces
the semantic shift. To illustrate, how the problem of
semantic shift diminishes, we study several cases
where the zero-shot model tends to generate utter-
ances with undesirable meaning (see Section 5.4):
bus instead of train; wallpaper as a wall cover
instead of background picture; sum as amount of
money instead of number. Table 5 shows that after
one-shot fine-tuning, the number of utterances with
undesirable meaning becomes drastically lower;
for more examples, see Table 3 in Appendix.

7 Conclusion

In this paper, we have introduced zero-shot and one-
shot methods for generating utterances from intent
descriptions. We ensure the high quality of the
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generated dataset by a range of different measures
for diversity, fluency, and semantic correctness, in-
cluding a crowd-sourcing study. We show that the
one-shot generation outperforms the zero-shot one
based on all metrics considered. Using only a sin-
gle utterance for an unseen intent to fine-tune the
model increases diversity and fluency. Moreover,
fine-tuning on a single utterance diminishes the
semantic shift problem and helps the model gain
better world knowledge.

Virtual assistants in real-life setup should be highly
adaptive. In some tasks, we need much more data
than is currently available: exploring model robust-
ness to distribution change, finding the best archi-
tecture, dealing with a fast-growing set of intents
(the number of intents could be thousands). If the
intents to support come from different providers,
they pose diverse semantics, style, and noises.
Adaptation to different user groups and individ-
ual users, having different intent usage distribution,
is another crucial problem. We need large-scale
and flexible datasets to approach these tasks, which
can hardly be collected via crowd-sourcing from
external sources.

Zero- or one-shot generation is an appealing tech-
nique. The model obtains the background knowl-
edge about the world and the domain during pre-
training. Next, only small amounts of data are



needed to fine-tune the model. State-of-the-art
pre-trained language models, fine-tuned in a zero-
or one-shot fashion, generate fluent and diverse
phrases close to real-life utterances. The meaning
of the intent and essential details, such as book ti-
tles, movie genres, expression of speech acts, or
emoticons, are preserved. What is more, manip-
ulating a decoding strategy makes it possible to
balance the generated utterances’ diversity, seman-
tic consistency, and correctness.

Our future work directions include assessing the
downstream performance of proposed generation
methods for an end-user application and evaluating
slot-filling performance. The proposed approach
can be tested to generate utterances specific to in-
terest groups.
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