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Abstract

Neural approaches to natural language gener-
ation in task-oriented dialogue have typically
required large amounts of annotated training
data to achieve satisfactory performance, es-
pecially when generating from compositional
inputs. To address this issue, we show that self-
training enhanced with constrained decoding
yields large gains in data efficiency on a conver-
sational weather dataset that employs compo-
sitional meaning representations. In particular,
our experiments indicate that self-training with
constrained decoding can enable sequence-to-
sequence models to achieve satisfactory quality
using vanilla decoding with five to ten times
less data than with ordinary supervised base-
line; moreover, by leveraging pretrained mod-
els, data efficiency can be increased further to
fifty times. We confirm the main automatic
results with human evaluations and show that
they extend to an enhanced, compositional ver-
sion of the E2E dataset. The end result is an
approach that makes it possible to achieve ac-
ceptable performance on compositional NLG
tasks using hundreds rather than tens of thou-
sands of training samples.

1 Introduction

Neural approaches to natural language generation
(NLG) have received increasing attention due to
their flexibility and end-to-end trainability (Wen
et al., 2016; Mei et al., 2016; Dušek and Jurcicek,
2016; Dušek et al., 2019). However, despite us-
ing simplistic input meaning representations (MR),
most neural models require large quantities of clean
annotated training data in order to obtain good per-
formance. As such, the time and expense required
to obtain sufficient training data is a significant
obstacle to deploying neural NLG models at scale.

To enable richer task-oriented dialogue, Balakr-
ishnan et al. (2019) argue for using compositional,
tree-structured MRs that include discourse rela-

tions, emphasizing the need for applications to ex-
ert control over these relations when generating
text. Perhaps not surprisingly, their compositional
input MRs further exacerbate annotated data needs.
To address this issue, Balakrishnan et al. (2019)
introduce a novel constrained decoding technique
that nearly always yields correct output even in
challenging cases. However, their constrained de-
coding method incurs a substantial runtime cost,
making it too slow to deploy in task-oriented dia-
logue systems where low latency is a priority. Thus,
finding ways to improve data efficiency for train-
ing models that perform satisfactorily with vanilla
decoding remains an important challenge.

In order to reduce annotated data needs, Kedzie
and McKeown (2019) and Qader et al. (2019) pro-
pose self-training methods for NLG, though they
do not explore self-training for the more challeng-
ing case of generating from compositional input
representations. Arun et al. (2020) do explore
self-training with compositional inputs, but they
do not consider constrained decoding. In this pa-
per, we investigate for the first time whether con-
strained decoding can be used during self-training
to enhance data efficiency for compositional neural
NLG, since the speed of constrained decoding is
much less of a concern during self-training than
it is at runtime in dialogue systems. In particu-
lar, we adapt and extend He et al.’s (2020) ap-
proach to self-training for MT to the setting of
neural NLG from compositional MRs, comparing
vanilla self-training to self-training enhanced with
constrained decoding as well as with reverse model
reranking (Shen et al., 2019; Yee et al., 2019), a
simpler technique where the n-best outputs of the
forward model are reranked using scores from a
reverse model. In both cases, the idea is to enhance
the quality of the pseudo-annotated texts created
during self-training, so that self-training can more
successfully avoid entrenching the model’s own
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Query Context MR
When will
it snow
next?

Reference
date: 29th
September
2018

[CONTRAST
[INFORM

[LOCATION [CITY Parker ] ] [CONDITION NOT snow ]
[DATE TIME [DAY 29 ] [MONTH September ] [YEAR 2018 ] ]

]
[INFORM

[DATE TIME [DAY 29 ] [MONTH September ] [YEAR 2018 ] ]
[LOCATION [CITY Parker ] ] [PRECIP CHANCE SUMMARY very likely ]
[CONDITION heavy rain showers ] [CLOUD COVERAGE partly cloudy ]

]
]

Annotated Response
[CONTRAST [INFORM [LOCATION [CITY Parker ] ] is not expecting any [CONDITION NOT snow ] ] , but
[INFORM [DATE TIME [COLLOQUIAL today ] ] there’s a [PRECIP CHANCE SUMMARY very likely chance ] of
[CONDITION heavy rain showers ] and it’ll be [CLOUD COVERAGE partly cloudy ] ] ]

Table 1: Example compositional MR and annotated response from Balakrishnan et al.’s (2019) conversational
weather dataset. In the actual dataset, discourse relations have a DS prefix (e.g., DS CONTRAST), dialog acts have
a DG prefix (e.g, DG INFORM) and arguments have an ARG prefix (e.g., ARG CITY); these are elided here for
brevity.

mistakes. We show that self-training benefits con-
siderably from both methods, and that constrained
decoding yields especially large gains in data effi-
ciency. In particular, our experiments indicate that
using constrained decoding during self-training,
rather than at runtime, enables standard sequence-
to-sequence (seq2seq) models to achieve satisfac-
tory quality with much reduced latency.

Our contributions are two-fold. On Balakrishnan
et al.’s (2019) conversational weather dataset, we
show that using constrained decoding during self-
training and their SEQ2SEQ-TREE model at runtime
yields comparable performance with 20% of the
annotated data as using the full training set in super-
vised fashion, and by leveraging pretrained models,
annotated data needs can be further reduced to 2%.
We then confirm the main automatic metric results
with human evaluations and show that they hold
for Balakrishnan et al.’s (2019) enhanced version
of the E2E dataset (Dušek et al., 2019).

2 Method

Neural NLG seq2seq models aim to generate a nat-
ural language text y = 〈y1, · · · , y|y|〉 from a mean-
ing representation x = 〈x1, · · · , x|x|〉 by modeling
the conditional probability

P (y|x) =
|y|∏
i=1

P (yi|y<i,x) , (1)

where y<i = 〈y1, . . . , yi−1〉 denotes a prefix of y
with length i − 1. Usually, the model parameters

are learned in supervised fashion from a set of
annotated data L = {xk,yk}

|L|
k=1.

2.1 Compositional Inputs

Balakrishnan et al. (2019) propose to generate
annotated responses from compositional, tree-
structured MRs, as shown in Table 1. They demon-
strate that compositional MRs offer greater control
over the expression of CONTRAST and JUSTIFI-
CATION discourse relations and lead to improve-
ments in semantic correctness in a human evalu-
ation, which they argue is important for conver-
sational systems where external knowledge like
user models may inform decisions around contrast,
grouping, or justifications (Carenini and Moore,
2006; Walker et al., 2007; White et al., 2010; Dem-
berg et al., 2011). By serializing the trees as shown,
it is possible to use standard seq2seq models to
effectively accomplish tree-to-tree generation. At
runtime, the bracketing tokens can be straightfor-
wardly removed to produce the final outputs.

2.2 Vanilla Self-Training

Hiring annotators to produce large amounts of
clean, parallel data is costly, but it is often pos-
sible to automatically obtain lots of unlabeled data
U = {xl}

|U|
l=1. To take advantage of the large unla-

beled data U , we adapt and extend He et al.’s (2020)
semi-supervised self-training strategy, which has
been successfully applied to MT. As shown in Al-
gorithm 1, vanilla self-training starts from a base
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model trained with annotated parallel data L, then
(i) iteratively applies the current model to pseudo-
label the unlabeled data with its predictions, (ii)
trains a new model on the pseudo-labeled data, and
(iii) fine-tunes the model on L. Naturally, higher-
quality pseudo-labeling can be expected to lead to
more effective self-training by helping the model
to avoid entrenching its own mistakes; below, we
consider two strategies for improving generation
during the pseudo-labeling step.

Algorithm 1: Vanilla Self-Training

1 Train a model on L;
2 repeat
3 Pseudo-label the unlabeled data in U ;
4 Train a model on the pseudo-parallel

data;
5 Fine-tune the model on L;
6 until convergence or maximum iteration;

2.3 Constrained Decoding

Balakrishnan et al. (2019) demonstrate that con-
strained decoding can enhance the correctness of
text generated with seq2seq models. In our ex-
periments, we make use of an enhanced version
of their constrained decoding method, both in the
pseudo-labeling step of self-training as well as dur-
ing runtime prediction.

Balakrishnan et al.’s (2019) constrained decod-
ing method begins by scanning the input MR tree to
build constraints on coverage and ellipsis.1 During
decoding, the non-terminals in the incrementally
generated candidates are checked against the input
tree for validity, where an output tree (ignoring ter-
minals) is considered valid if it is isomorphic to
the input tree up to sibling order and elided argu-
ments. After each time step of the beam search,
invalid candidates are filtered out to prevent hallu-
cinations of tree structure, and closing brackets can
only be generated when the non-terminals in the
current subtree have all been covered. For example,
in decoding a response for the MR in Table 1, if
the prediction has followed the annotated response
up until and it’ll be, then a closing bracket cannot
be generated at this point because the second IN-
FORM is not complete, and CLOUD COVERAGE
is the only non-terminal that can be validly gener-
ated here.

1Arguments appearing multiple times in the input MR are
only required to appear once in the output.

A problem with this post-filtering method of con-
strained decoding is that it can end up filtering out
all candidates in the beam search, making it impos-
sible for the decoding to proceed forward. To avoid
this issue, we instead make use of a pre-filtering
constraint. Specifically, rather than checking the
non-terminals in y6i after generating the next to-
ken in each time step i, our pre-filtering method
instead determines all non-terminals that can ap-
pear as valid next tokens with y<i, then masks out
all invalid non-terminals from the vocabulary be-
fore the next decoding step (the closing bracket is
treated similarly). This ensures that all candidates
in the beam are valid.

Another problem with Balakrishnan et al.
(2019)’s constrained decoding is that it only con-
strains the generation of non-terminals. The gener-
ated terminals may be inconsistent with their parent
argument non-terminals, even when placeholder
terminals are used for delexicalized arguments. For
example, a placeholder for city name should only
be valid to generate inside an [ARG CITY ] argu-
ment instead of [ARG DAY ]. This kind of error
is not common when the training data is sufficient,
but it can severely harm the generation quality in
data sparse situations. Therefore, in our enhanced
constrained decoding, we constrain the generation
of arguments by only nominating correspondingly
valid placeholder terminals given a particular par-
ent argument non-terminal.

While constrained decoding ensures the correct-
ness of the partial tree structure and helps avoid
inappropriate argument realizations, it does not
constrain most terminals (i.e., the words them-
selves). As such, when the model ends up in a
poorly trained part of its distribution, it can still
hallucinate terminals; in particular, it can end up
stuttering words until the maximum output length
is reached, yielding an invalid tree structure. In
these failure cases, we replace the output with the
result of vanilla decoding, whose text is usually
much better.

2.4 Reverse Model Reranking

As an alternative to constrained decoding’s hard
constraints on non-terminals, we also investigate a
soft approach to favoring generated texts that cor-
rectly express the input MRs (Shen et al., 2019;
Yee et al., 2019). To score the correctness of a gen-
erated text (with non-terminals removed), we train
a reverse (i.e., parsing) model to generate a mean-
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ing representation x from a natural language text y.
Then, following beam search, the n-best generated
texts are reranked with the forced decoding per-
plexity of the reverse model. When using reverse
model reranking in self-training, the reverse model
is also self-trained as shown in Algorithm 2.

Algorithm 2: Reverse Model Reranking

1 Train forward and reverse models on L;
2 repeat
3 Pseudo-label the unlabeled data in U

with reverse model reranking;
4 Train forward and reverse models on the

pseudo-parallel data;
5 Fine-tune both models on L;
6 until convergence or maximum iteration;

3 Experiments

3.1 Setup
Datasets We conduct experiments on the pub-
licly available conversational weather and enriched
E2E datasets from Balakrishnan et al. (2019), fo-
cusing on the more challenging weather dataset.
The weather task consists of 25k parallel items
for training, and 3k for both validation and test.
In the weather task, there are 1.6k unique tokens
in the MRs, and 1.3k in the annotated responses.
The enriched E2E dataset contains Balakrishnan
et al.’s (2019) automatic enhancements to the E2E
texts and MRs to include CONTRAST and JUSTIFI-
CATION relations as well as slot-level annotations.
The E2E task consists of 42k items for training, and
4.6k for both validation and test. In the E2E task,
there are 60 unique tokens in the MRs, and 2.9k in
the annotated responses. All the results are reported
on the test set in the following experiments.

Unlabeled MR Creation For many NLG appli-
cations, unlabeled MRs can be generated in nearly
unlimited quantities with a simulator, but unfor-
tunately, we do not have access to the MR simu-
lators for these two datasets. Our workaround is
to create unlabeled MRs by modifying the MRs
we have in the parallel data. Because there are
contextual dependencies in the MRs, it would be
hard to get realistic MRs just by sampling elements.
Therefore, we instead delete all possible combi-
nations of removable subtrees from the MRs in
order to keep the pruned MRs meaningful. The
removable subtrees are defined as an unprotected

DG INFORM or ARG that has at least one unpro-
tected sibling, where protected elements are those
that are manually identified as establishing context
(e.g., ARG LOCATION) or are children of CON-
TRAST and JUSTIFICATION relations, which have
coherence-related contextual dependencies. In this
way, we created 137k unlabeled MRs for weather
and 143k MRs for E2E. When training a new model
on pseudo-labeled data, we split 3k from each of
them as validation data.

Models We report results for the following four
kinds of models, where *-n means the method only
uses n% of the parallel data from the full train-
ing set (three iterations of self-training were used,
unless otherwise specified):

• LBL-n: A seq2seq model (LSTM with atten-
tion or BART), which is also the base model
for the other methods

• ST-VAN-n: A model trained with vanilla self-
training

• ST-CD-n: A model self-trained with con-
strained decoding for pseudo-labeling

• ST-RMR-n: A model self-trained with re-
verse model reranking for pseudo-labeling

Metrics We report the automatic metrics listed
below on the raw model predictions, which
have delexicalized fields (e.g., ARG CITY). Non-
terminal annotations are stripped when calculating
BLEU-4 and auto–tree accuracy.

• BLEU-4 (Papineni et al., 2002): The BLEU
evaluation from e2e-metrics (Dušek et al.,
2018).

• Tree accuracy (Balakrishnan et al., 2019): The
ratio of annotated responses that pass the va-
lidity constraints specified by the input MR.
Note that if constrained decoding terminates
successfully, it is guaranteed to pass the tree
accuracy check, but vanilla decoding comes
with no such guarantee.

• Auto–tree accuracy: Tree accuracy after using
a reverse model (trained on all the paired data)
to parse the text. Note that parse errors make
auto–tree accuracy less accurate than tree ac-
curacy, but this method can be used with plain
text output.
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Figure 1: Tree accuracy and BLEU scores of the LSTM base model and three self-training strategies by parallel
training data size with vanilla decoding on the conversational weather dataset. Tree accuracy on pseudo-labeled data
is indicated by the same color dashed lines. Performance of the supervised model (LBL) using all of the labeled
data is indicated by the gray dashed lines.

Implementation Our implementation2 of self-
training, constrained decoding and reverse model
reranking is based on the same one-layer LSTM
with attention approach as in Balakrishnan et al.
(2019), with the same configuration of hyper-
parameters. The experiments with pretrained mod-
els implement all above mentioned methods with
BART (Lewis et al., 2020). We use the open source
fairseq implementation (Ott et al., 2019). More
specific configuration details of these two models
are listed in Appendix A.

3.2 Data Efficiency Study

Figures 1 and 2 show the comparisons among
the four training strategies on tree accuracy and
BLEU score as a function of the amount of paral-
lel data available. We can clearly see that ST-CD
always surpasses the other three self-training meth-
ods. Meanwhile, the ST-CD lines are much flatter,
indicating better data-efficiency, especially for tree
accuracy with less parallel data. In particular, ST-
CD achieves a considerable tree accuracy of 90%
and 97% with LSTM and BART respectively, us-
ing only 1% of the parallel data (253 items). Using
100% of the data, ST-CD sets a new state-of-the-art
in tree accuracy and BLEU, exceeding Rao et al.’s
(2019) more complex tree-to-sequence method.3

Notably, with LSTM vanilla decoding, ST-CD
needs only 20% of the parallel data to achieve com-

2Code is available at https://github.com/znculee/TreeNLG
and https://github.com/znculee/TreeNLG-BART. See ap-
pendix for further details to enhance reproducibility.

3Results of using constrained decoding at runtime are
shown in Figure 5 and Figure 6 in the appendix.

parable performance to LBL trained on all the par-
allel data.4 More remarkably, BART vanilla de-
coding ST-CD needs only 2% of the parallel data
to achieve essentially comparable performance to
LBL trained on all the parallel data.5 At this data
efficiency level, tree accuracy exceeds 97% using
just over 500 training samples, while Arun et al.’s
(2020) results on the same dataset are under 90%
despite using four times as much data. This is a key
result since vanilla decoding is so much faster than
constrained decoding, and latency is an important
consideration for dialogue systems. For example,
in our experiments using a single NVIDIA V100,
the speed of LSTM vanilla decoding was 925.01
responses/s, or 37,973.22 tokens/s, while the speed
of constrained decoding was 12.76 responses/s, or
532.61 tokens/s. This translates to an average of
80ms per response for constrained decoding, which
is a barrier to production for systems with a strict
latency budget. For BART, the speed of vanilla de-
coding was 25.17 responses/s, or 1565.75 tokens/s,
while the speed of constrained decoding was 1.82
responses/s, or 113.92 tokens/s. As such, BART
with vanilla decoding could be suitable in some
production settings; alternatively, one could pursue
knowledge distillation techniques as in Arun et al.
(2020).

Although not as effective as ST-CD, ST-RMR
also consistently surpasses ST-VAN and LBL.
Moreover, it can also be used in more conventional

4With 20% of the parallel data, ST-CD exceeds LBL in
tree accuracy while trailing it slightly in BLEU.

5Confirmed in significance tests on tree accuracy and hu-
man evaluation later in this section.

https://github.com/znculee/TreeNLG
https://github.com/znculee/TreeNLG-BART
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Figure 2: Tree accuracy and BLEU scores of the BART base model and three self-training strategies by parallel
training data size with vanilla decoding on the conversational weather dataset. Tree accuracy on pseudo-labeled
data is indicated by the same color dashed lines.

settings where the response text in the training data
has no semantic annotations, and thus decoding is
into plain text. As shown in Figure 3 (appendix),
using auto–tree accuracy, ST-RMR can improve
data efficiency when constrained decoding cannot
be used. Note, however, that decoding into plain
text consistently trails in auto–tree accuracy com-
pared to decoding into annotated text.

3.3 How Does Self-Training Help?
Theoretically, self-training should be more helpful
when the base model can produce higher quality
pseudo-labeled data. As shown in Figures 1 and 2,
tree accuracy on pseudo-labeled samples generated
by ST-CD is much higher than other self-training
methods, which illustrates why it yields much bet-
ter tree accuracy and BLEU scores on the test set.
Also note that the pseudo-labeled tree accuracy is
much lower than the test tree accuracy for ST-VAN
and ST-RMR. This may be because the unlabeled
MRs are created by deletion and thus are somewhat
atypical in comparison to the train and test sets.

3.4 Significance Tests
Although the gains in tree accuracy are large with
vanilla decoding, to confirm that the gains in Fig-
ure 1 and 2 are significant, we have run McNemar’s
test (McNemar, 1947) comparing ST-CD against
LBL as well as ST-VAN. Even when using LSTMs
with 100% of the labeled data, the gain in tree accu-
racy from 94.2% with LBL to 96.6% with ST-CD
is highly significant (p=4.30e-15), as is the gain
from 95.7% with ST-VAN to 96.6% with ST-CD
(p=0.0003). For BART, when using 100% of the
labeled data, the gain in tree accuracy from 98.01%

with LBL to 99.26% with ST-CD is highly signifi-
cant (p=1.52e-7), as is the gain from 98.53% with
ST-VAN to 99.26% with ST-CD (p=2.94e-4). Nat-
urally, the gains when using less labeled data are
also highly significant. Most interestingly, using
only 2% of the labeled data with BART ST-CD is
not significantly different than using 100% of the
labeled data with BART LBL (p=0.68285).

3.5 Expert Evaluation of Correctness
In their experiments, Balakrishnan et al. (2019)
found that tree accuracy differences reliably indi-
cated differences in human evaluations of correct-
ness, and in particular that tree accuracy failures
nearly always indicated actual correctness errors.
To verify these findings in our own targeted ex-
pert evaluation, we had two authors (both linguists)
judge the correctness of the LSTM and BART mod-
els self-trained with constrained decoding using
partial parallel data against the supervised base-
line using the same partial parallel data and the
best supervised model using all the parallel data,
where the judges were blind to which model was
which. Correctness was judged against the refer-
ence text for 50 randomly selected pairs in each
condition where the items differed in tree accuracy.
For each pair, the judges indicated whether the first
item was better than, the same as or worse than
the second item. 3-way agreement was 79% for
correctness between the judges; moreover, when
excluding any ‘same’ judgments, the judges agreed
in all but one case. After the judgments were col-
lected, we calculated how well they agreed with
tree accuracy, excluding the indeterminate ‘same’
judgments. Agreement was quite high, reaching
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90% for one judge and 88% for the other. (Further
details are in Appendix B.) Given this high level of
agreement with the automatic tree accuracy mea-
sure along with the highly significant differences
in tree accuracy, we focused our human evaluation
on investigating whether the observed differences
in BLEU scores indicated important differences in
grammaticality.

3.6 Human Evaluation of Grammaticality

While the BART ST-CD-02 and LSTM ST-CD-
20 models achieved comparable or better levels of
tree accuracy in comparison to their LBL-100 (full-
data) counterparts, they trailed somewhat in BLEU
scores. Looking at the outputs of the self-trained
models with the worst BLEU scores, we found that
the responses were mostly good, only suffering
from clear grammaticality issues infrequently. To
confirm these observations, we conducted a human
evaluation using the responses generated by the
BART ST-CD-02 and LSTM ST-CD-20 models on
333 randomly selected test items, along with the
responses for the same items for the best and worst
supervised models by BLEU score, namely BART
LBL-100 and LSTM LBL-01. Mixed in with the
responses of each model were 75 check items, 25
of which were grammatical and 50 of which we
intentionally made ungrammatical.

Using these samples, we ran an experiment on
Amazon Mechanical Turk involving 16 unique par-
ticipants. The participants in the experiment were
pre-filtered by selecting those with an approval rate
of at least 95%. Each participant was shown our
grammaticality guidelines, which were based on
Arun et al.’s (2020) and available for review at all
times during the experiment. They were subse-
quently asked to take a quiz. Those who scored
80% or more on the quiz were selected for further
participation. To encourage careful engagement
with the task, we offered bonus payments to those
who performed well on the check items. The ex-
periments were carried out with Institutional Re-
view Board approval, and all participants were paid
above minimum wage for our locale.

Agreement with the check items was quite
robust, with all participants well above chance,
though there were some outliers with respect to
check item agreement. This indicates that the judg-
ments were somewhat noisy. Each item received
3 judgments, and the items were assigned the ma-
jority judgment for analysis purposes. Judgments

of ungrammaticality were accompanied by brief
reasons; discrepancies between judgments primar-
ily reflected difficulty in applying the guidelines
regarding punctuation.

Our results indicate that 4.8% of the BART ST-
CD-02 items were judged ungrammatical, not far
from the error rates of 3.9% for LSTM ST-CD-
20 and 3.0% for BART LBL-100. By contrast,
11.4% of the LSTM LBL-01 items were judged
ungrammatical. Pairwise comparisons using Mc-
Nemar’s test only revealed statistically significant
differences for the LSTM LBL-01 model: it was
judged significantly worse than the 3 other models
(p < 0.003 in all cases), while none of the other
systems were significantly different (p > 0.3 in all
cases).

3.7 Qualitative Analysis
The most frequent grammaticality issue, especially
for LSTM ST-CD-20, was missing punctuation
between independent clauses, as shown in (a) in Ta-
ble 2. Other errors included occasional agreement
errors or missing constituents, as in (b). Example
correctness errors appear in Table 3; they usually
involved missing information, but sometimes also
repeated or extra information.

3.8 E2E Confirmation
We also evaluate our strategies on the enhanced
E2E dataset. As shown in Figure 4 in Appendix, we
can draw the same general conclusions regarding
data efficiency as with the conversational weather
dataset.6 Both constrained decoding and reverse
model reranking improve upon vanilla self-training,
with constrained decoding being more effective
when using less parallel data. Notably, for LSTM
models, with vanilla decoding at runtime, tree ac-
curacy and BLEU of using self-training with con-
strained decoding and 20% of the parallel data (ST-
CD-20) are essentially identical to the supervised
model using all the available data (LBL-100). For
BART models, the performance of ST-CD-02 is
also very similar to the one of LBL-100: While
the BLEU score of ST-CD-02 is slightly lower
than that of LBL-100, it is still very high, and the
tree accuracy of ST-CD-02 is slightly higher than
the tree accuracy of LBL-100.

6Note that the BLEU scores here are calculated in the same
generous way as in Balakrishnan et al.’s (2019) evaluation.
In particular, since multiple test MRs in the enhanced data
have the same original MR, we select the best generation
of the same original MR using NLTK’s (Bird et al., 2009)
implementation of sentence BLEU on multi-references.
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Index System Error Reason
(a) LSTM ST-CD-20 No , the forecast does not call for sunny

skies expect partly cloudy skies
Punctuation is missing before expect.

(b) BART ST-CD-02 Today in ARG CITY will have a high
of ARG TEMP HIGH and a low of
ARG TEMP LOW

Missing subject.

Table 2: Examples of grammaticality errors

Index System Error Reference
(a) LSTM LBL-20 Yes , it will be mostly sunny today in

your area
Yes , it will be mostly sunny today and
ARG WEEKDAY in your area

(b) LSTM LBL-100 Yes , light rain is likely today ,
and light thunderstorms and rain are
likely on ARG WEEKDAY and light
thunderstorms and rain are likely on
ARG WEEKDAY

Yes , light rain is likely today .
ARG WEEKDAY will also have light
rain and light thunderstorms and rain are
likely on ARG WEEKDAY

Table 3: Examples of correctness errors

4 Related Work

There is a much more established tradition of us-
ing self-training in parsing, where McClosky et al.
(2006) and subsequently others have shown that
that self-training can yield substantially improved
parsing accuracy. In NLG, Kedzie and McKeown
(2019) and Qader et al. (2019) pursue self-training
for data efficiency but only using flat input repre-
sentations and without constrained decoding, as
noted earlier. Qader et al. (2019) develop a so-
phisticated, joint method of self-training NLG and
NLU models. Kedzie and McKeown (2019) make
use of noise injection sampling and NLU models to
create new MR-text pairs, where the new MRs of-
ten contain fewer slots than the original MR; here,
we similarly create new, simpler MRs, but do so
directly by just deleting nodes in the input trees.
Likewise, our general approach to self-training (He
et al., 2020) is much simpler than in Chang et al.’s
(2021) work, where they generate new text samples
using GPT-2 (unconditioned on any input) then pair
them with data samples. Earlier, Chisholm et al.
(2017) train NLG and NLU models that share pa-
rameters to reduce the risk of hallucination. Our
iterative method of training forward and reverse
seq2seq models instead draws from Yee et al.’s
(2019) reverse model reranking approach and is
much simpler to implement. Additionally, Nie et al.
(2019) apply self-training to a NLU model to re-
duce the noise in the original MR-text pairs in order
to reduce the hallucination problem in NLG, but
they do not investigate data efficiency issues. Also
related is work on back-translation (Sennrich et al.,
2016) in MT, which starts from the assumption that

there is much target side data; by contrast, self-
training assumes there is much source side data,
as is the case with our task (where new unlabeled
MRs can be easily created).

More recent work takes advantage of pre-trained
language models to develop few-shot NLG meth-
ods. Chen et al. (2019) show impressive results
with just 200 training items using a specialized ta-
ble encoder with GPT-2, while Peng et al. (2020)
use cross-domain training (an orthogonal approach)
together with GPT-2; neither investigates more
challenging compositional inputs. Although Arun
et al. (2020) do use BART on compositional in-
puts, their tree accuracy levels are much lower even
when using considerably more data.

More generally, reverse (or reconstructor) mod-
els have taken on greater theoretical interest thanks
to Rational Speech Act (RSA) theory (Frank et al.,
2009) and have recently proved useful in NLG
(Fried et al., 2018; Shen et al., 2019). Our ap-
proach differs in using reverse models during self-
training rather than at runtime. Work on combining
parsing and generation for ambiguity avoidance
goes back much farther (Neumann and van No-
ord, 1992), with managing the trade-off between
fluency and ambiguity avoidance a more recent
topic (Duan and White, 2014) that we also leave
for future work. Constrained decoding (Balakrish-
nan et al., 2019) is inspired by coverage tracking
in grammar-based approaches to realization (Kay,
1996; Carroll and Oepen, 2005; White, 2006); its
use during self-training is novel to this work.
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5 Conclusion and Future Work

In this paper, we have shown that using self-
training with constrained decoding in composi-
tional neural NLG can deliver large gains in data
efficiency, enabling seq2seq models to achieve sat-
isfactory quality using vanilla decoding with much
less annotated data. The idea of using constrained
decoding with self-training rather than for runtime
inference is a very simple one, but ours is the first
paper to investigate the idea, and we show via thor-
ough experimentation and evaluation that it works
remarkably well. In our experiments, we found that
LSTM models trained from scratch can increase
data efficiency by a factor of at least 5, while pre-
trained BART models yielded a 50 times increase,
achieving essentially comparable levels of correct-
ness and grammaticality using only 2% of the exist-
ing training data. As such, the approach promises
to help pave the way towards developing systems
with mere hundreds rather than tens of thousands
of annotated samples, potentially eliminating the
need for crowdsourcing in system development.
In future work, it would be exploring ways of at
least partially automatically adding semantic anno-
tations to the target texts using methods that treat
such annotations as latent (Shen et al., 2020; Xu
et al., 2021) to facilitate using our approach on a
new task or dataset.
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A Reproducibility Details

For LSTM models, the word embedding and hid-
den size dimensions are 300 and 128 respectively,
and the decoder output embedding size is 512. The

dropout rate for both encoder and decoder is 0.2.
There are no more than 128 sentences in a batch.
Training uses early stopping when the validation
loss has not improved for the last 20 epochs. The
learning rate is 0.001, and the scheduler is ReduceL-
ROnPlateau whose factor is 0.1 and patience is
3. The maximum output length is 2 times source
length plus 50, and the beam size is 5. The loss
function is optimized with Adam (Kingma and Ba,
2014), where β1 = 0.9, β2 = 0.999 and ε = 10−8.

For BART models, we use the BART-Large
model available in the fairseq, which 12 encoder
and decoder layers.7 The dropout rate for both en-
coder and decoder is 0.1. There are no more than
2048 tokens in a batch. Training uses early stop-
ping when the validation loss has not improved for
the last 20 epochs. The learning rate is 0.00003,
and the scheduler is polynomial decay with 1000
warm updates. The maximum output length is 1024.
The loss function is optimized with Adam (Kingma
and Ba, 2014), where β1 = 0.9, β2 = 0.999 and
ε = 10−8.

For every experiment, the computing infrastruc-
ture we used is an NVIDIA V100 GPU and an
Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz
CPU. The numbers of trainable parameters of
LSTM models for weather and E2E datasets are
2,212,928 and 3,079,256 respectively. Training
a LSTM model on the full weather dataset takes
around 0.5k seconds for 38 epochs. Training
a LSTM model on the pseudo-labeled weather
dataset takes around 3.4k seconds for 57 epochs.
Training and validation loss at convergence is
around 1.8. The speed of vanilla decoding was
37,973 tokens/s, and the speed of constrained de-
coding was 532.61 tokens/s. The numbers of
trainable parameters of BART models for weather
and E2E datasets are both 406,290,432. Train-
ing a BART model on the full weather dataset
takes around 10k seconds for 21 epochs. Train-
ing a BART model on the pseudo-labeled weather
dataset takes around 42k seconds for 20 epochs.
Training and validation loss at convergence is
around 2.1. The speed of vanilla decoding
was 25.17 responses/s, or 1565.75 tokens/s, and
the speed of constrained decoding was 1.82 re-
sponses/s, or 113.92 tokens/s.

The source code and data for reproduc-
ing all experiments in this paper are submit-
ted in the supplementary materials and will

7https://github.com/pytorch/fairseq/tree/master/examples/bart
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be released upon acceptance. The depen-
dencies are specified in requirements.txt.
Code usage instructions are in README.md and
self-training/README.md.

B Details on Expert Evaluation of
Correctness

Table 4 shows the detailed breakdown of agreement
between the expert judges and tree accuracy. We
can observe that agreement with tree accuracy is
higher with LSTM models than with BART, and
higher where there is a significant difference in tree
accuracy than in the one case where there was no
significant difference (BART ST-CD-02 vs. BART
LBL-100). For this comparison, there were rela-
tively few discrepancies in tree accuracy to sample
from, and the items in question likely represent
somewhat unusual cases. In examining the hand-
ful of cases where the judges agreed but did not
agree with tree accuracy, about half were real er-
rors where BART’s words did not match the non-
terminals (influenced by its pre-trained knowledge),
while the other half had (presumably rare) errors
in the input or reference. It is not surprising that
tree accuracy would be somewhat less reliable with
BART, as it relies on its pre-trained knowledge as
well as the input in making generation choices. For
example, in one case the BART ST-CD-02 model
output, “It’s not expected to be warm tomorrow
morning in your area. The temperature will drop
to ARG TEMP tomorrow.” Here, it seems that
BART inferred that if it won’t be warm tomorrow,
that may well be because the temperature is drop-
ping. However, “will drop” is not part of the input
and may or may not be factual. Since these words
appear outside of the non-terminal signaling the
low temperature in the output, they are not checked
by tree accuracy, and thus this error is missed.

LSTM
ST-CD-20 vs.

LBL-20 LBL-100

Judge-1 36/39 26/29

Judge-2 40/40 25/27

BART
ST-CD-02 vs.

LBL-02 LBL-100

Judge-1 36/37 21/31

Judge-2 36/37 18/29

Table 4: Agreement rate of human evaluation of correct-
ness with tree accuracy (excluding indeterminate ‘same’
judgments)
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Figure 3: Auto–tree accuracy and BLEU scores of LSTM and BART models and two self-training methods by
parallel training data size with vanilla decoding of plain (PLN) text on the conversational weather dataset. For
comparison, auto–tree accuracy of LSTM and BART on the test set references are 92.85 and 93.18 respectively.
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Figure 5: Tree accuracy and BLEU scores of LSTM and two self-training strategies by parallel training data size
with constrained decoding at runtime on the conversational weather dataset and the enhanced E2E dataset. The
self-training results of the enhanced E2E dataset are measured on the first iteration.
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Figure 6: Tree accuracy and BLEU scores of BART and two self-training strategies by parallel training data size
with constrained decoding at runtime on the conversational weather dataset and the enhanced E2E dataset. The
self-training results of the enhanced E2E dataset are measured on the first iteration.


