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Abstract 

This paper describes the NTNU ASR system participating in the Formosa Speech 

Recognition Challenge 2020 (FSR-2020) supported by the Formosa Speech in the 

Wild project (FSW). FSR-2020 aims at fostering the development of Taiwanese 

speech recognition. Apart from the issues on tonal and dialectical variations of the 

Taiwanese language, speech artificially contaminated with different types of 

real-world noise also has to be dealt with in the final test stage; all of these make 

FSR-2020 much more challenging than before. To work around the 

under-resourced issue, the main technical aspects of our ASR system include 

various deep learning techniques, such as transfer learning, semi-supervised 

learning, front-end speech enhancement and model ensemble, as well as data 

cleansing and data augmentation conducted on the training data. With the best 

configuration, our system obtains 13.1 % syllable error rate (SER) on the final-test 

set, achieving the first place among all participating systems on Track 3. 

Keywords: Formosa Speech Recognition Challenge, Deep Learning, Transfer 
Learning, Semi-supervised Training 

1. Introduction 

Due to the rapid developments of deep learning, deep neural network (DNN) based techniques 

have enjoyed widespread adoption in the automatic speech recognition (ASR) community. 
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ASR has also found its applications in many different areas, ranging from interactive voice 

response (IVR) services and personal assistants, for which people can interact with the 

machine naturally by using their own voices, meeting transcription, speech translation to 

speech summarization. Nowadays, some top-of-the-line ASR systems can even reach the 

performance level of professional human annotators in English, a dominant language in the 

world. However, in real-world scenarios, there exist some languages that are resource-poor or 

even endangered. For example, although both Mandarin (a.k.a. Pǔtōnghuà and Huáyǔ) and 

Taiwanese (a.k.a. Taiwanese Hokkien, Hoklo, Taigi, Southern Min and Min-Nan) are Chinese 

dialects spoken by large populations of people, the latter is underexplored and has far less 

ASR training data made publicly available than the former, which causes the performance of 

Taiwanese ASR systems to fall short of expectations. Furthermore, distinct from Mandarin, 

Taiwanese has a wide variety of pronunciation traits that can be attributed to the influences 

from disparate languages like Formosan, Dutch, Japanese, and among others (“Taiwanese 

Hokkien,” 2021). Despite there are still 70% of the population in Taiwan who use Taiwanese 

to communicate, most of the people, young generations in particular, have only limited 

vocabulary and cannot speak Taiwanese fluently. Therefore, in addition to the continued 

promotion of the Taiwanese language and the preservation of its associated culture in the 21st 

century, how to empower Taiwanese ASR applications in daily life, like voice command 

control and automatic TV show subtitling and IVR, to name just a few, remains to be of prime 

importance. 

This paper describes the NTNU ASR system participating in the Formosa Speech 

Recognition challenge 2020 (FSR-2020) supported by the Formosa Speech in the Wild1  

project (FSW). Figure 1 outlines the major components of our system submitted to FSR-2020. 

The high variety existing in the pronunciation characteristics of Taiwanese and the varying 

noise-contaminated test conditions of the FSR-2020 datasets make this challenge intrinsically 

much more difficult. In the setting of the Track 3 competition, the output hypotheses of an 

ASR system have to be tonal syllable sequences, with a tone index, ranging from 1 to 9, 

attached to each syllable. Apart from the training data provided by the organizer, all 

participants were allowed to build their systems with additional data outside the FSR-2020 

training dataset. Instead of recourse to extra in-domain speech data, we stick to conducting 

Taiwanese ASR on a resource-scarce assumption. To this end, we explore the joint use of 

several ASR modeling strategies, including data augmentation, transfer learning, 

semi-supervised training and model ensemble. In addition, to alleviate the negative effects of 

ambient noise and reverberation that may mix with the test utterances of Track 3, speech 

enhancement is also applied to generate augmented data for training the acoustic models. 

                                                       
1 https://sites.google.com/speech.ntut.edu.tw/fsw 
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Finally, our system with the best configuration takes the first place among all participating 

systems on Track 3. 

The remainder of this paper is organized as follows: Section 2 sheds light on our main 

contributions and the strategies that were employed, from front-end processing to back-end 

acoustic and language modeling. Section 3 presents the details of the experimental setup, 

results and discussion. Finally, we conclude the paper and envisage future research directions 

in Section 4. 

2. Strategies for Building a Taiwanese ASR System 

In this section, we present our main strategies for building a Taiwanese ASR system for 

FSR-2020, which consist of two preprocessing procedures, viz. lexicon augmentation and data 

cleansing, training data augmentation, front-end speech enhancement, acoustic modeling and 

language modeling. Each of the aforementioned components will be elaborated on in the 

following subsections, respectively. 

Figure 1. An overview of the NTNU system for FSR-2020. 
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2.1 Lexicon Augmentation and Data Cleansing 

First of all, through a careful inspection of the training dataset and baseline recipe2 provided 

by the FSR-2020 organizer, we noticed there were a few syllable patterns in the given lexicon 

missing their pronunciations. In order to make the lexicon more complete, we used a greedy 

approach to performing lexicon augmentation. Specifically, we first enumerated all distinct 

tonal syllables that appeared in the reference transcripts of the training dataset and then 

augmented the lexicon with those tonal syllables that were not found in the lexicon. As a side 

note, we excluded none-Taiwanese lexical patterns that appeared in the transcripts of the 

training dataset, such as English words and proper nouns (e.g., Google), from consideration in 

this study. 

The acoustic model of our ASR system was built with a hybrid deep neural network and 

hidden Markov model (DNN-HMM) structure, which employed a DNN in place of Gaussian 

mixture model (GMM) for modeling the state emission probabilities in a traditional 

GMM-HMM structure. Hybrid DNN-HMM acoustic models have shown to be significantly 

superior than the conventional GMM-HMM acoustic models on many ASR tasks. It is 

arguable that Hybrid DNN-HMM acoustic models still have to resort to GMM-HMM acoustic 

models to obtain good forced-alignment information for better estimation of their 

corresponding neural network parameters. Inspired by this practice, the GMM-HMM acoustic 

model of our best system was trained with the audio segments that were screened out from 

speech training dataset with high recognition confidence scores generated by an existing 

hybrid DNN-HMM system. As we shall see later, the empirical ASR results confirm this 

intuitive data-cleansing therapy. 

2.2 Data Augmentation 

The training dataset for the Track 3 of FSR-2020 was provided by the organizer, which 

consisted of about 50 hours of Taiwanese utterances. This amount of dataset would be 

insufficient when training a hybrid DNN-HMM acoustic model for Taiwanese ASR. To enrich 

the speech training data and increase the robustness of our ASR system for the Track 3 

competition, we thus set out to leverage various data augmentation strategies based on 

different label-preserving transformations. 

In addition to utterance-level speed perturbation (Ko et al., 2015) used in our baseline 

system, we also adopted other data augmentation methods, including spectrogram 

augmentation and noise injection. As we shall see in the experimental section, these data 

augmentation strategies collectively lead to promising results that further push the limits of 

our ASR system. 

                                                       
2 https://github.com/t108368084/Taiwanese-Speech-Recognition-Recipe 
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2.2.1 Spectrogram Augmentation 

Apart from the augmentation strategies that operate in the waveform domain (Ko et al., 2015), 

feature-based augmentation that is conducted in the feature-space domain (e.g., spectrum or 

spectrogram) is another active line of research for acoustic modeling in past few years. One of 

the most celebrated feature-space augmentation methods adopted for acoustic modeling is 

vocal tract length perturbation (VTLP) (Jaitly & Hinton, 2013). VTLP employs a linear 

warping transformation along the frequency bins, simulating the effect of altering the vocal 

tract lengths of speakers that produce the training utterances. More recently, SpecAugment 

(Park et al., 2019) has drawn much attention from the ASR community. With the inspiration 

from computer vision (CV), SpecAugment treats the spectrogram of an utterance as an image, 

which first performs warping along the time axis (time-warping) and then masks blocks of 

consecutive time and frequency bins in different axes (time-frequency masking). The whole 

operations of SpecAugment jointly lead to considerable word error rate reductions on several 

benchmark ASR tasks. 

In this paper, we made use of the component “spec-augment-layer” of the Kaldi toolkit 

(Povey et al., 2011) along with speed perturbation to generating label-preserving, augmented 

data for training our acoustic model. Note here that “spec-augment-layer” consists of only 

time and frequency masking operations. This is probably because the time-warping operation 

is conceptually similar to speed perturbation conducted in the waveform domain, but costs a 

larger amount of computation and may not lead to substantial improvements (Park et al., 

2019). 

2.2.2 Noise Injection 

To alleviate the deteriorating effects of time- or frequency-varying noise when testing our 

system in an unseen environment, we also injected different types of noise into the training 

speech utterances, which were compiled from a few online-available noise datasets (Snyder et 

al., 2015) (Thiemann et al., 2013) (Dean et al., 2010) (Saki et al., 2016) (Saki & Kehtarnavaz, 

2016). In doing so, we can not only increase the diversity of training data but also prevent the 

hybrid DNN-HMM acoustic model from encountering the overfitting problem. Specifically, 

we randomly selected a signal-to-noise-ratio (SNR) ranging from -5 to 15 dB when 

contaminating each speed-perturbed utterance with a certain type of noise, totally creating a 

6-fold augmentation of the training dataset for estimating the acoustic model. In addition, 

these corrupted utterances were also used to train our front-end speech enhancement 

component (see Section 2.3 that follows). 

2.3 Front-end Speech Enhancement 

In a wide variety of realistic situations, the input to an ASR system might be 



 

 

6                                                          Fu-An Chao et al. 

noise-contaminated speech. As a solution to mitigate the undesirable noise-contamination 

effects, speech enhancement (SE) is arguably a crucial modeling paradigm to improve noise 

robustness of acoustic modeling. Particularly, time-domain SE methods have drawn much 

attention from both the academic and commercial sectors in past few years and have exhibited 

outstanding noise-reduction performance on many ASR tasks. 

As such, we used the fully-convolutional time-domain audio separation network 

(Conv-TasNet) (Luo & Mesgarani, 2019) as a preprocessing component for noise suppression, 

which was originally proposed for the speech separation task intended to separate an input 

mixture to individual speech signals. Conv-TasNet has shown superior performance over 

many frequency-domain approaches. The main architecture of Conv-TasNet is composed of 

an encoder, decoder and masking network, jointly processing a raw waveform signal in an 

end-to-end manner. As we shall see later, with the adoption of Conv-TasNet, we can obtain 

marked improvements in both front-end and back-end ASR evaluations. 

2.4 Acoustic Modeling 

The DNN component of our hybrid DNN-HMM acoustic model involves several layers of 

factorized time-delay neural network (TDNNF) (Povey et al., 2018), optionally prepended by 

several layers of convolutional neural network (CNN). Such a pairing of neural networks is 

denoted by CNN-TDNNF hereafter. TDNNF is viewed as an effective extension to TDNN 

(time-delay neural network), with the purpose of obtaining better modeling performance and 

meanwhile reducing the number of parameters by factorizing the weight matrix of each TDNN 

layer into a product of two low-rank matrices. As a side note, it is worth mentioning that our 

hybrid DNN-HMM acoustic model can also be estimated with the so-called flat-start, 

end-to-end training setup suggested by (Hadian et al., 2018) (denoted by E2E-TDNNF 

hereafter). This setup facilitates the training of a hybrid DNN-HMM acoustic model without 

resort to any previously trained acoustic models and forced-alignment information, while the 

estimated model can still work pretty well especially in noisy test scenarios. 

In addition, the objective function for training the acoustic model is lattice-free 

maximum mutual information (LF-MMI) (Povey et al., 2016) 

࣠LFMMI ൌ෍log
ܲሺ݅ܮ|݅۽ሻ݇ܲሺ݅ܮሻ
∑ ܲሺܮ|݅۽ሻ݇ܲሺܮሻܮ

ܰ

݅ୀ1

  

(1) 

where ݅۽ and ݅ܮ are the acoustic feature vector sequence and the corresponding phone 

sequence of the ݅-th training utterance, ݇ is a weighting factor, and ܲሺ݅ܮሻ is the phone 

N-gram language model probability. 
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2.5 Language Modeling 

For language modeling, we first adopted the SRILM toolkit (Stolcke, 2002) to train N-gram 

based language models, for which both the Good-Turing (Gale, 1995) and Kneser-Ney (Ney & 

Essen, 1991) N-gram smoothing methods were considered. In our experiments, we observed 

that using a four-gram language model yielded considerable improvements than a tri-gram 

language model in terms of both the perplexity and ASR error reductions. Also worth 

mentioning is that both these language models were trained solely on the text corpus provided 

by the organizer. 

3. Experiments 

3.1 Experimental Setup 

Table 1. The statistics of TAT-Vol1 and NER corpus. 

TAT-Vol1 (Taiwanese) 

 Speakers Utterances Duration 

Train 80 22,605 41 hours 

Pilot-test - 2,617 5 hours 

Final-test - 5,663 10 hours 

NER (Taiwanese Mandarin) 

 Speakers Utterances Duration 

Vol1-2-3 - 57,387 360 hours 

In the FSR-2020 challenge, the training dataset released by the organizer for developing our 

ASR systems is TAT-Vol1 (Liao et al., 2020), which is a publicly-available Taiwanese speech 

corpus. We made use of the whole TAT-Vol1 corpus as our training dataset (about 41 hours) 

and evaluated our system and various modeling approaches with the pilot-test dataset (about 5 

hours; released by the organizer for the warm-up evaluation). To further utilize off-the-shelf 

audio data, we adopted NER corpus (Liao et al., 2017) into this work, which contains about 

360 hours Taiwanese Mandarin speech. The detailed statistics of the corpus are summarized in 

Table 1, and all the ASR systems with different modeling approaches were developed with the 

Kaldi toolkit (Povey et al., 2011). 

In order to verify the effectiveness of our modeling approaches, we evaluated our 

systems with two distinct metrics for front-end SE and back-end ASR, respectively. In the 

front-end experiments, we will evaluate our SE component with the scale-invariant 

signal-to-noise ratio (SI-SNR) metric, which has been previously shown to be closely related 

to recognition error reduction (Kinoshita et al., 2020): the higher the SI-SNR score the better 

the ASR performance. On the other hand, we will use syllable error rate (SER) followed by 
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the rules suggested by (Liao et al., 2020) to evaluate our back-end ASR systems with different 

modeling approaches. All the SER results depicted in the following experiments will take into 

account the correctness of the tone index attached to each syllable. 

3.2 Experiments on Data Cleansing and Lexicon Augmentation 

Table 2. SER (%) results on the pilot-test dataset with different baseline acoustic 
models. 

Acoustic Model Parameters Data Cleansing Lexicon Augmentation SER (%) 

TDNN-F 17M - - 19.21 

TDNN-F 17M ൈ - 17.16 

TDNN-F 17M ൈ ൈ 17.15 

TDNN-F(M) 19M ൈ ൈ 16.73 

TDNN-F(L) 21M ൈ ൈ 17.24 

In the first set of experiments, we intend to examine the two preprocessing approaches 

mentioned in Section 2.1, namely data cleaning and lexicon augmentation, whose 

corresponding results are shown in Table 2. As can be seen from Table 2, when the data 

cleansing approach is applied, our DNN-HMM system can yield a relative SER reduction of 

10.7% compared to the baseline system (TDNN-F) provided by the organizer of the FSR-2020 

challenge. By comparison, when data cleaning is further paired with the lexicon augmentation, 

only a moderate improvement can be obtained. We hence conjecture that data cleansing is an 

indispensable component in the preprocessing stage for acoustic modeling. In addition, we 

also conduct a model ablation study to check whether stacking more layers to form a deeper 

neural network for acoustic modeling can lead to better performance. We find that it is not 

always the case when we add more layers to form a deeper neural network for acoustic 

modeling. On top of the best result drawn from Table 2, we will use TDNN-F(M) as our 

default acoustic model for the following experiments. 

3.3 Experiments on Data Augmentation 

Table 3. SER (%) results on the pilot-test dataset with disparate data augmentation 
methods. 

Noise Injection SpecAugment Training epochs SER (%) 

- - 6 16.73 

ൈ - 6 16.36 

ൈ ൈ 6 15.22 

ൈ ൈ 12 14.68 
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In addition to the speed perturbation technique that is employed in the baseline setup, we also 

consider the use of another two data augmentation methods in building our ASR systems, viz. 

noise injection and spectrogram augmentation (cf. Section 2.2). Notably, we used our default 

acoustic model for this purpose, while the corresponding results are depicted in Table 3. It is 

evident from these results that the inclusion and combination of these two data augmentation 

methods can considerably boost the ASR performance. Among other things, due to the 

under-fitting problem incurred by SpecAugment (Park et al., 2019), a further increase of the 

training epochs from 6 to 12 leads to the best relative SER reduction of 12.2% in relation to 

the baseline system. 

3.4 Experiments on Acoustic and Language Modeling 

Table 4. SER (%) results on the pilot-test dataset with different        
combinations of the acoustic and language models. 

Acoustic Model 
SER (%) 

pilot-test noisy-pilot-test 

Baseline (TDNNF) 14.68 26.49 

+ Four-gram LM 13.47 25.13 

E2E-TDNNF 16.09 24.08 

+ Four-gram LM 14.58 21.71 

To make our pilot-test dataset consistent with the final test dataset which will be corrupted by 

varying noise sources, we also inject different types of noise, with SNR levels ranging from 5 

to 20 dB, into the pilot-test dataset to form a noisy version of the training dataset that can be 

additionally exploited for training the acoustic model. Furthermore, we also evaluate two 

kinds of acoustic models, viz. baseline (TDNNF) and E2E-TDNNF (cf. Section 2.4), with the 

same model architecture and the best data augmentation setting made in Table 3. The 

corresponding results are shown in Table 4, from which an interesting phenomenon can be 

observed: when with the clean-condition testing setup, E2E-TDNNF performs worse than 

TDNNF that is based on the regular training configuration. On the contrary, in the 

noisy-condition testing setup, the E2E-TDNNF demonstrates superior noise-robustness 

performance. 

On the other direction, when we adopt the four-gram language model (in replace of the 

trigram language model) for the ASR system to decode syllable sequences, a significant SER 

reduction can be obtained (cf. the last two rows of Table 4). As a side note, we also put effort 

into training variants of the recurrent neural network (RNN)-based language model for 

second-pass lattice rescoring (Xu et al., 2018) (Wang et al., 2019) (Chiu & Chen, 2021). Their 
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performance, however, was not as good as expected, and we thus omit the details on the lattice 

rescoring experiments. From now on, unless otherwise stated, all variants of our ASR system 

discussed in the following experiments will use the four-gram language model for the 

decoding of syllable sequences. 

3.5 Front-end Speech Enhancement 

Table 5. SI-SNR (dB) results on the noisy pilot-test dataset with the  
front-end SE component. 

SE model 
SI-SNR (dB) 

dev noisy-pilot-test 

No processing 6.82 7.26 

Conv-TasNet 
(Luo & Mesgarani, 2019) 

16.43 17.37 

Table 6. SER (%) results on the noisy pilot-test dataset with the  
       front-end SE component. 

Acoustic Model 

SER (%) 

noisy-pilot-test 

no process enhanced 

E2E-TDNNF 21.71 20.93 

E2E-TDNNF-ENH 20.76 19.57 

In an attempt to confirm the noise-robustness ability of our ASR system, we conduct a set of 

experiments with the front-end SE method, viz. Conv-TasNet, which aims at noise 

suppression. To train Conv-TasNet, we randomly set aside a portion of the training dataset as 

the development set, and followed the best criterion for training Conv-TasNet that was 

suggested by (Luo & Mesgarani, 2019), viz. minimization of the negative SI-SNR loss. Note 

here that the so-called permutation invariant training (PIT) was not employed. As can be seen 

from Table 5, when Conv-TasNet is applied, the SI-SNR results on both the development and 

pilot-test datasets can be considerably improved. Meanwhile, the SER performance of our 

ASR system can be substantially promoted (cf. the first row of Table 6). 

To further enhance the acoustic modeling of our ASR system, we additionally augment 

the training dataset with a copy of the noisy training utterances which was processed by 

Conv-TasNet. As such, the augmented training dataset includes the original training data 

released by the organizer, its noise-contaminated counterpart and its noise-contaminated 

counterpart further enhanced by Conv-TasNet. We refer to this acoustic model as 

“E2E-TDNNF-ENH” in contrast to the original one (viz. E2E-TDNNF); E2E-TDNNF-ENH is 
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created to simulate the effect of retraining of the acoustic model on enhanced speech signals. 

Inspection of the last row of Table 6, we can see that E2E-TDNNF-ENH can bring about a 

substantial SER improvement in comparison to E2E-TDNNF when the test utterances to be 

fed into the acoustic model were also enhanced by Conv-TasNet a priori. Nevertheless, in our 

experiments we spot-checked a few utterances of the pilot-test dataset that were enhanced by 

Conv-TasNet, and found that Conv-TasNet sporadically eliminated the speech portions of test 

utterances (viz. most of the speech portions became silent), which probably would lead to 

deteriorated ASR performance on the unseen test utterances. To secure a reliable performance 

level of our ASR system on the final test dataset, Conv-TasNet was merely used to obtain an 

enhanced-copy of the noisy training data, with the purpose of data augmentation for training 

E2E-TDNNF-ENH. Namely, Conv-TasNet will not be used to enhance the utterances of the 

final test dataset. 

3.6 Transfer Learning and Semi-supervised Learning 

Table 7. SER (%) results on the pilot-test dataset with transfer  
learning and semi-supervised learning. 

Acoustic Model 
SER (%) 

noisy-pilot-test 

TDNNF-NER 25.15 

CNN-TDNNF-NER 23.69 

CNN-TDNNF-NER 
(with semi-supervised training) 

22.68 

In this paper, we also seek to capitalize on more training techniques for acoustic modeling in 

the context of Taiwanese ASR. To this end, we adopt the strategy proposed in (Lo & Chen, 

2019), which in essence involved two techniques: transfer learning (Ghahremani et al., 2017) 

and semi-supervised training (Manohar et al., 2018). In implementation, we first used the 

weight transfer strategy (Ghahremani et al., 2017) to train an acoustic model with parts of its 

model parameters transferred from a source model that were well-trained on the NER dataset 

(Liao et al., 2017) beforehand. On a separate front, we also attempt to make use the 

label-agnostic final test dataset (viz. the corresponding reference transcripts of the final test 

dataset were not provided) to perform semi-supervised training of the acoustic model. In 

implementation, the recipe proposed in (Manohar et al., 2018) was adopted, which used the 

entire lattice pertaining to each unlabeled training utterance as the supervision. The 

corresponding results are shown in Table 7, from which several observations can be drawn. 

First, when the TDNNF-based acoustic model was trained with transfer learning (denoted by 

TDNNF-NER), the SER result is slightly degraded compared to the result (25.13%) listed in 
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the second row of Table 4. Second, if the acoustic model was built on top of the CNN-TDNNF 

structure, transfer learning can offer a considerable SER improvement on the noisy pilot-test 

dataset (cf. the second row of Table 7). It should be noted here that the CNN-TDNNF-based 

acoustic model, merely trained on the 50-hour training dataset offered by the FSR-2020 

challenge, yields SER results significantly lower than 25.13%. This to some extent reveal that 

as opposed to TDNNF, CNN-TDNNF requires a larger amount of training dataset to achieve 

better ASR performance. In addition, when the label-agnostic final test dataset was 

additionally exploited to fine-tune the acoustic model, the performance of our ASR system on 

the pilot-test dataset can be boosted by a significant margin. 

3.7 System Combination 

Table 8. SER (%) results achieved by our two system-ensemble approaches on the 
noisy pilot-test dataset and final-test dataset. 

Combined systems 
SER (%) 

noisy-pilot-test final-test 

+ CNN-TDNNF-NER 
+ E2E-TDNNF 
+ E2E-TDNNF-ENH 

19.33 13.60 

+ CNN-TDNNF-NER (Semi-supervised) 
+ E2E-TDNNF 
+ E2E-TDNNF-ENH 

19.10 13.10 

In the last set of experiments, we report on the results of our ASR systems submitted to 

FSR-2020 challenge, which were built based on two system-ensemble approaches that make 

combinations of different ASR systems previously evaluated in the above subsections. To be 

specific, we first performed lattice combination to merge all of the word lattices generated by 

different ASR systems into a single one with equal prior weights. Then, minimum Bayes-risk 

(MBR) decoding was conducted to obtain the ultimate ASR output for each test utterance. 

Here we combine the first three of the best systems according to their performance on the 

noisy pilot-test dataset. Table 8 shows the SER results of our two system-ensemble 

approaches on the noisy pilot-test dataset and final-test dataset. It is clear that these two 

system-ensemble approaches can substantially improve the ASR performance of our system 

on the pilot-test dataset. 

3.8 Summary of the Experiments 

Finally, we summarize the SER results of the participating teams on the final test dataset of 

Track 3 in the FSR-2020 challenge. Figures 2 and 3 show the SER evaluations of Track 3 with 

and without consideration of the correctness of tone transcription, respectively. Note here that 
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although each team could submit two disparate results for evaluations, we only list the best 

result of each team here for brevity. Our ASR system has achieved the best performance 

among all participating teams for the two evaluation settings. 

 

Figure 2. SER (%) results of all participating teams submitted to Track 3 in the 
FSR-2020 challenge (with consideration of the correctness tone transcription). 

Figure 3. SER (%) results of all participating teams submitted to Track 3 in the 
FSR-2020 challenge (without consideration of the correctness tone transcription). 

4. Conclusion and Future Work 

In this paper, we have presented the modeling details of the NTNU ASR system that 

participated in the FSR-2020 Challenge. Through a series of experimental evaluation, the 
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promising effectiveness of the joint use of data cleansing, data augmentation, front-end 

approach, transfer learning and semi-supervised learning methods for Taiwanese speech ASR 

has been confirmed. As to the future work, we plan to investigate more sophisticated 

end-to-end approaches for use in acoustic modeling of the Taiwanese language, as well as to 

apply our modeling strategy to other resource-poor ASR tasks. 
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