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Abstract

The wide applicability of pretrained
transformer models (PTMs) for natural
language tasks is well demonstrated, but
their ability to comprehend short phrases
of text is less explored. To this end, we
evaluate different PTMs from the lens of
unsupervised Entity Linking in task-oriented
dialog across 5 characteristics– syntactic,
semantic, short-forms, numeric and phonetic.
Our results demonstrate that several of
the PTMs produce sub-par results when
compared to traditional techniques, albeit
competitive to other neural baselines. We
find that some of their shortcomings can
be addressed by using PTMs fine-tuned
for text-similarity tasks, which illustrate an
improved ability in comprehending semantic
and syntactic correspondences, as well as some
improvements for short-forms, numeric and
phonetic variations in entity mentions. We
perform qualitative analysis to understand
nuances in their predictions and discuss scope
for further improvements.1

1 Introduction

In task-oriented dialog systems, Entity Linking
(EL) is the process of disambiguating a detected
entity mention (aka. slot) in a user utterance to a
canonical entry in a Knowledge Base (KB). EL is
a crucial step in building robust dialog systems,
especially when dealing with domain-specific
entities, e.g., a chatbot for food ordering or a voice
assistant for medical assistance.

Popular open-source conversational AI
platforms such as DeepPavlov (Burtsev et al.,
2018), MindMeld (Raghuvanshi et al., 2018)
and Rasa (Bocklisch et al., 2017) maintain a KB
of canonical entries, each consisting of a title,
optionally with aliases (i.e., alternate usages)

1Code and re-purposed datasets can be found at
https://github.com/murali1996/el tod

Figure 1: Different types of matching scenarios observed in
Entity Linking task for short spoken/written language texts.

for the task of entity linking. Detected entities
from user utterances, often with spelling and
automatic speech recognition (ASR) errors, are
then mapped to those canonical entries through text
classification or similarity matching techniques.2

Previous works (Chen et al., 2020; Cao
et al., 2021; Broscheit, 2019) have proposed
context-aware classification techniques for EL,
wherein the context surrounding the slots is
leveraged to ascertain canonical names. However,
such approaches fall short due to (i) their reliance
on large training/fine-tuning sets and associated
annotation costs (ii) requirement to re-train the
classifiers with every change in KB entries.
Alternatively, a more popular paradigm is to model
EL as a matching problem by transforming entities
into vectors, and using a similarity function such as
cosine distance to find the closest canonical entry.

EL systems typically rely on textual n-gram
features modeled by ranking algorithms such as
BM25 (Robertson and Walker, 1994) implemented
as part of search engines such as Elasticsearch.3

To capture semantic similarity within such systems,

2Entity Linking may be clubbed with Entity Recognition
or is a standalone component of the NLP pipeline, the latter is
used in this work for better interpretability.

3https://www.elastic.co/blog/practical-bm25

https://github.com/murali1996/el_tod
https://www.elastic.co/blog/practical-bm25-part-2-the-bm25-algorithm-and-its-variables
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one needs to tediously engineer feature sets and
collect synonyms or aliases for each KB entry,
leading to a lot of manual effort and development
cost.

Recently, pretrained word embeddings have had
much success in capturing entity correspondences
(Francis-Landau et al., 2016; Sun et al., 2015)
by addressing aforementioned shortcomings–
off-the-shelf usage without reliance on training data
and flexibility to expand KBs without retraining.
Mudgal et al. (2018) presents a detailed account
of different deep learning based representations
and modeling choices for the EL task, showing the
advantages of using them over traditional systems.

More recently, transformer-based PTMs like
BERT (Devlin et al., 2019) have excelled for
Entity Linking when entities are in the form of
tabular data without much additional context (Tracz
et al., 2020; Teong et al., 2020; Li et al., 2020;
Mudgal et al., 2018). However, their ability
to understand nuances in linking short spans of
free-form text is not thoroughly tested, especially
for domain-specific entities with minimal context.

In this work, we investigate and analyze how
different PTMs behave in such settings, when
compared to widely adopted neural and non-neural
models (§ 2). To probe model behaviours on
examples with different characteristics, we curate
and benchmark evaluation datasets of various sizes
that each contain a subset of those characteristics
(§ 3). Lastly, we present qualitative as well as
quantitative analysis of the predictions of various
models, which shows that while pretrained models
fine-tuned for text-similarity tasks perform the best
overall, there is room for improvement (§ 4).

2 Models

In this section, we provide a brief detail of the
different pretrained transformer models (PTMs)
as well as the 5 baseline models (3 neural and
2 non-neural) used in our benchmarking process.
We categorize PTMs under consideration into
4 different types to understand the usefulness
of different pre-training strategies, number of
parameters and inference times. We adopt the
model nomenclature from Huggingface4 (Wolf
et al., 2020) and refer the reader to Rogers
et al. (2020) and Qiu et al. (2020) for more
comprehensive account on these different types
of PTMs and their utility.

4https://huggingface.co/models

We categorize the PTMs as follows:

Type-I Pretrained general-purpose transformer
language models which are base-sized.
These include bert-base-cased (Devlin et al.,
2019), roberta-base (Liu et al., 2019) and
mpnet-base (Song et al., 2020).

Type-II Parameters-reduced models which
are also trained for language modeling tasks
through different parameter reduction techniques.
These include albert-base-v2 (Lan et al.,
2020), distilbert-base-cased (Sanh et al., 2019),
distilroberta-base (Sanh et al., 2019), and
MiniLM-L6-uncased (Wang et al., 2020).

Type-III Reimers and Gurevych (2019)
fine-tuned some of the Type-I and Type-II
models on a variety of datasets annotated for
textual similarity tasks5. We select their all-*
models which were fine-tuned with more than
1 billion textual pairs and were designed as
general purpose textual similarity models. These
include all-distilroberta-v1, all-mpnet-base-v2 and
all-MiniLM-L6-v2.

Type-IV Dynamic quantization can reduce the
size of the model while only having a limited
implication on accuracy. We use Pytorch’s (Paszke
et al., 2019) dynamic quantization functionality6

to obtain the quantized versions of the following
models: all-mpnet-base-v2 and all-MiniLM-L6-v2.

In addition to the pretrained language
models based on transformer architecture, we
also benchmark PTMs based on other neural
architectures. Specifically, we consider the
following 3 neural models as baselines– (1)
FASTTEXT (Bojanowski et al., 2017), (2) FLAIR

(Akbik et al., 2019), and (3) ELMO (Peters et al.,
2018).

FASTTEXT consists of continuous distributed
word representations trained on large unlabeled
corpora for many natural language processing tasks.
It represents each word as the sum of its character
n-grams. Compared to FLAIR and ELMO, this
model has a shallower network and is pretrained
similar to Mikolov et al. (2013)’s skipgram model
with negative sampling. In our benchmarking, we
use the 300-dimension English model.7

5https://www.sbert.net/docs/pretrained models.html
6https://pytorch.org/dynamic quantization bert tutorial.html
7https://github.com/facebookresearch/fastText/crawl-vectors.md

https://huggingface.co/models
https://www.sbert.net/docs/pretrained_models.html
https://pytorch.org/tutorials/intermediate/dynamic_quantization_bert_tutorial.html
https://github.com/facebookresearch/fastText/blob/master/docs/crawl-vectors.md


539

FLAIR is a LSTM based pretrained character
language model (Hochreiter and Schmidhuber,
1997), trained to produce a novel type of
word embedding also known as contextual
string embeddings. It is trained without any
explicit notion of words and hence can represent
even out-of-vocabulary (OOV) words similar
to FASTTEXT. In our experiments, we use
word representations concatenated from their
news-forward and news-backward models leading
to 4096-dimensional vectors.8

ELMO is a deep contextualized bidirectional
word representation produced by pretrained
LSTMs. In our experiments, we use the base model
and concatenate all three ELMo layers leading to
3072-dimensional vectors.9

We compare all the above neural models with
two non-neural baselines which are popularly
adopted for the task at hand– (1) TFIDF vectorizer10

and (2) BM25, both using word & character
n-grams upto 5-gram.

For all models except BM25, we use cosine
similarity as the scoring function. For every
pretrained model, we use mean pooled
representation of all (sub-)words in a given
entity text as its final representation.11

3 Datasets

We utilize both in-house and publicly available
corpora to curate datasets in English for the
Entity Linking task– MindMeld Blueprints
dataset12(MM BP) along with word and
character level misspelled versions of this
data (MM BP-WORD and MM BP-CHAR),
re-purposed open-domain QA datasets like
ComplexWebQuestions (COMPLWQ) (Talmor and
Berant, 2018) and MKQA (MKQA) (Longpre
et al., 2020), acronym identification dataset
(ACRI) (Veyseh et al., 2020), and an in-house
dataset of ASR mis-transcriptions for person
names (ASR-MIS). More details on the dataset
curation process is provided in Appendix A.

To probe model behaviours further, we manually
annotate 1.3K queries pooled from all of these

8https://github.com/flairNLP/flair/FLAIR EMBEDDINGS.md
9https://github.com/allenai/bilm-tf

10https://scikit-learn.org/sklearn-TFIDF
11Different pretrained models have different tokenization

strategies and we leave any analysis on the effect of
tokenization to future work.

12https://github.com/CiscoDevNet/mindmeld-blueprints

datasets into our 5 predefined categories as
follows (with their sample sizes) – SEMANTIC

(#294), SYNTACTIC (#408), SHORT-FORMS (#310),
NUMERALS (#125) and PHONETICS (#200).
Examples from these sets are presented in Figure 1.

We use Precision@1 (P@1) and Precision@5
(P@5) as our benchmarking metrics and conduct
all our experiments using the publicly available
MindMeld framework13. Unless otherwise stated,
we do not include any aliases alongside canonical
titles for matching KB entries and utilize all known
aliases as our test queries. We disregard any
canonical descriptions as they are not always
available and procuring them may have significant
annotation costs.

4 Results & Analysis

Table 1 present the results of different models
across our curated datasets. We observe that on
average, Type-I & Type-II models perform poorly
compared to the baselines by atleast 30% P@1.
However, Type-III & Type-IV models, fine-tuned
to find similar sentence pairs, perform superior to
our baselines by 5-13%, showcasing the usefulness
of such tuning strategies even to short texts. We
further observe that the parameter-reduced models
generally perform better than the base models.
Almost all PTMs perform poorly on abbreviations
and also fail to beat the BM25 baseline on the
phonetic matching dataset. While we believe that
these two datasets are quite challenging to the
PTMs as their training processes do not include
any related objectives, the superior performance of
Type-III models compared to Type-I and Type-II is
quite encouraging. On misspelled versions of the
datasets, Type-III & Type-IV models still perform
better than others. However, their precision falls
short by at least 10% absolute indicating scope for
improvement.

4.1 Qualitative analysis

Figure 2 shows the performance of different models
on the 5 different categories of data without and
with aliases in the KB. We perform a manual
inspection of the results across the 5 categories
with 3 different models: baseline BM25 model,
Type-I bert-base-cased (BERT) and Type-IV
all-mpnet-base-v2-quantized (MPNET-Q).

13https://github.com/cisco/mindmeld

https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/FLAIR_EMBEDDINGS.md
https://github.com/allenai/bilm-tf
https://tinyurl.com/sklearn-TFIDF
https://github.com/CiscoDevNet/mindmeld-blueprints
https://github.com/cisco/mindmeld
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Results for Entity Linking (Precision@1 / Precision@5)

MM BP COMPLWQ MKQA ACRI ASR-MIS Avg. MM BP-WORD MM BP-CHAR
before after before after

Baselines

BM25 49.5 / 52.6 55.1 / 66.0 54.2 / 59.6 1.1 / 1.5 52.3 / 66.0 42.4 / 49.2 41.9 / 54.9 33.5 / 41.0 46.5 / 60.8 37.6 / 48.9
TFIDF 66.7 / 88.3 55.7 / 69.9 67.3 / 84.0 1.0 / 2.1 39.4 / 66.3 46.0 / 62.1 41.1 / 87.5 35.3 / 86.3 43.3 / 87.6 36.2 / 87.7
FLAIR 44.1 / 81.7 32.8 / 40.2 19.7 / 23.8 0.1 / 0.3 12.9 / 20 21.9 / 33.2 17.1 / 81.9 11.4 / 79.4 20.4 / 82.3 12.1 / 75.3
FASTTEXT 60.9 / 89.8 37.1 / 47.9 24.4 / 30.7 6.0 / 11.5 4.0 / 7.4 26.5 / 37.5 26.0 / 87.4 13.5 / 82.4 29.4 / 88.7 13.5 / 76.1
ELMO 57.7 / 84.6 46.6 / 58.3 26.6 / 32.6 1.1 / 1.9 6.4 / 10.4 27.7 / 37.6 17.5 / 86.3 10.4 / 81.5 21.6 / 83.3 10.9 / 75.1

Type-I
bert-base-cased 45.9 / 79.4 40.2 / 49.2 27.2 / 34.3 0.6 / 1.2 5.7 / 8.9 23.9 / 34.6 15.4 / 82.0 8.3 / 75.8 18.9 / 78.2 9.6 / 73.7
roberta-base 59.0 / 76.7 43.9 / 40.4 38.5 / 30.7 1.7 / 0.9 13.1 / 9.3 31.2 / 31.6 27.4 / 78.8 13.5 / 75.3 29.4 / 77.1 17.2 / 72.3
mpnet-base 31.1 / 74.3 25.2 / 30.1 21.4 / 23.0 0.4 / 0.6 12.3 / 14.0 18.1 / 28.4 21.9 / 77.6 7.1 / 73.1 22.2 / 74.2 8.3 / 69.2

Type-II

albert-base-v2 39.1 / 77.8 22.9 / 28.5 17.4 / 19.2 0.1 / 0.3 5.8 / 7.8 17.1 / 26.7 18.2 / 79.9 6.6 / 74.4 18.1 / 78.3 7.0 / 71.7
distilbert-base-cased 52.8 / 81.1 29.5 / 33.3 37.7 / 41.0 0.6 / 0.7 6.5 / 9.5 25.4 / 33.1 15.4 / 83.9 9.9 / 74.6 19.0 / 80.4 11.1 / 72.8
distilroberta-base 64.6 / 77.7 39.6 / 31.9 36.1 / 26.5 1.5 / 0.7 10.6 / 6.5 30.5 / 28.7 25.0 / 80.8 14.0 / 74.2 26.2 / 76.9 16.3 / 73.3
MiniLM-L6-uncased 57.5 / 82.7 33.7 / 38.0 36.8 / 38.9 0.5 / 0.8 16.9 / 18.3 29.1 / 35.8 29.5 / 85.6 9.8 / 75.6 30.6 / 81.4 11.4 / 73.8

Type-III
all-distilroberta-v1 72.3 / 91.8 62.5 / 72.1 59.9 / 76.4 11.2 / 23.3 42.4 / 62.6 49.7 / 65.2 42.2 / 91.7 24.2 / 87.3 44.3 / 91.4 32.2 / 87.5
all-mpnet-base-v2 75.8 / 91.4 62.3 / 72.1 57.6 / 73.3 6.0 / 11.4 43.6 / 57.5 49.1 / 61.1 44.8 / 92.4 21.6 / 85.4 46.3 / 90.9 27.5 / 86.3
all-MiniLM-L6-v2 74.6 / 91.7 62.0 / 71.8 68.2 / 80.1 4.7 / 8.2 44.9 / 59.2 50.9 / 62.2 45.5 / 91.4 21.5 / 82.9 47.5 / 92.0 27.4 / 84.8

Type-IV all-mpnet-base-v2 (Q) 79.4 / 93.3 63.2 / 72.4 75.5 / 84.1 5.5 / 10.6 43.5 / 59.5 53.4 / 64.0 45.5 / 92.4 22.1 / 85.4 46.7 /92.5 28.4 / 85.8
all-MiniLM-L6-v2 (Q) 73.0 / 91.0 61.2 / 70.9 67.3 / 79.6 4.1 / 7.4 42.3 / 58.1 49.6 / 61.4 44.8 / 91.3 20.9 / 83.0 46.8 / 90.9 26.5 / 82.3

Table 1: Evaluation of different pretrained transformer models across different datasets (§ 3). The Avg. column
reports mean precision across different datasets. Marked in bold are the best scores & in underline are second best.

Figure 2: EL results on annotated subset of 1.3K test
queries, annotated across 5 matching criterion. For each
model, the first bar corresponds to the scenario with KBs
containing only canonical names whereas for the second,
KBs contain aliases in addition for disambiguating test
queries.

4.1.1 Syntactic Matches
Syntactic matches refer to cases when the query
and its matching canonical form have slight textual
variations or spelling errors. The baseline TFIDF
and BM25 models are well equipped to handle such
differences and perform on-par and in some cases,
better than the other models. Between the BERT
and MPNET-Q models, the latter handles syntactic
differences better than the former by favouring
more word overlaps.

Query: John Jr.
BM25: John F. Kennedy Jr.
BERT: Michael Joseph Jackson, Jr.
MPNET-Q: John Warner

Query: mammoth pizza
BM25: Wham, Bam, Thank You Mammoth
BERT: Pizzawich
MPNET-Q: Fresco Pizza

Query: Hindi
BM25: Hindi Language

BERT: India
MPNET-Q: Hindi Language

4.1.2 Semantic Matches
The baseline BM25 system relies heavily on aliases
to handle queries that are semantically equivalent
to one of the canonical names in the KB. In their
absence, the model performs poorly in this category.
In contrast, the transformer models are better suited
to handle these queries. We notice 2 trends in the
BERT and MPNET-Q models:
While BERT tends to predict related words, they
are not always semantically equivalent.

Query: Instrumentalist
BERT: Singer
MPNET-Q: Musician

Query: most recently released
BERT: popular
MPNET-Q: latest

Query: totalled
BERT: count
MPNET-Q: sum

In addition, the BERT system tends to rank
antonyms higher.

Query: min
BERT: highest
MPNET-Q: lowest

Query: hilarious
BERT: erotic
MPNET-Q: comedy

Query: resigned
BERT: active
MPNET-Q: voluntarily terminated

4.1.3 Abbreviations & Short Forms
All models perform poorly on abbreviations and
short forms. BM25 relies on character n-grams to
match shortened sub-strings of entities, but fails on
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acronyms. MPNET-Q is able to identify acronyms
of popular entities like universities, countries, etc.,
perhaps as a result of the fine-tuning phase.

Query: PSU Football
BM25: Football
BERT: UD Arena
MPNET-Q: Penn State Nittany Lions

football

Query: Mla
BM25: Mlabri Language
BERT: lo
MPNET-Q: Mlabri Language

Query: USSR
BM25: (no result)
BERT: Czechoslovakia
MPNET-Q: Soviet Union

4.1.4 Numeric Matches
Among the three systems, BERT performs the
worst with numeric entities. It does not handle
different numeric representations of the same
entity well, leading to random predictions. Fuzzy
character matching ensures that BM25 system
handles different formats well as long as most of
the characters match. MPNET-Q model handles
changes in numeric formats the best even when
compared against its full model, with P@1 of 92.8.

Query: 90’s
BM25: 1990s
BERT: 2010s
MPNET-Q: 1990s

Query: 5th Avenue
BM25: 12th Avenue
BERT: 12th Avenue
MPNET-Q: 45 Fifth Avenue

Query: 1775 April 19
BM25: april 1986
BERT: 1875-09
MPNET-Q: 1775-04-19

4.1.5 Phonetic Matches
Often, ASR systems mis-transcribe uncommon
words into more common, phonetically similar
words. This category tests whether the models
are robust to such errors. While the performance
of all the models are lacking, BM25 qualitatively
provides explainable results due to its reliance on
textual similarities when compared to predictions
of the PTMs. Typically, EL systems are evaluated
on queries that test the models’ abilities to match
the 4 categories mentioned above. Given the
popularity of conversational agents with a speech
interface, probing EL models for their phonetic
matching capabilities is important.

Query: this loud (Liz Laub)
BM25: Cloud Hu
BERT: Kevin Upright
MPNET-Q: Riley Rant

Query: Yale sushi (Xiaoxue Shi)
BM25: Sakshi Alekar
BERT: Joshua Frattarola
MPNET-Q: Sammy Su

5 Conclusion

Given the success of PTMs for various NLP
applications (Rogers et al., 2020), we evaluate the
ability of these models to understand short spans of
text for unsupervised entity linking in task-oriented
dialog systems by curating a large dataset and
comparing their results against traditional n-gram
systems. We further analyze the performance
of these models across 5 different characteristics-
syntactic, semantic, abbreviations & short-forms,
numeric and phonetic matches. Our results
demonstrate that these models, when fine-tuned
on a semantic similarity task, comprehend
syntactic and semantic differences in short phrases
better than their other variants. However,
their performance is lacking - particularly for
abbreviations and queries with speech recognition
errors - with the best performing models averaging
at 53.4% P@1 and 64.0% P@5 across the different
datasets. For future work, with the goal of creating
a generic model for the unsupervised EL task, we
plan to improve these models through task-adaptive
fine-tuning techniques with our curated datasets.
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