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Abstract

Attacks on deep learning models are often dif-
ficult to identify and therefore are difficult to
protect against. This problem is exacerbated
by the use of public datasets that typically are
not manually inspected before use. In this pa-
per, we offer a solution to this vulnerability
by using, during testing, random perturbations
such as spelling correction if necessary, sub-
stitution by random synonym, or simply drop-
ping the word. These perturbations are applied
to random words in random sentences to de-
fend NLP models against adversarial attacks.
Our Random Perturbations Defense and In-
creased Randomness Defense methods are suc-
cessful in returning attacked models to similar
accuracy of models before attacks. The origi-
nal accuracy of the model used in this work is
80% for sentiment classification. After under-
going attacks, the accuracy drops to accuracy
between 0% and 44%. After applying our de-
fense methods, the accuracy of the model is
returned to the original accuracy within statis-
tical significance.

1 Introduction

Deep learning models have excelled in solving dif-
ficult problems in machine learning, including Nat-
ural Language Processing (NLP) tasks like text
classification (Zhang et al., 2015; Kim, 2014) and
language understanding (Devlin et al., 2019). How-
ever, research has discovered that inputs can be
modified to cause trained deep learning models to
produce incorrect results and predictions (Szegedy
et al., 2014). Models in computer vision are vul-
nerable to these attacks (Goodfellow et al., 2015),
and studies have found that models in the NLP do-
main are also vulnerable (Kuleshov et al., 2018;
Gao et al., 2018; Garg and Ramakrishnan, 2020).
One use of these adversarial attacks is to test and
verify the robustness of NLP models.

With the potential for adversarial attacks, there

comes the need for prevention and protection.
There are three main categories of defense meth-
ods: identification, reconstruction, and prevention
(Goldblum et al., 2020). Identification methods rely
on detecting either poisoned data or the poisoned
model (Chen et al., 2019). While reconstruction
methods actively work to repair the model after
training (Zhu et al., 2020), prevention methods rely
on input preprocessing, majority voting, and other
techniques to mitigate adversarial attacks (Gold-
blum et al., 2020; Alshemali and Kalita, 2020).
Although most NLP adversarial attacks are easily
detectable, some new forms of adversarial attacks
have become more difficult to detect like concealed
data poisoning attacks (Wallace et al., 2021) and
backdoor attacks (Chen et al., 2021). The use of
these concealed and hard-to-detect attacks has re-
vealed new vulnerabilities in NLP models. Consid-
ering the increasing difficulty in detecting attacks,
a more prudent approach would be to work on neu-
tralizing the effect of potential attacks rather than
solely relying on detection. Here we offer a novel
and highly effective defense solution that prepro-
cesses inputs by random perturbations to mitigate
potential hard-to-detect attacks.

2 Related Work

The work in this paper relates to the attack on NLP
models using the TextAttack library (Morris et al.,
2020), the current state-of-the-art defense methods
for NLP models, and using randomness against ad-
versarial attacks.

The TextAttack library and the associated
GitHub repository (Morris et al., 2020) represent
current efforts to centralize attack and data augmen-
tation methods for the NLP community. The library
supports attack creation through the use of four
components: a goal function, a search method, a
transformation, and constraints. An attack method
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uses these components to perturb the input to fulfill
the given goal function while complying with the
constraints and the search method finds transfor-
mations that produce adversarial examples. The
library contains a total of 16 attack model recipes
based on literature. The work reported in this paper
pertains to the 14 ready-to-use classification attack
recipes from the TextAttack library. We believe
that successful defense against such attacks will
provide guidelines for the general defense of deep
learning NLP classification models.

There are many methods to defend NLP mod-
els against adversarial attacks, including input pre-
processing. Input preprocessing defenses require
inserting a step between the input and the given
model that aims to mitigate any potential attacks.
Alshemali and Kalita (2020) use an input prepro-
cessing defense that employs synonym set averages
and majority voting to mitigate synonym substi-
tution attacks. Their method is deployed before
the input is run through a trained model. Another
defense against synonym substitution attacks, Ran-
dom Substitution Encoding (RSE) encodes ran-
domly selected synonyms to train a robust deep
neural network (Wang and Wang, 2020). The RSE
defense occurs between the input and the embed-
ding layer.

Randomness has been deployed in computer vi-
sion defense methods against adversarial attacks.
Levine and Feizi (2020) use random ablations to
defend against adversarial attacks on computer vi-
sion classification models. Their defense is based
on a random-smoothing technique that creates cer-
tifiably robust classification. Levine and Feizi de-
fend against sparse adversarial attacks that perturb
a small number of features in the input images.
They found their random ablation defense method
to produce certifiably robust results on the MNIST,
CIFAR-10, and ImageNet datasets.

3 Input Perturbation Approach &
Adversarial Defense

The use and availability of successful adversarial
attack methods reveal the need for defense methods
that do not rely on detection and leverage intuitions
gathered from popular attack methods to protect
NLP models. In particular, we present a simple
but highly effective defense against attacks on deep
learning models that perform sentiment analysis.

The approach taken is based on certain assump-
tions about the sentiment analysis task. Given a

short piece of text, we believe that a human does
not need to necessarily analyze every sentence care-
fully to get a grasp on the sentiment. Our hypoth-
esis is that humans can ascertain the expressed
sentiment in a text by paying attention to a few
key sentences while ignoring or skimming over the
others. This thought experiment led us to make
intermediate classifications on individual sentences
of a review in the IMDB dataset and then combin-
ing the results for a collective final decision.

This process was refined further by considering
how attackers actually perturb data. Usually, they
select a small number of characters or tokens within
the original data to perturb. To mitigate those per-
turbations, we choose to perform our own random
perturbations. Because the attacking perturbations
could occur anywhere within the original data, and
we do not necessarily know where they are, it is
prudent to randomly select tokens for us to perturb.
This randomization has the potential to negate the
effect the attacking perturbations have on the over-
all sentiment analysis.

We wish to highlight the importance of random-
ness in our approach and in possible future ap-
proaches for defenses against adversarial attacks.
Positive impact of randomness in classification
tasks with featured datasets can be found in work
using Random Forests (Breiman, 2001). Random
Forests have been useful in many domains to make
predictions, including disease prediction (Lebedev
et al., 2014; Corradi et al., 2018; Paul et al., 2017;
Khalilia et al., 2011) and stock market price pre-
diction (kha, 2019; Ballings et al., 2015; Nti et al.,
2019). The use of randomness has made these
methods of prediction robust and useful. We have
chosen to harness the capability of randomness in
defense of adversarial attacks in NLP. We demon-
strate that the impact randomness has on our de-
fense method is highly positive and its use in de-
fense against adversarial attacks of neural networks
should be explored further. We present two algo-
rithms below—first with two levels of randomness,
and the second with three.

3.1 Random Perturbations Defense

Our algorithm is based on random processes: the
randomization of perturbations of the sentences of
a review R followed by majority voting to decide
the final prediction for sentiment analysis. We con-
sider each review R to be represented as a set R
= {r1, r2, ..., ri, ..., rN} of sentences ri. Once R
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is broken down into its sentences (Line 1 of Al-
gorithm 1), we create l replicates of sentence ri:
{r̂i1, ..., r̂ij , ..., r̂il}. Each replicate r̂ij has k num-
ber of perturbations made to it. Each perturbation
is determined randomly (Lines 4-7).

In Line 5, a random token t where t ∈ r̂ij is se-
lected, and in Line 6, a random perturbation is per-
formed on t. This random perturbation could be a
spellcheck with correction if necessary, a synonym
substitution, or dropping the word. These perturba-
tions were selected as they are likely to be the same
operations an attacker performs, and they may po-
tentially even counter the effect of a large portion
of perturbations in attacked data. A spellcheck is
performed using SpellChecker which is based in
Pure Python Spell Checking. If a spellcheck is per-
formed on a token without spelling error, then the
token will not be changed. The synonym substi-
tution is also performed in a random manner. A
synonym set for token t is found using the Word-
Net synsets (Fellbaum, 1998). Once a synonym set
is found, it is processed to remove any duplicate
synonyms or copies of token t. Once the synonym
set is processed, a random synonym from the set
is chosen to replace token t in r̂ij . A drop word
is when the randomly selected token t is removed
from the replicate altogether and replaced with a
space. Conceptually speaking, the random pertur-
bations may be chosen from an extended set of
allowed changes.

Once l replicates have been created for the given
sentence ri and perturbations made to tokens, they
are put together to create replicate review set R̂
(Line 8). Then, in Line 9, each r̂ij ∈ R̂ is classified
individually as f(r̂ij) using classifier f(). After
each replicate has been classified, we perform ma-
jority voting with function V (). We call the final
prediction that this majority voting results in as
f̂(R). This function can be thought of as follows
(Line 12):

f̂(R) = V ({f(r̂ij) | r̂ij ∈ R̂}).

The goal is to maximize the probability that
f̂(R) = f(R) where f(R) is the classification of
the original review R. In this paper, this maximiza-
tion is done through tuning of the parameters l and
k. The certainty T for f̂(R) is also determined for
each calculation of f̂(R). The certainty represents
how sure the algorithm is of the final prediction it
has made. In general, the certainty T is determined

as follows (Lines 13-17):

T = count(f(r̂ij) == f̂(R)) / N ∗ l.

The full visual representation of this algorithm can
be seen in Algorithm 1 and in Figure 1.

Figure 1: Visual representation of Algorithm 1.

3.2 Increasing Randomness

Our first algorithm represented in Algorithm 1 and
in Figure 1 shows randomness in two key points
in the decision making process for making the per-
turbations. This is the main source of randomness
for our first algorithm. In our next algorithm, we
introduce more randomness into our ideas from our
original algorithm to create a modified algorithm.
This more random algorithm is visually represented
in Figure 2 and presented in Algorithm 2. This new
defense method adds a third random process before
making random corrections to a sentence. Ran-
domly chosen ri from R are randomly corrected
to create replicate r̂j which is placed in R̂ (Lines
2-6). The original sentence ri is placed back into
R and a new sentence is randomly selected; this is
random selection with replacement. This process
of random selection is repeated until there is a total
of k replicates r̂j in R̂. This algorithm follows the
spirit of Random Forests more closely than the first
algorithm.

In Line 2, we randomly select a sentence ri from
R. This is one of the main differences between Al-
gorithm 1 for Random Perturbations Defense and
Algorithm 2 for Increased Randomness Defense.
That extra random element allows for more ran-
domization in the corrections we make to create
replicates r̂j . In Lines 3 and 4, the process is prac-
tically identical to Lines 5 and 6 in Algorithm 1.
The only difference is that only one random cor-
rection is being made to get the final replicate r̂j
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Algorithm 1: Random Perturbation De-
fense
Result: f̂(R), the classification of R after

defense
Input :Review R = {r1, r2, ..., rN}

where ri is a sentence
Parameters :l = number of copies made of

each r, k = number of
corrections made per ri,
C = {c1, c2, ..., ck}, set of
corrections

1 R̂ = ∅
2 for ri ε R do
3 for j = 1 to l do
4 r̂ij = ri
5 for k do
6 Select random token t where

t ε r̂ij
7 Perform random correction

c ε C to t
8 end
9 Append r̂ij to R̂

10 Classify: f(rij)
11 end
12 end
13 f̂(R) = V ({f(r̂ij) | r̂ijεR̂}), V () is a

voting function
14 if f(R̂) == negative then
15 T = count(f(r̂ij) ==

negative) / N ∗ l
16 else
17 T = count(f(r̂ij == positive) / N ∗ l
18 end

for Increased Randomness Defense, while Random
Perturbations Defense makes k random corrections
to get the final replicate r̂ij .

3.3 Overcoming the Attacks

We define an attack as making random perturba-
tions to an input, specifically for this work, a review
R. We assume a uniform distribution for random-
ness. We interpret these random changes to occur
throughout each review R with probability 1

W or
1

N∗m , where W is the number of words in R, N
is the number of sentences in R, and m is the av-
erage length of each sentence in R. We refer to
this probability that an attack makes changes to the
review text as Pattack where a is the total number

Algorithm 2: Increased Randomness De-
fense
Result: f̂(R), the classification of R after

defense
Input :Review R = {r1, r2, ..., rN}

where ri is a sentence
Parameters :k = number of replicates r̂j

made for R̂,
C = {c1, c2, ..., ck}, set of
corrections

1 R̂ = ∅, P = []
2 for j = 1 to k do
3 Randomly select ri ∈ R
4 Select random token t where t ∈ ri
5 Perform random correction c ε C to t to

get r̂j
6 Append r̂j to R̂
7 end
8 for j = 1 to k do
9 Classify: f(r̂j)

10 Append results to predictions array P
11 end
12 f̂(R) = V (P ), V () is a voting function
13 if f(R̂) == negative then
14 T = count(f(r̂ij) ==

negative) / N ∗ l
15 else
16 T = count(f(r̂ij == positive) / N ∗ l
17 end

of perturbations made by the attack:

Pattack =
a

W
=

a

N ∗m
.

If each random perturbation performed by the at-
tack has a probability of 1

N∗m , then our defense
method needs to overcome that probability to over-
come the attack.

Our two defense methods, Random Perturba-
tions Defense and Increased Randomness Defense,
both offer ways to overcome the attack, i.e., undo
the attack change, with a probability greater than

a
N∗m .

Proposition 1 Random Perturbations Defense
overcomes an attack that makes a small number of
random perturbations to a review document by hav-
ing a probability greater than the attack probability
Pattack.

Our Random Perturbations Defense picks a random
token t from each sentence ri ∈ R and repeats k
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Figure 2: Visual representation of Algorithm 2 that in-
cludes more randomness.

times to get a final replicate r̂ij . This gives an
initial probability that the defense picks a certain
token from the text, or PRPD, to be:

PRPD =
N ∗ l ∗m!

k!(m− k)!
.

We find this probability from choosing k tokens
from ri with length m which breaks down to a bi-
nomial coefficient

(
m
k

)
= m!

k!(n−k)! . This is then re-
peated l times for each sentence inRwhich equates
to that initial probability being multiplied by l and
N . After doing some rearranging of the probabil-
ities, we can see that for certain values of l and k
where k < m:

PRPD = N2m2l(m−1)(m−2)...(m−k+1)
k! > a.

PRPD now is the total probability that the de-
fense makes random changes to lN tokens. We
know that W = N ∗ m, that a =< W for the
attack methods we are testing against, and that
k should be selected so that k << W . This
means that we know W 2 > a, W 2 > k!, and
l(m−1)(m−2)...(m−k+1) > 0 for the selected
attack methods, which gives us the necessary con-
ditions to assert that PRPD > Pattack. Therefore,
our Random Perturbations Defense will overcome
the Pattack and should overcome the given attack
method as stated in Proposition 1.

Proposition 2 Increased Randomness Defense
overcomes an attack that makes a small number of
random perturbations to a review document by hav-
ing a probability greater than the attack probability
Pattack.

Our Increased Randomness Defense first chooses a
random sentence ri which is selected with proba-
bility 1

N . Next, we choose a random word within

that sentence which is selected with probability 1
m .

This gives us a probability for changes as follows:

PIRD =
1

N
∗ 1

m
=

1

N ∗m
.

We can see that PIRD ∗ a = Pattack. We need to
overcome the attack probability and we do this in
two ways: we either find the attack perturbation
by chance and reverse it, or we counterbalance
the attack perturbation with enough replicates r̂j .
With each replicate r̂j created, we increase our
probability PIRD so that our final probability for
our Increased Randomness Defense is as follows:

PIRD =
k

N ∗m
.

As long as our selected parameter value for k is
greater than the number of perturbation changes
made by the attack method a, then PIRD > Pattack

and our Increased Randomness Defense method
will overcome the given attack method as stated in
Proposition 2.

4 Experiments & Results

4.1 Dataset & Models
We used the IMDB dataset (Maas et al., 2011) for
our experiments. Each attack was used to perturb
100 reviews from the dataset. The 100 reviews
were selected randomly from the dataset with a
mix of positive and negative sentiments. Note that
the Kuleshov attack data (Kuleshov et al., 2018)
only had 77 reviews.

The models used in this research are from the
TextAttack (Morris et al., 2020) and HuggingFace
(Wolf et al., 2020) libraries. These libraries of-
fer many different models to use for both attacked
data generation and general NLP tasks. For this re-
search, we used the bert-base-uncased-imdb model
that resides in both the TextAttack and Hugging-
Face libraries. This model was fine-tuned and
trained with a cross-entropy loss function. This
model was used with the API functions of the Tex-
tAttack library to create the attacked reviews from
each of the attacks we used. We chose this model
because BERT models are useful in many NLP
tasks and this model specifically was fine-tuned for
text classification and was trained on the dataset
we wanted to use for these experiments.

The HuggingFace library was also used in the
sentiment-analysis classification of the attacked
data and the defense method. We used the Hugging-
Face transformer pipeline for sentiment-analysis
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to test our defense method. This pipeline returns
either “negative” or “positive” to classify the senti-
ment of the input text and a score for that predic-
tion (Wolf et al., 2020). This pipeline was used to
classify each replicate r̂ij in our algorithm and is
represented as the function f().

4.2 Experiments

The attacks from the TextAttack library were used
to generate attack data. Attack data was cre-
ated from 7 different models from the library:
BERT-based Adversarial Examples (BAE) (Garg
and Ramakrishnan, 2020), DeepWordBug (Gao
et al., 2018), FasterGeneticAlgorithm (Jia et al.,
2019), Kuleshov (Kuleshov et al., 2018), Probabil-
ity Weighted Word Saliency (PWWS) (Ren et al.,
2019), TextBugger (Li et al., 2019), and TextFooler
(Jin et al., 2020) (Morris et al., 2020). Each of
these attacks were used to create 100 perturbed sen-
tences from the IMDB dataset (Maas et al., 2011).
These attacks were chosen from the 14 classifica-
tion model attacks because they represent different
kinds of attack methods, including misspelling, syn-
onym substitution, and antonym substitution.

Each attack method used for our experiments
has a slightly different approach to perturbing the
input data. Each perturbation method is unique
and follows a specific distinct pattern and exam-
ples of these can be found in Figure 3. The BAE
attack determines the most important token in the
input and replaces that token with the most similar
replacement using a Universal Sentence Encoder.
This helps the perturbed data remain semantically
similar to the original input (Garg and Ramakrish-
nan, 2020). The DeepWordBug attack identifies the
most important tokens in the input and performs
character-level perturbations on the highest-ranked
tokens while minimizing edit distance to create
a change in the original classification (Gao et al.,
2018). The FasterGeneticAlgorithm perturbs ev-
ery token in a given input while maintaining the
original sentiment. It chooses each perturbation
carefully to create the most effective adversarial
example (Jia et al., 2019). The Kuleshov attack is
a synonym substitution attack that replaces 10% -
30% of the tokens in the input with synonyms that
do not change the meaning of the input (Kuleshov
et al., 2018).

The PWWS attack determines the word saliency
score of each token and performs synonym substi-
tutions based on the word saliency score and the

maximum effectiveness of each substitution (Ren
et al., 2019). The TextBugger attack determines
the important sentences from the input first. It then
determines the important words in those sentences
and generates 5 possible “bugs” through different
perturbation methods: insert, swap, delete, sub-c
(visual similarity substitution), sub-w (semantic
similarity substitution). The attack will implement
whichever of these 5 generated bugs is the most
effective in changing the original prediction (Li
et al., 2019). Finally, the TextFooler attack deter-
mines the most important tokens in the input using
synonym extraction, part-of-speech checking, and
semantic similarity checking. If there are multiple
canididates to substitute with, the most semanti-
cally similar substitution will be chosen and will
replace the original token in the input (Jin et al.,
2020).

Figure 3: Example of what original data looks like
and how the BAE (Garg and Ramakrishnan, 2020) and
TextBugger (Li et al., 2019) attack methods perturb
data. The BAE attack method uses semantic similarity,
while the Textbugger attack method uses visual similar-
ity.

After each attack had corresponding attack
data, the TextAttack functions gave the results for
the success of the attack. The accuracy of the
sentiment-analysis task under attack, without the
defense method, is reported in the first column in
Table 1. Each attack caused a large decrease in
the accuracy of the model. The model began with
an average accuracy of 80% for the IMDB dataset.
Once the attack data was created and the accuracy
under attack was reported, the attack data was run
through our Random Perturbations and Increased
Randomness defense methods. All of the exper-
iments were run on Google Colaboratory using
TPUs and the Natural Language Toolkit (Loper
and Bird, 2002).

4.3 Results
We began by testing on the HuggingFace sentiment
analysis pipeline with the original IMDB dataset.
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This gave an original accuracy of 80%. This per-
centage represents the goal for our defense method
accuracy as we aim to return the model to its origi-
nal accuracy, or higher. The accuracy under each
attack is listed in Table 1 in the first column. These
percentages show how effective each attack is at
causing misclassification for the sentiment analy-
sis task. The attacks range in effectiveness with
PWWS (Ren et al., 2019) and Kuleshov (Kuleshov
et al., 2018) with the most successful attacks at 0%
accuracy under attack and FasterGeneticAlgorithm
(Jia et al., 2019) with the least successful attack at
44% accuracy under attack, which is still almost a
40% drop in accuracy.

Attack w/o Defense w/ Defense
BAE 33% 80.80%±1.47

DeepWordBug 34% 76.60%±1.85
FasterGeneticAlgo 44% 82.20%±1.72

Kuleshov* 0% 60.00%±2.24
PWWS 0% 81.80%±1.17

TextBugger 6% 79.20%±2.32
TextFooler 1% 83.20%±2.48

Table 1: Accuracy for each of the attack methods under
attack, and under attack with the defense method from
Algorithm 1 deployed with l = 7 and k = 5. The
accuracy prior to attack is 80%.

4.3.1 Random Perturbations Defense
For the Random Perturbations Defense to be suc-
cessful, it is necessary to obtain values of the two
parameters, l and k. Each attack was tested against
our Random Perturbations Defense 5 times. The ac-
curacy was averaged for all 5 tests and the standard
deviation was calculated for the given mean. The
mean accuracy with standard deviation is presented
for each attack in the second column of Table 1.
The results presented are for l = 7 and k = 5.
These parameters were chosen after testing found
greater values of l and k resulted in a longer run
time and too many changes made to the original
input; with lower values for l and k, the model
had lower accuracy and not enough perturbations
to outweigh any potential adversarial attacks. The
values behind this logic can be seen in Table 2.

The defense method was able to return the model
to original accuracy within statistical significance
while under attack for most of the attacks with
the exception of the Kuleshov method (Kuleshov
et al., 2018). The accuracy for the other attacks
all were returned to the original accuracy ranging

Attack l k Accuracy w/ Defense
BAE 5 2 55%
BAE 10 5 50%
BAE 7 5 79%

Table 2: This table explains values of l and k

from 76.00% to 83.20% accuracy with the Ran-
dom Perturbations defense deployed. This shows
that our defense method is successful at mitigat-
ing most potential adversarial attacks on sentiment
classification models. Our defense method was
able to increase the accuracy of model while un-
der attack for the FasterGeneticAlgorithm, PWWS,
and TextFooler. These three attack methods with
our defense achieved accuracy that was higher than
the original accuracy with statistical significance.

4.3.2 Increased Randomness Defense
The Increased Randomness Defense was also tested
on all seven of the attacks. Each attack was tested
against this defense 5 times. The results for these
experiments can be seen in Table 4. There were
tests done to determine what the proper value for
k should be. These tests were performed on the
BAE (Garg and Ramakrishnan, 2020) attack and
the results can be found in Table 3. These tests
revealed that 40-45 replicates r̂j was ideal for each
R̂ with k = 41 being the final value used for the
tests on each attack. This defense method was more
efficient to use.

Attack k Accuracy w/ Defense
BAE 10 67%
BAE 20 76%
BAE 25 72%
BAE 30 76%
BAE 35 74%
BAE 40 82%
BAE 45 74%
BAE 41 77%

Table 3: This table shows the results for the tests for
different values of k for the increased randomness ex-
periments.

The runtime and the resources used for this
method were lower than the original random per-
turbations defense method with the runtime for
the Random Perturbations Defense being nearly 4
times longer than this increased random method.
A comparison of the two defense methods on the
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seven attacks tested can be seen in Figure 4. This
defense was successful in returning the model to
the original accuracy, within statistical significance,
for most of the attacks with the exception of the
Kuleshov attack (Kuleshov et al., 2018). A t-test
was performed to determine the statistical signifi-
cance of the difference in the defense method accu-
racy to the original accuracy.

Attack w/o Defense w/ Defense
BAE 33% 78.40%±3.14

DeepWordBug 34% 76.80%±2.64
FasterGeneticAlgo 44% 82.80%±2.48

Kuleshov* 0% 66.23%±4.65
PWWS 0% 79.20%±1.72

TextBugger 6% 77.00%±2.97
TextFooler 1% 80.20%±2.48

Table 4: Accuracy for increased randomness defense
from Algorithm 2 against each attack method with k =
41. The accuracy prior to attack is 80%.

Figure 4: Comparing the average accuracy of the Ran-
dom Perturbations Defense and the Increased Random-
ness Defense methods to the under attack accuracy
without defense on the seven attacks.

4.4 Comparison to Recent Defense Methods

Our defense methods are comparable to some re-
cent defense methods created for text classifica-
tion. Our defense method returns the model to
the original accuracy within statistical significance.
This is comparable to the work done by Zhou et al.
(2021) in their Dirichlet Neighborhood Ensemble
(DNE) defense method. They were able to bring
the model within 10% of the original accuracy for
CNN, LSTM, and BOW models for the IMDB
dataset. However, their work is only applicable to
synonym-substitution based attacks. Since our de-
fense methods apply equally well to seven attacks,

it is general and can be applied without determin-
ing the exact type of attack (assuming it is one of
the seven).

Another recent defense method, Synonym En-
coding Method (SEM), was tested on synonym-
substitution attacks on Word-CNN, LSTM, Bi-
LSTM and BERT models (Wang et al., 2021b).
This defense method was most successful on the
BERT model and was able to return to the original
accuracy within 3% for the IMDB dataset. Our
work is comparable to both DNE and SEM which
represent recent work in defending NLP models
against adversarial attacks and more specifically
synonym-substitution based attacks.

WordDP is another recent defense method for ad-
versarial attacks against NLP models (Wang et al.,
2021a). This defense method used Differential
Privacy (DP) to create certified robust text classifi-
cation models against word substitution adversarial
attacks. They tested their defense on the IMDB and
found that their WordDP method was successful at
raising the accuracy within 3% of the original clean
model. This method outperformed other defense
methods including DNE. This is similar to our de-
fense method, but they do not include whether these
results are statistically significant.

We also compare our defense methods, RPD and
IRD, against these recent defense methods on cost
and efficiency. Our RPD and IRD methods have
comparable time complexity of O(cn), where c
is the time it takes for classification and n is the
number of reviews. Each method has a similar con-
stant that represents the number of perturbations
and replicates made. We cannot directly compare
the time complexity of our defense methods with
the SEM, DNE, and WordDP methods. These re-
cent defense methods require specialized training
and/or encodings. Our RPD and IRD methods do
not require specialized training or encodings, so
they cannot be directly compared on time complex-
ity. This means that the comparison between our
methods and recent defense methods comes in the
form of specialized training vs. input preprocess-
ing. Training and developing new encodings tends
to be more time consuming and expensive than in-
put preprocessing methods that can occur during
the testing phases.

5 Conclusion

The work in this paper details a successful de-
fense method against adversarial attacks generated
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from the TextAttack library. These attack methods
use multiple different perturbation approaches to
change the predictions made by NLP models. Our
Random Perturbations Defense was successful in
mitigating 6 different attack methods. This defense
method returned the attacked models to their origi-
nal accuracy within statistical significance. Our sec-
ond method, Increased Randomness Defense, used
more randomization to create an equally success-
ful defense method that was 4 times more efficient
than our Random Perturbations Defense. Overall,
our defense methods are effective in mitigating a
range of NLP adversarial attacks, presenting evi-
dence for the effectiveness of randomness in NLP
defense methods. The work done here opens up
further study into the use of randomness in defense
of adversarial attacks for NLP models including
the use of these defense methods for multi-class
classification. This work also encourages a further
mathematical and theoretical explanation to the
benefits of randomness in defense of NLP models.
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