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Abstract
This paper applies contextualized word embed-
ding models to a long-standing problem in the
natural language parsing community, namely
prepositional phrase attachment. Following
past formulations of this problem, we use data
sets in which the attachment decision is both a
binary-valued choice as well as a multi-valued
choice. We present a deep learning architecture
that fine-tunes the output of a contextualized
word embedding model for the purpose of pre-
dicting attachment decisions. We present ex-
periments on two commonly used datasets that
outperform the previous best results, using only
the original training data and the unannotated
full sentence context.

1 Introduction

Prepositional phrase (PP) attachment is a sub-
problem of natural language parsing in which the
objective is to determine the likely attachment site
of the preposition. The attachment site should cor-
respond to the preferred semantic interpretation of
the sentence.

I bought a computer with a GPU

In the above example, the preposition with could
attach to bought or computer. The likely interpreta-
tion is that GPU is a sub-component of computer,
which implies an attachment to computer.

I bought a computer with bitcoin

In this example, the likely interpretation is that
bitcoin is a payment method, which implies an
attachment to bought.

PP attachment ambiguities are difficult to resolve
because the candidate attachment sites look equally
plausible from the perspective of natural language
syntax. Deciding the best attachment site for a
preposition often requires a semantic interpretation
of the words in the sentence.

2 Previous work

Early work on this task uses relationships between
head words of the phrases involved in the attach-
ment decision. Hindle and Rooth (1993) predict
attachments using co-occurrence statistics between
the preposition and the candidate heads, drawn
from an automatically built corpus of partial parses.
Ratnaparkhi et al. (1994); Brill and Resnik (1994);
Collins and Brooks (1995) use a wider variety of
machine learning techniques to learn the attach-
ment decision from annotated tuples of head words.

Later work uses a variety of external data sources
to help with the attachment decision. E.g., Stetina
and Nagao (1997) use features from WordNet
(Miller, 1995) while Olteanu and Moldovan (2005)
use features from FrameNet (Baker et al., 1998)
and co-occurrence statistics drawn from the World
Wide Web.

More recent work uses word embeddings and
neural models. Belinkov et al. (2014) explore a
number of neural composition architectures to com-
bine the embeddings from the head words, while
Dasigi et al. (2017) use the WordNet ontology to
create context-sensitive word embeddings. Yu et al.
(2016) use a scoring function on low-rank tensors,
created from a variety of PP attachment features,
while Madhyastha et al. (2017) use the tensor prod-
ucts of the word vectors in a multi-linear model.
Recently, Do and Rehbein (2020) present German
language PP attachment experiments using a neural
scoring model with a biaffine transformation.
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Field Example
Verb h1 made
Noun h2 paper
Preposition p for
Child noun n2 filters
Label N

Table 1: Example in RRR data set. h1 and h2 are the
verb and noun candidate attachment sites for p, respec-
tively.

Field Example
Candidate heads
h1 . . . hn

made trip compete

Preposition p for
Child noun n2 slots
Full sentence eventually , about 250 made

the trip to florida to compete
for the available slots .

Annotated label 3

Table 2: Example in BLBG data set with joined sentence.
h3, or "compete", is the annotated attachment site for
the preposition.

3 Data

In this work, we report results on the English-
language data sets from Ratnaparkhi et al. (1994)
and Belinkov et al. (2014), henceforth referred to
as the RRR and BLBG data sets, respectively. Both
datasets were extracted from the Penn Treebank
(Marcus et al., 1993).

Each example in the RRR data set1 consists of a
tuple (h1, h2, p, n2, L), where h1 is the candidate
verb head, h2 is the candidate noun head, p is the
preposition, n2 is the noun head child of the prepo-
sition, and L ∈ {N,V } is the label that indicates a
noun or verb attachment. We map {N,V } to {2, 1}
for consistency with the BLBG format, described
below.

Each example in the BLBG data set2 consists of
a tuple (h1 . . . hn, p, n2, L), in which h1 . . . hn are
a list of candidate noun and verb heads, p is the
preposition, n2 is the noun head child of the prepo-
sition, and L ∈ {1 . . . n} denotes the index of the
correct attachment in the list of heads. Compared
to the RRR dataset, the BLBG dataset is a better
approximation of the attachment decision faced in
a full parsing task since it allows more than two

1https://github.com/adwaitratnaparkhi/ppa_transformer
2http: //groups.csail.mit.edu/rbg/code/pp

Training Development Test
RRR 20801 4039 3097
BLBG 35359 n/a 1951

Table 3: Data set sizes of the RRR and BLBG data sets

possible attachment sites.
In order to enable experiments in which the full

sentence context is used as input, the original head
word tuples were joined with the full sentences
from which they were extracted. Starting from data
generation scripts provided to us by the author3

of the BLBG data set, we joined each example in
the original BLBG data set with its full sentence
context from the Penn Treebank Version 3. The
sentences were lower cased to match the conven-
tion of the BLBG data. As we could not obtain
the matching version of the Penn Treebank for the
RRR dataset4, the full sentence experiments were
only conducted on the BLBG data set.

Table 3 shows the size of the data sets. Tables 1
and 2 contain example training instances.

4 Our method

In recent years, contextualized word embeddings
(CWE), particularly those built using the Trans-
former (Vaswani et al., 2017) architecture, have
accelerated progress in many NLP tasks. Past
work on NLP tasks has typically followed a trans-
fer learning strategy, in which a large pre-trained
model is fine-tuned on a small annotated training
set with task-specific labels. We apply this strategy
using pre-trained BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) models on data specific
to the prepositional phrase attachment task, with
the objective of improving task accuracy.

Figure 1 introduces a deep learning architecture
that fine-tunes the output of a CWE module in or-
der to predict attachments. We henceforth refer
to it as the Fine Tuning for Headword Attachment
(FTHA) model5. The full sentence or phrase is first
passed through the CWE module, which yields a
vector of token embeddings, shown in layer (1). In
cases where the original word has been split into
multiple tokens by the CWE tokenizer, we follow
the convention in (Devlin et al., 2018) and use the

3Many thanks to Yonatan Belinkov for the data generation
code.

4The RRR dataset cannot be joined with Penn Treebank
Version 3 due to missing data.

5The FTHA implementation can be found at
https://github.com/adwaitratnaparkhi/ppa_transformer
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Full sentence or phrase

BERT or RoBERTa

h1 h2 h3 n2p

h1, p, n2 h2, p, n2 h3, p, n2

Hidden layer 1 Hidden layer 1 Hidden layer 1

Out 1+
h1, p, n2

Out 1

Out 2+
h2, p, n2

Out 2

Out 3+
h3, p, n2

Out 3

Hidden layer 2 Hidden layer 2 Hidden layer 2

SoftMax

(1)

(2)

(3)

(4)

(5)

(6)

Figure 1: The Fine Tuning for Headword Attachment
(FTHA) model. The diagram shows only 3 candidate
head word attachment sites for the preposition, but the
network can operate on an arbitrary number of candidate
head words.

embeddings of the first sub-token. Next, a mask
operation extracts a vector of n embedding triples
(h1, p, n2) . . . (hn, p, n2), shown in layer (2). Each
triple represents a possible attachment. The embed-
ding triples are passed to a hidden layer (3), and
then concatenated with the hidden layer output us-
ing a "skip" connection, shown in layer (4). The
result (4) is then passed to a second hidden layer
(5). Finally, a softmax layer (6) returns a score for
each attachment. The hidden layers in (3) and (5)
share their parameters across their respective layer.

Each input example contains the information
shown in Tables 1 and 2, together with a token
sequence, and token indices of the head words. De-
pending on the experiment configuration, the token
sequence is either the full sentence from which the
example was drawn, or a phrase synthesized by
concatenating the words in (h1 . . . hn, p, n2).

5 Experiments

The FTHA model is trained and evaluated on both
the RRR and BLBG data sets. Furthermore, we
compare with past results on both data sets, as
well as against an existing implementation6 of a
multiple choice fine-tuning architecture in the Hug-
gingFace (HF) code library (Wolf et al., 2019).

The HF multiple choice implementation was de-

6https://github.com/huggingface/transformers/tree/
master/examples/multiple-choice

Data set Label Frequency Label Frequency
RRR N 10865 V 9936
BLBG 1 1585 5 4957

2 7961 6 1478
3 10113 7 225
4 9022 8 18

Table 4: Allowable labels and their distribution in the
RRR and BLBG training sets.

signed for the SWAG (Zellers et al., 2018) task,
and is described in Devlin et al. (2018). We config-
ure the implementation to predict up to 8 choices,
where each choice is a phrase formed from the head
word triple (hi, p, n2), or a dummy label. For con-
text input, we also give it either a full sentence or
a phrase synthesized from all of the head words,
depending on the experiment configuration. For
our experiments, we configure it to use RoBERTa.

The HF implementation encodes the text of the
choice (i.e., the head word triples) and any ad-
ditional input, "pools" the embeddings, and then
passes them to linear and softmax layers. In con-
trast, the FTHA model retains the head word em-
beddings that were computed in the context of the
full sentence or phrase. This representation allows
the FTHA model to work with a higher granularity
of information from the input, compared to the HF
implementation.

All experiments are measured using accuracy of
the label classification. The allowable labels for
each data set and their distributions are shown in
Table 4.

Table 5 shows results on the RRR dataset using
the FTHA model with both BERT and RoBERTa.
Only the head word tuples are used as input. The
best result, FTHA with RoBERTa, is 0.7% higher
than the one reported in Stetina and Nagao (1997),
which is the previously best known result for the
RRR dataset.

Table 6 shows results on the BLBG dataset with
multiple experiment configurations. The best result
in the Head words only configuration, FTHA
with RoBERTa, outperforms the previously best
result from Yu et al. (2016) by 1.7%. The best re-
sult in the Full sentence configuration, again
FTHA with RoBERTa, outperforms that result by
4.1%. Table 7 shows an example where having the
full sentence context helps.

The higher granularity representation of the
FTHA model (with RoBERTa) gives slight accu-
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Paper Dev Test
(Stetina and Nagao, 1997) n/a 88.1%
HF multiple choice 89.1% 88.4%
FTHA (RoBERTa) 89.3% 88.8%
FTHA (BERT) 88.8% 87.9%

Table 5: Results on the RRR data set.

Paper/Configuration and Model Accuracy
(Belinkov et al., 2014)
HPCD-full 88.7%
HPCD-full with parser 90.1%
(Dasigi et al., 2017)
OntoLSTM-PP 89.7%
OntoLSTM-PP with parser 90.11%
(Yu et al., 2016)
LRFR1-TUCKER & LRFR2-CP 90.3%
Head words only configuration
FTHA (RoBERTa) 92.0%
FTHA (BERT) 91.1%
HF multiple choice 91.1%
Full sentence configuration
FTHA (RoBERTa) 94.4%
FTHA (BERT) 93.2%
HF multiple choice 94.2%

Table 6: Results on the BLBG data set

racy gains compared to the HF baselines, for both
the RRR and BLBG experiments. However, the dif-
ferences are not statistically significant according
to McNemar’s test at α = 0.05 significance level.

All RoBERTa and BERT experiments use the
roberta-base and bert-base-uncased
models, respectively. All models have at most
126M parameters, and training times were at most
1 hour on a UNIX server with an NVIDIA Titan
RTX GPU with 24Gb RAM.

5.1 Hyperparameters
In our experiments, the hidden layers 1 and 2 in
Figure 1 have a size of 3N and 4N , respectively,
where N = 768. During training, we use 3 epochs,
a batch size of 16, the AdamW optimizer, a warmup
step of 500, a weight decay of 0.01, and a learning
rate of 10−3.

6 Discussion

In past work, data sparsity has been a major chal-
lenge for corpus-based approaches to prepositional
phrase attachment. To remedy data sparsity, re-

Field Example
Candidate heads
h1 . . . hn

plan impose freeze

Preposition p on
Child noun n2 fees
Full sentence the plan would impose a

brief freeze on physician
fees next year .

Annotated label 2

Table 7: Test example where the Head words
only configuration predicts incorrectly and the Full
sentence configuration predicts correctly, for the
FTHA (RoBERTa) model. h2, or "impose", is the anno-
tated attachment site for the preposition.

searchers have incorporated features from external
resources like WordNet and FrameNet, with the
idea that semantic features on words will have far
less than sparsity than words themselves.

In our work, the CWE, built from a huge amount
of unsupervised data, seem to compensate for the
sparsity in the relatively small training sets. Our re-
sults on both the RRR and BLBG sets exceed those
reported in past work, but without using WordNet,
FrameNet, or any other external resources. All
other results compared in Tables 6 and 5 use re-
sources external to the training set.

We do not compare our experimental results with
those in Do and Rehbein (2020) and Olteanu and
Moldovan (2005) due to differences in test data.

The approach of Do and Rehbein (2020), con-
ducted on German-language PP attachment data,
resembles our work in that it uses CWE in a neu-
ral model. It also presents a scoring function for
(hi, p, n2) triples, using a biaffine transformation of
word representations derived from a bidirectional
LSTM. It differs from our approach in that it consid-
ers all words in the sentence as potential attachment
sites. And unlike our work, it incorporates addi-
tional information like part-of-speech tags, topolog-
ical field tags, and auxiliary distributions computed
from a large newspaper corpus.

The approach of Olteanu and Moldovan (2005)
uses support vector machines and requires rich fea-
tures that cannot be derived from the RRR dataset.
Therefore it creates a new and larger data set with
complex features from syntax trees, FrameNet, and
co-occurrence statistics derived from an internet
search engine. In contrast, our work focuses on
only the CWE and excludes external resources.
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Both the FTHA and HF experiments show bene-
fit from using the full sentence context. For FTHA,
the embeddings computed in the context of the
whole sentence are likely more accurate than those
computed from the head word phrase. For the HF
implementation, the pooled embedding of the sen-
tence carries enough information to boost the ac-
curacy over just using the head words. Notably, in
both cases, the sentence information is not explic-
itly annotated with any syntactic information, yet
gives a sizable boost (+ 2% to 3%) in PP attachment
accuracy.

Our work studies the PP attachment problem
in isolation, and does not compare against the at-
tachment decisions of a full parser. Other work
(Belinkov et al., 2014; Dasigi et al., 2017) shows
that PP attachment is still a problematic area for
full parsers, and that an independently trained PP
attachment model can improve the decisions of a
full parser.

7 Conclusion

We present deep learning experiments for the prepo-
sitional phrase attachment task that exceed the ac-
curacy of all previously published results on two
widely used data sets. The results in our paper
are 0.7% and 4.1% higher in absolute percentage
points over the best previously published results
on the RRR and BLBG data sets, respectively. We
present a novel fine-tuning architecture that uses
a higher granularity of information from the input,
compared to a baseline implementation from Hug-
gingFace. All our results were obtained without
using external semantic data sources like WordNet
or FrameNet. Lastly, we observe a big accuracy
gain when the model is given the full sentence con-
text vs. only the head words, despite having no
syntactic annotation in the full sentence context.
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