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Abstract

We study the role of an essential hyper-
parameter that governs the training of Trans-
formers for neural machine translation in a
low-resource setting: the batch size. Using
theoretical insights and experimental evidence,
we argue against the widespread belief that
batch size should be set as large as allowed by
the memory of the GPUs. We show that in a
low-resource setting, a smaller batch size leads
to higher scores in a shorter training time, and
argue that this is due to better regularization of
the gradients during training.

1 Introduction

Training Transformers for low-resource neural ma-
chine translation (NMT), i.e. when only small par-
allel corpora are available, raises the challenge of
finding optimal hyper-parameters. While several
fixed configurations of the Transformer (Vaswani
et al., 2017) have been empirically validated by the
community, such as ‘Base’ or ‘Big’, the settings
of many other hyper-parameters rely on tips from
practitioners. However, these values are not always
suitable to low-resource settings, and systematic
studies in these settings are rare (Araabi and Monz,
2020; Van Biljon et al., 2020).

In this paper, we show that the best values of
a hyper-parameter that is essential for training,
namely batch size, differ in low-resource settings
from those commonly accepted when larger data
sets are available. We analyze the role of small
batch sizes, inspired by studies in computer vision
(Keskar et al., 2016), and then pinpoint empirically
the optimal trade-off between a high batch size
(for efficiency) and a small one (for regularization).
Although large batch sizes were found to lead to
higher-quality models in experiments with high-
resource NMT (Popel and Bojar, 2018; Xu et al.,
2020), we show here that smaller batch sizes can
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outperform the latter, likely due to a regularizing ef-
fect in the gradient update. Moreover, we show that
this finding is invariant to changes in tokenization
methods.

The paper is organized as follows. In Section 2,
we discuss batch size from a machine learning per-
spective, showing why smaller values of batch size
may act as regularizers. Then, in Section 3, we
review studies of hyper-parameters in NMT. In
Section 4, we present the parameters of our Trans-
former and the data from the WMT 2020 Low-
resource task (Fraser, 2020) and other sources that
we use in our experiments. In Section 5, we pro-
vide empirical evidence that smaller batch sizes are
preferable in low-resource settings.

2 ML Perspective on Batch Size

Machine learning theory argues that performing
back-propagation with large batch sizes leads to
better optimization, because the estimates of the
gradients are more accurate. Conversely, using
small batches during training leads to noisier gradi-
ent estimations, i.e. with a larger variance in com-
parison to the gradient computed over the entire
training set. Still, one advantage of small batch
sizes is that they are more likely to make param-
eters converge towards flatter minima of the loss
(Goodfellow et al., 2016, Chapter 8.1.3), as ex-
plained below. Such flatter minima have better
generalization capacities, i.e. they maintain perfor-
mance when presented with a new test set.

Keskar et al. (2016) define a flat minimizer — as
opposed to a sharp one — as a point in the parameter
space that is a local minimum of the loss function,
and where this function varies slowly in a relatively
large neighborhood. Keskar et al. (2016) point
to the following generalization gap: training with
large batch sizes tends to converge towards sharp
minimizers, which offer poorer generalization ca-
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pacities. Conversely, small batch sizes allow con-
vergence towards flat minimizers, which are likely
to generalize better. Thus, smaller batch sizes have
exploration abilities: the search is more likely to
exit the basins of sharp minimizers, and to tend
towards flat minimizers, from where noise will not
cause them to exit.

Since a sharp minimizer requires high precision
to be described, unlike a flat one, the more noise
there is in the gradient, the more unlikely it is
that the parameters will converge towards a sharp
minimizer. This is precisely the contribution of a
smaller batch size: introduce noise in the gradi-
ent estimation. According to this theoretical view,
above a certain threshold of the batch size, the gen-
eralization capacities of a model deteriorate. The
threshold depends on several hyper-parameters, in-
cluding the batch size. Its role has not been fully
settled yet, with observations and conclusions vary-
ing widely across studies (Dinh et al., 2017; Hoffer
et al., 2017; Goyal et al., 2017; Li et al., 2017;
Kawaguchi et al., 2017). Moreover, these studies
are on image data sets, with fully connected or with
convolutional NNs, which differ substantially from
NMT settings.

3 The Role of Batch Size in Neural MT

Several recent studies in NMT have considered
batch size among other hyper-parameters, but they
have either been in high-resource settings (Popel
and Bojar, 2018; Xu et al., 2020) or have given
only marginal attention to batch size (Sennrich and
Zhang, 2019; Araabi and Monz, 2020).

Popel and Bojar (2018) reported that BLEU
scores increased with batch size (including when
using more GPUs) in a Transformer-based NMT
system, although with diminishing returns, recom-
mending in particular that “batch size should be
set as high as possible”. Their experiments were
performed using mainly two datasets, with respec-
tively 58M and 15M sentence pairs. It thus remains
an open question whether their findings regarding
batch size also apply when much less training data
is available.

Sennrich and Zhang (2019) experimented with a
recurrent network in a low-resource setting and
found that smaller batch sizes were beneficial,
along with other forms of regularization. They
experimented with two batch sizes of 4,000 and
1,000 tokens, and observed improvements with the
latter of 0.30 and 0.04 BLEU points on data sets
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with 5k and 160k sentence pairs, respectively. It
is difficult to predict from these results what the
optimal batch size is for Transformer-based NMT.

Araabi and Monz (2020) studied the role of 15
hyper-parameters of the Transformer, with several
sizes of low-resource datasets. For the largest train-
ing sizes tested (80k and 165k sentence pairs),
larger batch sizes improved performance, with
respectively 8,192 and 12,288 versus 4,096 for
the other sizes. For lower training sizes, smaller
batch sizes did not improve performance, which the
authors explain by Transformer’s need for larger
batches. In our view, an alternative explanation is
the order of optimization of the hyper-parameters
(a grid search in which they optimize one hyper-
parameter at a time): batch size is #12 out of 15,
so by the time several sizes are compared, regular-
ization has already been introduced in the model
by dropouts on words, activation, and layers. Late
optimization of batch size, of warmup steps (#14)
or of learning rate (#15) cannot properly determine
their regularizing effects.

Xu et al. (2020) proposed to compute gradients
while accumulating minibatches, and observed that
increasing batch size stabilizes gradient direction
up to a certain point, after which it starts to fluctu-
ate. They used this criterion to dynamically adjust
batch sizes while training. In their experiments
with large training sets (4.5M and 36M sentence
pairs), their average batch size was around 26k on
two GPUs, and never lower than 7k. Their observa-
tions on the gradient direction as more minibatches
are accumulated are consistent with the findings
of Popel and Bojar (2018) who see diminishing
returns when increasing batch size.

4 Datasets and Systems

We train NMT systems with two low-resource par-
allel corpora, listed in the first two lines of Table 1:
the Upper Sorbian (HSB) to German (DE) training
data of the WMT 2020 Low-Resource Translation
Task (Fraser, 2020) and a low-size excerpt of the
German to English News Commentary v13 (Bojar
etal., 2018), from which we randomly sampled 60k
parallel lines. For the HSB-DE models, we also
use the development and test sets provided by the
WMT 2020 and 2021 Low-Resource Translation
Task (Libovicky and Fraser, 2021), each consisting
of 2k sentences, and for DE-EN we sample a devel-
opment set and a test set from the original corpus,
with 2k sentences each as well. We apply a com-



Dataset Lang. Orig. Filt. A%
WMT20 Low-res. HSB-DE 60k 59.8k  0.29
News Comm. v13  DE-EN 60k 599k 0.20
~ Sorbian Institute ~ HSB 339k 339k  0.00
Witaj HSB 222k 220k 0.84
Web HSB 134k 121k 9.98
Europarl v8 DE 22M  22M  0.79
News Comm. vl15 DE 422k 411k 2.58
TW300 DE 23M  22M 444
Europarl v3 DE 790k 785k  0.69
Europarl v3 EN 790k 782k  1.07

Table 1: Numbers of lines in the original and filtered
corpora used in our experiments. HSB stands for Upper
Sorbian and A% for the proportion of lines filtered out.
The only parallel corpora used for training NMT are
the first two ones; the other corpora are only used to
train the SentencePiece model.

mon filtering process for all data used: we delete
from all our data the sentences that are not between
2 and 300 words long, with resulting numbers of
lines shown in Table 1.

We build subword vocabularies using the Un-
igram LM model (Sennrich et al., 2016; Kudo,
2018) as implemented in SentencePiece', with the
monolingual corpora from Table 1. We train a
shared model for HSB-DE with a vocabulary of
32k pieces, character coverage of 0.98, nbest=1
and alpha=0. The HSB data adds up to 740k sen-
tences, and we sample 680k sentences from three
DE corpora, and add them to the 60k sentences
from the DE side of the parallel HSB-DE corpus.
To train the SentencePiece model for the DE-EN,
for comparison purposes, we treat German as a
low-resource language, and sample 680k lines of
English and German from Europarl v3 (Tiedemann,
2012), which we combine respectively with the 60k
lines extracted from the DE-EN parallel corpus.

We use the Transformer-Base (Vaswani et al.,
2017) in the implementation provided by Open-
NMT (Klein et al., 2017, 2020), with the parame-
ters given in Appendix A. Unless otherwise speci-
fied, we follow OpenNMT-py’s recommended val-
ues for the hyper-parameters.>

When using several GPUs with gradient accumu-
lation, each GPU processes several batches, which
are then accumulated across all GPUs and used
to update the model at each step. Therefore, the
effective batch size is B x G x A, where B is the
individual batch size, G is the number of GPUs

'"https://github.com/google/
sentencepiece

https://opennmt .net/OpenNMT-py/
examples/Translation.html
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Figure 1: BLEU scores on the test set for HSB-DE
models trained with different batch sizes.

and A the number of accumulated batches, and
differs from the bat ch_size hyper-parameter 5.
We train all models on two GeForce RTX 1080Ti
GPUs with 11 GB of memory each and accumulate
gradients over two minibatches (A = 2), follow-
ing OpenNMT-py’s recommendation. Therefore,
the batch_size parameter is not our effective
batch size, which is four times larger. Through-
out this work, we will refer to batch size B as the
batch_size parameter, and report true epochs,
which we define as computed with the effective
batch size as S x Bg /N, for S training steps,
B effective batch size, and N number of source
tokens in the training set.

Following OpenNMT-py’s recommendations,
we set the Adam hyper-parameters at [
0.9, B2 = 0.998, ¢ 10~® and apply at each
step a scaling factor of two to Noam’s learning rate
schedule, setting warmup steps to 8k. Translations
are generated with a beam width of seven, with an
ensemble of the last four saved checkpoints. We re-
port BLEU scores (Papineni et al., 2002) obtained
with SacreBLEU (Post, 2018) on detokenized text.

S Experimental Results

To study the impact of batch sizes in a low-resource
setting, we train various HSB-DE and DE-EN mod-
els for 700 epochs with the following batch sizes:
100, 250, 500, 1,000, 2,500, 5,000, 7,500, 10,000,
and 10,240 (this is the largest one that fits in our
GPU memory).

5.1 NMT Performance

NMT performance on the HSB-DE test set through-
out the training is shown in Figure 1, with BLEU
scores depending on the number of epochs. The
evolution depending on real training time (wall


https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://opennmt.net/OpenNMT-py/examples/Translation.html
https://opennmt.net/OpenNMT-py/examples/Translation.html

Batch HSB-DE DE-EN
Size dev test dev test
Xent BLEU chrF TER | Xent BLEU chrF TER | Xent BLEU chrF TER | Xent BLEU chrF TER
500 | 0.03 48.12 71.13 37.35| 0.03 41.53 67.34 43.84| 0.11 37.35 58.04 54.54| 0.11 37.72 58.35 54.60
1,000 | 0.02 49.23 72.07 36.35| 0.02 42.26 67.93 43.16| 0.05 38.03 59.39 52.91| 0.05 38.67 59.68 52.71
2,500 | 0.03 4828 71.63 37.02| 0.03 41.18 67.36 44.02| 0.04 33.83 56.70 56.27| 0.04 35.51 57.76 55.47
5,000 | 0.03 46.99 70.74 38.05| 0.03 40.28 66.62 45.24| 0.05 32.47 55.20 57.88| 0.05 33.97 56.16 57.08
7,500 | 0.03 46.05 70.29 38.87| 0.03 39.10 65.94 46.18| 0.05 32.67 55.99 57.67| 0.05 33.80 56.72 57.21
10,000 | 0.04 44.61 69.19 40.00| 0.04 38.41 65.67 46.45| 0.05 31.84 55.20 58.35| 0.05 33.50 56.14 57.63
10,240 | 0.04 45.59 70.12 39.26| 0.04 38.19 65.39 46.79| 0.06 31.49 55.00 58.65| 0.06 33.03 55.78 58.07

Table 2: Loss and scores for models trained for 700 epochs with various batch sizes for HSB-DE and DE-EN
directions. All differences in BLEU on the dev and test sets are statistically significant at the 95% level, except for

the pairs in similar colors.

time) is similar in terms of rankings. Thus, the fol-
lowing analysis holds whether we train the models
for the same amount of epochs or of hours.

The final scores on the development and test
sets are given in Table 2, sorted by batch sizes. We
provide first the actual loss of the model (‘Xent’ for
cross-entropy), and then three typical NMT scores:
BLEU (Papineni et al., 2002), chrF (Popovié, 2015)
and Translation Error Rate (Snover et al., 2006).
The 100 and 250 batch size models did not reach
BLEU scores significantly above zero, and are not
included among the results in the table.

We test the statistical significance of the differ-
ences between each score and the others, with 95%
confidence, using the paired bootstrap resampling
tool from SacreBLEU (Post, 2018).3 All differ-
ences between higher and lower BLEU scores are
statistically significant, except the pairs highlighted
in similar colors in Table 2.* The best NMT scores,
which are always obtained with a batch size of
1,000, are significantly higher than all the other
ones, including those obtained with the largest pos-
sible batch sizes for our GPU (10,000 or 10,240).
We thus select two values for further experiments:
a batch size of 1,000 as our highest-scoring model,
and one of 10,000 as the maximum allowed by our
GPU memory. A simple ratio of 10 holds between
the two values.

These empirical results are contrary to those
from Popel and Bojar (2018), who observe that
increasing the batch size for Transformer-Base pro-

3github.com/mjpost/sacrebleu with  the
signature  nrefs:1|bs:1000|seed: 12345 |case:mixed|eff:no
|tok:13a|smooth:exp|version:2.0.0.

“The difference in BLEU between the following pairs is
not significant. For HSB-DE, 2,500 vs. 500, and 10,240 vs.
10,000, on the test set; and 2,500 vs. 500, and 7,500 vs. 10,240
on the dev set. For DE-EN these are 7,500 vs. 5,000, and
10,000 vs. 7,500, on the test set; and 1,000 vs. 500, 5,000 vs.
7,500, and 10,000 vs 10,240, on the dev set.
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duces higher scores, although with diminishing
returns after a certain threshold. We hypothesize
that the main explanation is the difference between
the amounts of training data: in our low-resource
setting, we use 60k sentences, while Popel and Bo-
jar (2018) use 57M sentences. Our findings are
consistent with those of Keskar et al. (2016), who
also observe that the optimal batch size is at the
lower end of the range, on a computer vision task
with convolutional and fully-connected NNs.

5.2 Asymptotic Performance

An alternative explanation for the previous results
is that the learning rate is too small for the larger
batch sizes, which require more time to converge.
To test whether the differences observed above be-
tween small and large batch sizes depend on the
actual training time, we continue training the 1,000
and 10,000 batch size models for HSB-DE and DE-
EN for twice as many epochs as above (1400). The
BLEU scores and their increases with respect to
training for 700 epochs are given in Table 3. The
performance gap (from +3.85 to +3.25 BLEU) be-
tween small and large batch sizes is not overturned
by training the models for much longer.

The scores from our best system (1,000 batch
size, 42.81 BLEU on the test set) are similar to
scores obtained by baselines of the five highest-
scoring teams at the WMT20 Low-resource shared
task on HSB-DE (Fraser, 2020). While the scores
of Scherrer et al. (2020) and Li et al. (2020) are not
comparable due to a different architecture or the use
of unsupervised pre-training, the baseline scores
of Knowles et al. (2020), Libovicky et al. (2020)
and Kvapilikova et al. (2020) are respectively 44.1,
43.4, and 38.7. The first one is higher than our best
BLEU by 1.29, likely due to the use of 43M lines
of CS and DE data for the subword vocabulary, vs.
700k in our case.


github.com/mjpost/sacrebleu

Batch HSB-DE DE-EN
size dev test dev test
1,000 49.52 42.81 38.67 39.24
(+0.29)  (+0.55) (+0.64) (+0.57)
“ 10,000 4644 3956 33.19 3442
(+1.83) (+1.15) (+1.35) (+0.92)

Table 3: BLEU scores for models trained for 1,400
epochs. The scores for 1,000 are significantly higher
(at 95%) than those for 10,000. In parenthesis, the ab-
solute difference with BLEU scores after 700 epochs.

5.3 Invariance with respect to Vocabulary

We additionally perform two comparisons that
show that the above results hold regardless of the
tokenizer and the vocabulary size. First, we test
whether the score difference is preserved with an
unshared SentencePiece vocabulary, i.e. when not
sharing the source (HSB and DE) and the target
(DE and EN) vocabularies.

Second, we train two NMT models for HSB-
DE using a Byte Pair Encoding (BPE) vocabulary
(Sennrich et al., 2016), which we generate using
the learn_bpe.py tool from OpenNMT-py, with
32k merge operations and the remaining parame-
ters at default values. Table 4 shows BLEU scores
on the development sets for batch sizes of 1,000
and 10,000. The previously observed differences
in score between the batch sizes still hold, and we
see that a shared SentencePiece vocabulary leads
to a better NMT system than an unshared or a BPE
one.

Batch size SP unshared BPE
HSB-DE DE-EN HSB-DE
1,000 46.80 35.90 46.21
(-2.43) (-2.13) (-3.02)
“ 10,000 41.99 30.09 = 4335
(-2.62) (-1.75) (-1.26)

Table 4: BLEU scores on the dev set for HSB-DE and
DE-EN models trained with SentencePiece (SP) vocab-
ularies not shared between source and target (left) and
BPE subwords (right). The scores for 1,000 are signifi-
cantly higher (at 95%) than those for 10,000. In paren-
thesis, the difference with BLEU scores obtained with
the SP shared vocabulary.

6 Conclusion and Future Work

In this work, we have shown that insights from
computer vision on the regularizing effect of small
batch sizes are also applicable to NMT. Our results,
focused on a low-resource setting, challenge those
of previous NMT studies with large amounts of
training data, and the general belief that batch sizes
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should be as large as they fit in the GPU memory.
We have shown that training with small batch sizes
leads to models that generalize better, and found
the optimal batch size below which performance
degrades.

Future work should explore how the learning
rate must be adjusted depending on the batch size,
and whether a dynamically scheduled combina-
tion of batch size and learning rate can provide
an even better regularizer. For instance, it should
be tested if dynamic batch sizes as proposed by
Xu et al. (2020) can also improve performance in
a low-resource setting, with batch size thresholds
changed to measure an optimal level of noise.
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A Appendix

The hyper-parameters used to train our models are
the following ones:
srcwords.min_frequency: 2
tgt_wordsmin_frequency: 2
valid batch_size: 200
max_generator_batches: 2
optim: adam
learning.rate: 2.0
adam_betaz: 0.998
decay-method: noam
accum_count: 2
warmup-steps: 8000
label_smoothing: 0.1

max_grad.-norm: O
param_init: O
param_init_glorot: true
normalization: tokens
encoder_type: transformer
decoder_type: transformer
position_encoding: true
layers: 6

heads: 8

rnn_size: 512
word_.vec_size: 512

transformer_ff: 2048
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dropout: 0.

batch_size:
batch_type:

1
1000
tokens
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