Training data reduction for multilingual Spoken Language Understanding
systems

Anmol Bansal *%, Anjali Shenoy*, Chaitanya P. K.}, Kay Rottmann‘, Anurag Dwarakanath*
fAlexa A, Amazon
SIIT Kharagpur
{anshen, kppappu, krrottm, adwaraka } @amazon.com
anmolbansal @iitkgp.ac.in

Abstract

Fine-tuning self-supervised pre-trained lan-
guage models such as BERT has significantly
improved state-of-the-art performance on nat-
ural language processing tasks. Similar fine-
tuning setups can also be used in commer-
cial large scale Spoken Language Understand-
ing (SLU) systems to perform intent classifi-
cation and slot tagging on user queries. Fine-
tuning such powerful models for use in com-
mercial systems requires large amounts of
training data and compute resources to achieve
high performance. This paper is a study on
the different empirical methods of identifying
training data redundancies for the fine tuning
paradigm. Particularly, we explore rule based
and semantic techniques to reduce data in a
multilingual fine tuning setting and report our
results on key SLU metrics. Through our ex-
periments, we show that we can achieve on
par/better performance on fine-tuning using a
reduced data set as compared to a model fine-
tuned on the entire data set.

1 Introduction

In recent years, a variety of smart voice assistants
such as Apple’s Siri, Samsung’s Bixby, Google
Home, Amazon Echo, Tmall Genie, have been de-
ployed and achieved great success. These voice as-
sistants facilitate goal-oriented dialogues and help
users to accomplish their tasks through voice inter-
actions. One component of such spoken language
understanding (SLU) systems is Natural Language
Understanding (NLU) which aims to extract the
intent of the query (intent classification) and se-
mantically parse the user utterance (slot tagging).
As an example, if a user requests "play madonna"
to the voice assistant, SLU would classify the intent
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as PlayMusic with slot filling of tokens "play" as
Action and "madonna" as Artist.

As in many other language processing fields, pre-
trained language models have seen major success
for natural language understanding. Pre-trained
language models (Radford and Narasimhan, 2018;
Howard and Ruder, 2018; Baevski et al., 2019;
Dong et al., 2019) are generic language models
learned in a semi-supervised fashion whose un-
derlying large scale knowledge is then leveraged
for fine-tuning towards down-stream tasks (Ruder
et al., 2019). BERT (Devlin et al., 2019) is one
such example of a language model based on the
Transformer Network architecture (Vaswani et al.,
2017), pre-trained on a corpora of 3300M words
extracted from publicly available unannotated data
and then fine-tuned on smaller amounts of super-
vised data for specific tasks, relying on the induced
language model structure to facilitate generaliza-
tion beyond the annotations. It provides power-
ful and general-purpose linguistic representations,
triggering strong improvements and significant ad-
vances on a wide range of natural language pro-
cessing tasks. Chen et al. (2019) also observed the
success of BERT to jointly learn intent classifica-
tion (IC) and slot filling (SF) tasks by leveraging
pre-trained representations. Leveraging this joint
IC and SF set up to interpret user utterances in
commercial SLU systems requires large volume of
annotated training data (Ezen-Can, 2020), compute
resources (such as GPUs) and model build time to
cover the variability of customer utterances. Such
resources (human and compute) are not only ex-
pensive but also time consuming, unscalable and
may not be fully optimized to achieve the same
performance.

In this paper, we perform an empirical analy-
sis on identifying subsets of multilingual training
data which can achieve on par or better perfor-
mance as compared to the same model trained
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Figure 1: IC/SF Bert architecture

on the full data-set for the same task. In partic-
ular, we fine-tune a Lean-BERT sized model (Con-
neau et al., 2020), on the IC-SF task for Hindi and
English SLU data. Such mutlilingual large scale
pre-training is known to effectively promote cross-
lingual generalization (Choi et al., 2021; Pires et al.,
2019) giving rise to an opportunity to exploit la-
tent space similarities of such languages to identify
redundancies in training data for fine-tuning. We
experiment with various semantic and rule based
data reduction approaches and report fine-tuning
performance on key SLU metrics.

2 Related work

Finding the right data reduction technique for
BERT fine tuning while maintaining evaluation per-
formance can be considered as a part of two major
classes of problems - fine tuning regime in the low
resource setting to leverage insights from incorpo-
rated best practices, and the few shot classification
class of problems where the model is trained using
only a few samples from each class. Note that the
above two classes of problems are not disjoint and
is concurrently explored in this work.

2.1 Low resource fine tuning

A newly discovered approach to fine-tune a trans-
former based model using low resource data is pre-
finetuning, introduced in Aghajanyan et al. (2021).
In pre-finetuning, the BERT based model under-
goes large-scale multi-task learning between lan-
guage model pre-training and fine-tuning to en-
courage learning of representations that generalize
better to many different downstream tasks. Pre-
finetuning gains are particularly strong in the low
resource regime, where there is relatively little
labeled data for fine-tuning. Our proposed ap-
proaches can be used as an extension on top of

pre-finetuning to use the gains of the pre-finetuning
and benefit from smaller data-sets during the real
finetuning.

Active learning is also a widely popular space
involving few shot learning where the number of ex-
amples to learn a concept are much lower than that
required in a normal supervised learning setting.
GrieBhaber et al. (2020) explore active learning in
conjunction with BERT finetuning in the low re-
source setting with less than 1000 data points. The
method involves using Bayesian approximations of
model uncertainty (Gal and Ghahramani, 2016) to
efficiently select unannotated data for manual label-
ing. The method utilizes pool-based active learning
to speed up training while keeping the cost of la-
beling new data constant. They also demonstrate
the benefits of freezing layers of the pre-trained
language model during fine-tuning to reduce the
number of trainable parameters, making it more
suitable for low-resource setting. Drawing inspi-
ration from this, we conduct our experiments by
initially freezing the input embedding layer and
gradually unfreezing it by applying an increasing
fraction of the learning rate over the training steps.

Shnarch et al. (2021) introduce a new unsuper-
vised learning layer between pre-training and fine-
tuning called the Clustering Layer which helps train
BERT on predicting cluster labels and can signifi-
cantly reduce the demand for labeled examples for
topical classification tasks. This technique however
affects the overall latency of the model in real time
systems and we only wish to consider those tech-
niques which modify the input training data rather
than the model itself.

Zhang et al. (2021) explore commonly observed
instabilities in few-sample scenarios for fine-tuning
BERT. Several factors which were identified as
causes of instability were the limited applicability

299



of significant parts of the BERT network for down-
stream tasks and the prevalent practice of using a
pre-determined small number of training iterations.
We have leveraged insights from this work and
accordingly tuned the various hyper parameters of
our model.

2.2 Few shot classification & entity
recognition

While few shot and one shot learning techniques
are very popular in computer vision for tasks
such as image recognition (Koch, 2015), in NLP
Lampinen and McClelland (2018) was the first to
introduce one-shot and few-shot learning for word
embeddings. Geng et al. (2019) explore leverag-
ing the dynamic routing algorithm in meta-learning
(Yin, 2020) to simulate the few-shot task and intro-
duce a novel Induction Network to learn general-
ized class-wise representations. Huang et al. (2020)
explore few shot learning for the entity recognition
task with meta learning, supervised pre-training
(similar to BERT) and self-training to leverage un-
labeled in-domain data. Yang and Katiyar (2020)
explore entity recognition in the nearest-neighbour
paradigm.

The first works in data reduction techniques in
Machine Learning (Wilson and Martinez, 2004;
Arnaiz-Gonzalez et al., 2016) are based on instance
selection methods broadly classified into two cate-
gories. The first is the incremental method which
begins with an empty set and the algorithm keeps
adding instances to the this subset by analyzing in-
stances in the training set. The decremental method,
on the contrary, starts with the original training data
set removes those instances that are considered su-
perfluous or unnecessary. We would consider our
approach of selecting the subset of data as a decre-
mental method since we start from the original set
and proceed to extract a smaller set from it.

Koh and Liang (2020) introduced the concept
of influential data instances - those training points
which are most responsible for a given prediction -
and how to identify them. However, this approach
can only be applied to machine learning models
trained on convex losses and is also not scalable due
to the computationally heavy Hessian matrix mul-
tiplication involved. Pruthi et al. (2020) extended
this concept to estimate training data influence by
tracing its gradient descent. Using first-order ap-
proximation for Hessian computation and extend-
ing the algorithm to mini-batches, they made this

approach scalable and showed results on an im-
age classification task. This is however unexplored
in the language processing setting for joint intent
classification and slot filling task which is more
complex than binary classification.

3 Method

In this paper, we first describe the SLU architecture
used for the IC-SF task and the four methods for
data reduction.

3.1 SLU model Architecture

We use a common SLU architecture (Chen et al.,
2019) for joint intent classification and slot fill-
ing, which is depicted in figure 1. It consists of a
BERT based encoder, an intent decoder and a slot
decoder. The BERT encoder’s outputs at sentence
and token level are used as inputs for the intent
and slot decoders, respectively. The intent decoder
is a standard feed-forward network including one
standard task specific layer and a softmax layer
on top. Meanwhile, the slot decoder uses a CRF
layer on top of one task specific layer to leverage
the sequential information of slot labels. During
the training, the losses of IC (cross-entropy loss)
and SF (CREF loss) are optimized jointly with equal
weights as in Chen et al. (2019)

3.2 Data reduction approaches

We define terminologies that we use throughout the
paper as the following - Let an utterance u; € S,
where S is the set of all utterances in the training
data, have an intent intent; € I and annotation
a; € A, where I and A is the set of all intents and
annotations and a; € A is a string of tokens with
each token annotated with a slot label. From our
previous example, u; = "play madonna", intent; =
PlayMusic, a; = "play<Action> madonna<Artist>"

3.2.1 Baseline

In the baseline, we fine-tune model on the entire
data set (.5, I, A) without any modifications.

3.2.2 Unique

In this method, for an utterance u; € S, we extract
unique utterance annotations filtered using anno-
tation a; € A as a key. This helps in uniformly
representing variations in SLU data by removing
any bias due to frequency of occurrence.

3.23 LogN

In Log N reduction, if an utterance u; € S has a
frequency of occurrence n;, we downsample the
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Domain Unique Log Clustering 70% Singular Score
Music -55%  -38% -30% -25%
Shopping S51%  -40% -30% -35%
Video -44%  -24% -27% -18%
Notifications | -52%  -36% -33% -11%
Weather -53%  -38% -20% -3%

Table 1: Reduction achieved by different techniques.

utterance to have a frequency logy(n;). This main-
tains the utterance distribution as in the original
dataset but reduces the absolute magnitude of the
frequency. This way the model learns the original
input distribution of the SLU data but the reduced
representation helps avoid overfitting the model to
the more prevalent classes. We experimented with
other variants of Log N subsampling such as k-Log
N where k& € N and would involve scaling the fre-
quency to k times logy(n;) Yu; € S but we did not
see any significant gains in this approach.

3.2.4 Clustering

The first two methods described above only ac-
count for the frequency statistics of the utterance
in the training data and is language agnostic. In
the clustering approach, we try to reduce the data
distribution semantically.

The steps in the clustering approach are as fol-
lows:

o Identify a subset of intents I’ C I by filter for
those where the number of utterances u; € S
labeled with intent; € I’ is greater than 1000.
This is done so that we do not reduce the data
from underrepresented intents.

» Extract unique utterances for all utterances
having intent; € I’ using a; as the key. Rep-
etitions of utterances in the data will have the
same word embedding representation and cre-
ates redundancy in the input to the clustering
algorithm and a compute resource bottle neck.

» Extract embedding representation e; € R™
having dimensions m for these unique utter-
ances from the max pooling representation
of the model’s [CLS] token. (Devlin et al.,
2019).

* Condense these unique utterance’s embedding
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representations into a smaller number of di-
mensions d < m by computing SVD on the
input matrix

Mnxm =

nXmZmeVan

—7 _
Mnxmvmxd = Unxmzmxd

where Vgx 4 and Ymxd are simply the first
d < m columns of V and X.

* Obtain the condensed representation for each
unique utterance’s data point in the rows of
UpsemSmxd. Note that unlike PCA we do not
normalize the input here since it is computa-
tionally expensive.

e For each intent; € I', perform k-means clus-
tering from the extracted and condensed ut-
terance embedding representations and find
the optimal number of clusters K using the
Elbow Method.

* Restore the frequency of the clustered utter-

ances to the original frequency as observed in

the full dataset .S.

Per cluster k; € K where the clustered ut-

terances have their original frequency of ut-

terance, randomly sub-sample 30% of the ut-
terances and use the remaining 70% as the
training set.

Note that we experimented with choosing a sub-
set by randomly subsampling [10%, 20%, 30%,
50%] of the data and observed that subsampling
30% of the data had the best balance with respect
to amount of reduction versus performance drop.

3.2.5 Singular Score

Golub and Reinsch (1971) introduced Singular
Value Decomposition (SVD), a technique to fac-
torize the matrix into two unitary matrices and a
diagonal matrix. The diagonal values of this matrix
are the singular values. This approach has been
used extensively in multiple fields since its onset
in 1970s such as the work described in (Kabsch,
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1978), which uses SVD to compute an ideal rota-
tion matrix for 3-D molecular comparisons. (Wal-
ton et al., 2013) explores the decomposition offered
by SVD to reduce the degrees of freedom and in-
terpolate the flow problem to lower complexity,
with minimal loss in accuracy of representation.
In the field of Statistics and Machine Learning, it
has been primarily used to achieve dimensionality
reduction with minimal loss in information con-
tent. One such application in field on Information
Retrieval is Latent Semantic Analysis (LSA) (Fur-
nas et al., 1988) where sparse representations of
documents were reduced significantly to a few di-
mension that hold most information and these were
used as representations for the original documents.

For this work, we explore using SVD on subsam-
pling data-points instead of subsampling dimen-
sions as in regular applications. As seen in equation
1, M is the embedding matrix with n datapoints
and m dimensions per datapoint. We performed
experiments with treating data-points analogous to
dimensions and subsampling them. However, this
wasn’t favorable as the datapoints being treated as

dimensions for reduction were very large in num-
ber and did not have the correlation factor as seen
with regular dimensions of embeddings.

MnXm = (1)

T
nXmEmeVme

B=MV =UX% 2)

We instead analyse the projection of each ut-
terance on principal axes and formulate a score,
which we will refer to as the Singular Score going
forward. We use this score value to quantize the
dataset into buckets and apply appropriate down-
sampling methods per bucket, giving up to 25%
reduction in the data while also showing improve-
ments in the SemER and Intent Classification met-
ric consistently.

From equation 2 we can see that MV, which is
the projection of embedding matrix along principal
components is the same as UX. This is because
U, V are unitary matrices and VVT = VTV = I.
Each row in this matrix B = MV represents the
projection of corresponding input embedding along
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principal axes. We use absolute sum (i.e L; norm,
or Manhattan distance from origin) of each row in
B as the Singular score corresponding to the data
point u; € S.

m
score; = Z | Bij| (3)
j=1

We conducted experiments on the representation
power of this score and find interesting observa-
tions.

Correlation with frequency: As shown in figure
2a we find that there is a correlation between the
frequency of an utterance and the score it gener-
ates where the lower ranges of scores represent
more than 60% of the data. We also performed
this experiment on the English and Hindi subset of
the Multi-Atis++ data (Xu et al., 2020) to verify
our observations. The Multi-Atis++ dataset is an
extension of the ATIS (Air Travel Information Ser-
vices) dataset (Upadhyay et al., 2018) developed
to support the research and development of speech
understanding systems. This data comprises of
5928 user spoken utterances (4488 English, 1440
Hindi) of which 5621 (94%) utterances are unique.
These utterances are based on various hypotheti-
cal travel planning scenarios and are obtained by
users interacting with a partially or completely au-
tomated ATIS system which is then recorded and
transcribed. As shown in figure 2b we see that
due to the unique utterance composition of Multi-
Atis++ Hindi and English subset, the singular score
distribution of the graphs remain majorly the same.

Correlation with Sparsity: We also observe that
singular scores are a loose indicator of sparsity in
the principal axis space as shown in figure 3. A
datapoint with higher singular score is observed to
have dense representation in its projection along
principal axes while an utterance with low singular
score has a representation on one or two of the
first few axes only. Since the first few principal
axes in SVD indicate the spread of the data on
those axes, lower singular scores which primarily
contain scores in the first few axes belong to those
utterances which are common in the data.
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Compounding these two observations, and based
on the pattern we observe in figure 2a we use the
Singular Scores to quantize the utterance bins into
three and apply different degrees of subsampling
to each bucket. For an utterance u; € S with
frequency n; and singular score value score;:

* Head: Utterances with low singular scores,
(score; < 7.7) which have a higher degree
of repetition. The frequency n; is reduced to
10 x logs(n;)

* Mid: Utterances with medium singular scores
(7.7 < score; < 10) has its frequency n;
reduced to log,(n;)

e Tail: Utterances with high singular scores
(score; > 10) which have almost negligible
repetitions have their frequency retained.

The amount of reduction achieved by the Unique,
Log N, Clustering 70% and Singular Score ap-
proaches is summarized in table 1.

4 Experimental Setup

4.1 Data

Since we present approaches with practical appli-
cations to real-world SLU modelling systems, we
present results on real world data. In particular, use
3 months of data from an internal de-identified data
authority and include a random sample from the
remainder of the year to account for seasonality in
the utterance requests. We use English and Hindi
data from five domains, i.e. Music, Video, Weather,
Notifications, and Shopping.

Data statistics are shown in table 3; for each
domain, we have atleast 100k training samples of
English and Hindi data in equal distribution and
use 90% for training and 10% for validation.



Domain Unique LogN Clustering 70% || Singular Score
SemER | IC [ SemER | IC [[SemER | IC [ SemER | IC

Music -6.18 | -18.24 -3.77 | -14.46 -2.48 -8.83 -3.08 | -14.45

< Shopping -3.52 -3.29 -2.88 -3.84 -4.19 -4.53 -3.79 -4.97

ED Video +9.90 | +10.04 || +4.40 | +4.45 +6.31 | +5.70 +3.80 | +4.05

/M | Notifications -1.10 -0.19 -1.90 -0.62 -1.00 -0.08 -1.15 -2.56

Weather -4.40 -9.25 -2.20 -4.29 -5.28 -7.86 -8.05 | -17.14

Music -6.60 | -24.48 -4.66 | -20.74 -2.32 | -10.77 -4.51 | -20.11

5 Shopping -7.20 -9.71 -4.45 -3.83 -2.23 -3.87 -5.13 -6.63

= Video +9.54 | +10.96 | +5.29 | +6.62 +1.76 | +6.16 -0.00 | +6.16

= | Notifications -2.72 -6.21 -2.16 -7.45 -3.47 | -13.69 -2.60 | -11.20

Weather -1.56 | -28.21 -0.00 | -15.38 -1.12 | -25.64 -1.12 | -23.08

Table 2: Relative change results
Domain Intents | Slots 5 Results & Discussion
Music 27 103 ) )
Shobbin 75 45 For each domain, we build four SLU models
pping . . . .

Video 36 73 trained on the combined Enghsh' and Hindi data,
Notifications 2 47 ea'ch named a.ftc?r the data redpctlon approacb ap-
Weather 4 18 plied to the training data fed to it: Baseline, Unique,

Table 3: Dataset distribution

4.2 Model parameters

We use an in-house distilled multilingual Lean
BERT (Conneau et al., 2020) sized model
(50Mparameters) pre-trained on multiple languages
including English and Hindi on a large variety of
tasks. We use max-pooling for sentence represen-
tation. Each of our decoders, i.e. for IC and slot
filling components, have one dense layer of size
128 and 256 with relu and gelu activation each
respectively. The dropout values used in IC and
SF decoders are 0.1. For optimization, we use
Adam optimizer with learning rate 10e~* with a
step scheduler. We trained our model for 15 epochs
with batch size of 64 and gradually unfreeze the
initial embedding layer (Howard and Ruder, 2018)
over 5000 steps.

4.3 Metrics

We evaluate our models on two standard SLU met-
rics - Intent Classifcation accuracy (IC) and Seman-
tic Error Rate (SemER) following Gaspers et al.
(2018), which jointly measures IC and SlotF1 and
is defined as

#(slot + intent_errors)

SemER = “4)

#slots_in_reference + 1
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Log N, Clustering 70%, and Singular Score. We
report the performance for each model on SemER
and IC accuracy metrics in table 2

We break down our results into three categories:
discussion on Video domain degradation, perfor-
mance analysis of various data reduction technique
and performance comparison across metrics.

5.1 Video domain degradation

Video domain consistently sees degradation in Se-
mER metric as compared to the baseline model
trained on the complete dataset. This is an indicator
that subsampling data is not always beneficial and
should be leveraged to make decisions on whether
the data slice should be subsampled or not. How-
ever, degradation was also observed to be the least
in the Singular Score approach, with 0% delta for
Hindi SemER and the least IC degradation score.
The Video domain training data singular scores
captures the essence of frequency and semantic
variety in training data which the Unique, Log N
and Clustering 70% methods individually could
not, furthering concreting our belief in the intuition
behind these scores.

5.2 Data reduction techniques

The method of uniquing the input data performs
well across languages and metrics as compared to
the other approaches. However, this is not practical
for commercial SLU systems where the natural dis-
tribution of utterance weights is determined by its



frequency of occurrence. Similarly, for the Log N
approach, we see consistent improved performance,
yet this approach affects tail frequency utterances
which are already under represented. We can per-
form Log N reduction on only the top few most
frequent utterances and generate a uniform repre-
sentation from the long tail distribution of data, but
that would be a scaled version of the unique exper-
iment and we expect results to be pretty similar.

An interesting observation we extract from the
results table is that for the Singular Score approach,
across most domains, most metric values have the
behaviour

Sing. Score < min(Log N, Clust. 70%)

Singular Score method shows combined im-
provements from Log N and Clustering 70% in-
dicating that the Singular Score approach factors in
frequency response as well as semantic similarity
in its reduction step. Singular Score can be com-
putationally heavy as it calculates the SVD of the
input embedding and will scale exponentially as
the input dimension size increases.

5.3 Maetrics

Intent Classification benefits from all data reduc-
tion techniques across different languages. This
indicates that the model has abundance of train-
ing data for intent classification given the simpler
nature of the task as compared to Slot Filling. In
the joint IC/SF BERT model context, we see that
intent classification accuracy improves while also
showing improvements in SemER indicating no
compromise on the Slot Filling task.

6 Conclusion

In this paper, we investigated various inexpensive
approaches for identifying data redundancy in train-
ing data used to fine-tune BERT based models in
SLU systems for the IC and SF task. To the best
of our knowledge, this work is the first step in the
direction of identifying inexpensive techniques to
fine-tune BERT model without affecting offline
metrics. We presented empirical results on a real-
world SLU dataset, showing that data reduction
techniques benefit SemER and Intent Classifica-
tion metrics. In particular, we proposed a novel
data redundancy identification and reduction tech-
nique which we call the Singular Score approach.
This method helps jointly filter utterances based
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on their frequency and semantic representation and
also helps achieve one of the best results among the
techniques experimented with. Future work may
target more complex forms of identifying train-
ing data redundancy such as influential instances
(Pruthi et al., 2020; Koh and Liang, 2020) or active
learning GrieBhaber et al. (2020)
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