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Abstract

Abbreviations and contractions are commonly
found in text across different domains. For
example, doctors’ notes contain many contrac-
tions that can be personalized based on their
choices. Existing spelling correction models
are not suitable to handle expansions because
of many reductions of characters in words. In
this work, we propose ABB-BERT, a BERT-
based model, which deals with an ambiguous
language containing abbreviations and contrac-
tions. ABB-BERT can rank them from thou-
sands of options and is designed for scale. It
is trained on Wikipedia text, and the algorithm
allows it to be fine-tuned with little compute to
get better performance for a domain or person.
We are publicly releasing the training dataset
for abbreviations and contractions derived from
Wikipedia.

1 Introduction

We use abbreviations and contractions (called
”short forms” in this paper) while quickly typing
on digital apps. They are used to save time or ef-
fort in typing and may be unique to us; therefore,
sometimes, only we can understand them. There is
no reliable dictionary of short forms to be referred
because it can be specific to a context or a person.
The short forms often have multiple meanings de-
pending on the domain or the person. In Table 1,
consider the sentence ”The doctor saw an AS cd at
tl” written in a notepad by sales representative at
pharmaceutical company or local news reporter in
Las Vegas. It may be a shorthand for ”The doctor
saw an Ankylosing Spondylitis candidate at trial”
for the sales representative or ”The doctor saw an
Ace of Spade card at the table” for the news re-
porter. Applying downstream NLP AI Algorithms

∗ Correspondence to: prateek.kacker@novartis.com
† Part of work was done during employment at Novartis

Text notes
Notes 1 The doctor saw AS cd at tl
Notes 2 The doctor saw AS cd at tl

Ground Truth
Notes 1 The doctor saw Ankylosing Spondylitis

candidate at trial
Notes 2 The doctor saw Ace of Spades card at

the table
ABB-BERT input

Notes 1 The doctor saw at [ABB] [ABB] at
[ABB]

Notes 2 The doctor saw at [ABB] [ABB] at
[ABB]

ABB-BERT outputs (sorted list on rank)
Notes 1 [ABB]- [Ankylosing Spondylitis, ...]

[ABB]- [candidate, ...]
[ABB]-[trial,...]

Notes 2 [ABB]-[Ace of Spades,...]
[ABB]-[card,...]
[ABB]-[table,...]

Table 1: Text notes made by one can be ambiguous for
others. Notes 1 was written by pharmaceutical sales,
and Notes 2 was written by local news in Las Vegas.
ABB-BERT can suggest the best replacement using a
fine-tuned model for a domain

to this shorthand text gives poor performance be-
cause they have not been trained on personalized
shorthand text. To build better AI systems, we
should expand the short forms in the sentences for
the domain or the user before using it downstream.
Since there is no correct answer for expansions and
numerous right choices based on the domain and
the user, ranking is the better way to handle short
forms text in real-world AI applications.

The definition of abbreviation is simple, and ev-
eryone understands it. For example, USA stands for
the United States of America, or MS stands for Mul-
tiple Sclerosis. On the other hand, a contraction is
a misspelling or shortening of any word, such as dr,
drs, dctr etc., for a doctor or ptnt, pnt, pt etc., for a
patient. Current spelling correction models fail to
capture the correct form for all possible scenarios
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because of the many reductions of characters in
short forms.

Large NLU language models like BERT (Devlin
et al., 2019a), RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2020), or DeBERTa (He et al.,
2020) are trained on normalized data from differ-
ent domains but not with personalized or domain-
specific short forms and hence reduce the model
performance in downstream NLP tasks. For ex-
ample, in a classification task, the contractions or
abbreviation might be critical in determining the
class and can lead to a wrong classification (false
positive or false negative). To solve this problem,
ABB-BERT can normalize the text by ranking the
options to find the best choice for abbreviation or
contraction, leading to better downstream perfor-
mance.

In the past, much work has been done on nor-
malizing text data. Misspellings (simple spelling
mistakes) have been handled well by AI models.
Recent work by Tan et al. (2020) introduced TNT,
a model that was developed to learn language rep-
resentation by training transformers to reconstruct
text from operation types typically seen in text ma-
nipulation, which they show is a potential approach
to misspelling correction. Another AI algorithm
Neuspell (Jayanthi et al., 2020) is a spelling correc-
tion toolkit that captures the context around the mis-
spelled words. We have noticed that misspelling
AI models do not perform well with contractions
because of loss in information due to contraction
and the number of possible variations for the right
choice based on domain.

Kreuzthaler et al. (2016) introduced a data-
driven statistical approach and a dictionary-based
method for the task of abbreviation detection. They
show some success of these approaches; however,
as their approach depends on a dictionary with a
limited number of entries, it cannot be scaled or
extended to other domains. Joopudi et al. (2018)
trained Convolutional Neural Network (CNN) mod-
els to disambiguate abbreviation senses and found a
1–4 percentage points higher performance for CNN
compared to Support Vector Machines. These re-
sults were robust across different datasets.

Li et al. (2019) showed that topic modeling com-
bined with attention networks could help get better
results on abbreviation disambiguation because top-
ics provide the context for the neural networks. To
improve the performance on bio-medical data, Jin
et al. (2019b) utilized pre-trained model BioELMO

Algorithm 1 contraction
Input: word
Output:List of possible contractions

1: Remove any other characters except a−z,A−
Z and lower case the word

2: Remove all the vowels a, e, i, o, u
3: Select all characters except 1st character
4: Find all possible combinations of selected char-

acters without changing order
5: Append the first character to each item in the

list
6: Return list

Algorithm 2 abbreviation
Input:sentence
Output:List of tuples (Abbreviations,expansions)

1: Identify capitalized word in sentence and their
location

2: Identify capitalized word sequences with
length two or more

3: If two sequences are seperated by prepositions
or conjuctions then connect them to form a
sequence

4: Create a list of tuples (initals of uppercase
words in sequence, sequence)

5: Return list

(Jin et al., 2019a) which gets better-contextualized
features of words. Then the features are fed into
abbreviation-specific bidirectional LSTMs where
the hidden states of the ambiguous abbreviations
are used to assign the exact definitions. Recently,
Pan et al. (2021) proved that BERT-based algo-
rithms combined with training strategies like dy-
namic negative sample selection and adversarial
training are very effective in Scientific AI domain
acronym disambiguation datasets (SciAD) (Veyseh
et al., 2020).

The contribution of this paper is threefold. First,
we propose ABB-BERT which uses a ranking al-
gorithm by combining BERT (Devlin et al., 2019b)
and architecture by LaBSE in Feng et al. (2020)
on short forms options based on context. We in-
troduce a new token [ABB] that replaces all short
forms. Second, we show that ABB-BERT is a prac-
tical and scalable way to deal with un-normalized
text across domains. Third, we publicly release the
dataset and code 1 for ABB-BERT for future work.

1Dataset and code available at https://github.com/prateek-
kacker/ABB-BERT
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Figure 1: Graphical representation of the training and inference on ABB-BERT. The sentence written by the sales
rep is ”The doctor saw the AS ptnt” but for training, the sentence is modified to ”The doctor saw the [ABB] [ABB]”.
The model is trained to minimize the additive softmax loss of [ABB] corresponding to AS and ptnts. The ground
truth for the above example is ”The doctor saw the Ankylosing Spondylitis patient”. During inference, ABB-BERT
ranks the several options given per [ABB]. ABB-BERT can be fine-tuned to improve the performance of a domain.

Key Value Number
of
choices

ptnt patient, patent, potent, potential
...

4736

dctr doctor, director, documentary,
declaratory ...

2555

tl table, trial, tool, tuberculosis ... 81236

Table 2: Selected examples of key-value pairs in
dict cont.

Key Value Number
of
choices

as Ankylosing Spondylitis, Ace of
Spades, Astronomy and Space
...

89119

acl Association for Computational
Linguistics, Avant Co. Ltd., Al-
bany Club in London ...

2259

usa United States of America, Ur-
ban Songwriter Award, Ultimate
Sports Adventure ...

1608

Table 3: Selected examples of key-value pairs in
dict abb.

2 ABB-BERT

The goal of the algorithm is to rank the options
for short forms. As shown in 1, the input sentence
X may contain one or more short forms. We as-
sume that short forms’ location in the sentence and
the character composition is known for training

Original Sentence With contractions and
abbreviations

When I got to the house,
Mrs. Everett, the
housekeeper, told me
that Hermione was in
her room, watching her
maid pack.

WI got to the house,
ME, the hs told me
that Hermione was in
her room, watching her
maid pack.

The Sydney area has
been inhabited by
indigenous Australians
for at least 30,000
years.

The Sydney area has
been id by ig Aus-
tralians for at least
30,000 years

Bosnian claims of
Serbian annexation
attempts in 1993 were
brought to the World
Court.

Bosnian cs of Serbian
annexation attempts in
1993 were brought to
the wc.

Table 4: Selected examples of GLUE Benchmark
datasets. They have been manually edited to create
training data for ABB-BERT

purpose. A typical example of sentence with short
form can be seen in Table 4. We substitute the short
forms with [ABB] and the algorithm uses charac-
ter composition to get several options for short
forms, create embeddings and calculate scores to
rank each option.

2.1 Lookup Tables for Options

ABB-BERT ranks options based on thousands of
choices for expansions for short forms present in
the lookup tables dict cont and dict abb. To create
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these tables, English Wikipedia has been parsed
for words for contractions and full forms for ab-
breviations using the rule-based methods in Algo-
rithm 1 and Algorithm 2, respectively. After ob-
serving thousands of short forms used in real-world
datasets, these rules were created, which we can-
not share publicly. Using these rules, we created
key-value pairs for lookup tables, dict cont and
dict abb, from words and abbreviations extracted
from English Wikipedia. Given an abbreviation or
contraction, these lookup tables list words that can
be the possible expansion. We can see the output
of Table 2 and Table 3, and this list can be huge;
hence scalability is crucial for ABB-BERT.

2.2 Model
ABB-BERT is based on the BERT architecture. In
order to make it lightweight, it is pre-trained on an
uncased BERT base model. ABB-BERT requires
that every contraction and abbreviation be replaced
with [ABB] token. Since [ABB] is not present in
the default vocabulary of BERT, the vocabulary
has to be modified to include this special token.
Consider a sentence X in dataset D. After the tok-
enization ofX , a sequence of tokens (x1, x2, ...xn)
is generated. In this setup, x1 is the [CLS] token
for every sentence. We have already replaced the
short forms with the [ABB] tokens hence we know
their exact locations. For simplicity, let (xa, xb, ...)
represent the [ABB] token corresponding to indices
I = (a, b...) . The BERT output z1, z2, ...,zn
corresponding to each token x1, x2, .., xn can be
represented as

z1, z2, ...,zn = BERT (x1, x2, ..., xn) (1)

On top of the BERT model, there is a feed-
forward neural network f(.). The output vectors
from BERT, zi, go through this neural network
such that yi = f(zi). The final combined repre-
sentation of the output is

y1,y2, ...,yn = ABB BERT (x1, x2, ..., xn)
(2)

y1 is the corresponding output for always the token
representing from [CLS] and ya,yb... for [ABB]
because of the indices I .

We do similar exercise for short forms. Each
short form at [ABB] can have thousands of options
and can be found from dict cont and dict abb ta-
bles. For location a, the options are denoted by
Sa which is list of options [S1

a, S
2
a, ..., S

oa
a ] and

length of the list is denoted by oa. The tokenizer

converts S1
a , the first option to (s1,1a , s1,2a , ..., s1,na )

and similarly for other options S2
a, ..., S

oa
a . Simi-

lar to X , every option Sa is propogated through
ABB BERT . The output is represented for S1

a

is represented as:

(t1,1a , t1,2a , ..., t1,na ) = ABB BERT (s1,1a , s1,2a , ..., s1,na )
(3)

The equation 3 is applied to other options in Sa

also. For options, there will not be any [ABB].
[CLS] is the first and the only relevant token hence
the notations can be simplified by dropping the
location information. For instance, s1,1a to s1a, s2,1a
to s2a etc and similarly for t1,1a to t1a, t2,1a to t2a etc.
The algorithm uses additive margin softmax loss,
discussed in the next section, to rank the outcomes.

2.3 Dual Encoder with Additive Margin
Softmax Loss

The architecture of ABB-BERT with additive mar-
gin softmax loss is shown in figure 1. The architec-
ture is similar to the one used by Feng et al. (2020).
We use dual-encoders which feeds a scoring func-
tion and determines the rank of the alternatives
based on the cosine similarity measure, and hence
such models are well suited for ranking problems.
We use the additive margin softmax loss function
introduced in Wang et al. (2018b). Later on, Yang
et al. (2019) used a slightly modified version of
this loss, and Feng et al. (2020) used it in their
language-agnostic LABSE model.

For this paper, the short forms disambiguation
problem is modeled as a ranking problem to find
the best option Sa for short form at index a in
sentence X where Sa is one of the alternatives
in [S1

a, S
2
a, ..., S

oa
a ]. The ranking of the options is

evaluated by the cosine similarity score φ . For
ABB-BERT, φ scores for all the options at loca-
tion a, is calculated by calculating cosine similar-
ity φ between ya and t1a, t

2
a, ..., t

oa
a for options

S1
a, S

2
a, ..., S

oa
a . Ranking of the options at location

a is done by sorting φ scores.
To train the algorithm, we find the conditional

probability P (S|X) for options and for all loca-
tions. For example, S1

a , the first option at location
a will have P (S1

a|X) as:

P (S1
a|X) =

eφ(t
1
a,ya)∑oa

i=1 e
φ(tia,ya)

(4)

This can be extrapolated to other options and
other locations. For training purposes, for each
location, the first option is the ground truth option.
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Metrics Results A Results B Results C
COLA Matthews corr. 52.6 22.8 48.1
SST2 acc 93.6 20.4 92.9
STS-B Pearson/ Spearman corr 84.9/83.4 62.5/61.2 75.0/73.8
QQP acc./F1 71.6/89.2 54.5/84.9 65.4/88.3
MNLI
Matched

acc. 84.5 71.3 77.9

MNLI
Mis-
matched

acc. 83.4 72.0 77.1

MRPC acc./F1 86.6/81.6 79.8/75.4 75.9/71.5
QNLI acc. 90.9 83.4 82.6
RTE acc. 64.4 56.7 57.8
WNLI acc. 57.5 61.0 58.2

Table 5: Results of inference of downstream task trained on a single BERT-base-uncased model on GLUE Dataset
on the respective tasks. Results A are obtained on the original test datasets. Results B are obtained on test datasets
manually edited by introducing short forms. Results C are obtained on the test datasets improved by ABB-BERT by
selecting 1st option

Additive margin softmax extends the cosine sim-
ilarity φ by introducing a large margin, m, only
around correct option. The margin improves the
separation between the correct option and other op-
tions. Moreover, we scale the cosine values using
a hyper-parameter s in the equation 5. We select
a large value, which accelerates and stabilizes the
optimization (see (Wang et al., 2018b)). Equation 5
represents the loss function and is optimized during
training.

Substituting for the new scoring functions, the
objective loss function for single sentence X be-
comes:

L = − 1

N

I∑
i=a,b,..

ni∑
o=1

es(φ(t
o
i ,yi)−m)∑ni

k=1 e
s(φ(tki ,yi)−m)

(5)

where

m =

{
1 ≥ m ≥ -1 o=1 or k=1
0 otherwise

s� 1

2.4 Scalable and personalized ABB-BERT
ABB-BERT might have to work real-time during
inference in some applications to generate options
for downstream tasks, though forward pass through
BERT over thousands of alternatives can be expen-
sive and time-consuming. Once ABB-BERT gets

% Correct out-
comes (longest
contr.)

% Correct out-
comes (short
contr.)

Wikipedia 63.7 11.2
Covid
Dataset

61.7 11.0

Apps Re-
view

54.4 0.0

US Bill 58.9 0.67
ECTHR 70.0 13.9

Table 6: Neuspell results on test sets of different do-
mains on contractions. The model performs well with
the longest contraction because it has the most number
of words. The performance of Neuspell on abbrevia-
tions was close to 0 for all datasets.

deployed, it is expected to get better in ranking
for a domain, a user, or group of users with new
annotations and training runs; hence there should
be a personalization phase equivalent to finetuning
the model for a person or a domain. In the person-
alization phase, it is not computationally possible
to perform a forward pass on an entire list of op-
tions or retrain ABB-BERT again as the inference
may be on a device with limited compute. To pre-
pare for the personalization phase and to reduce
the inference time, dict cont and dict abb is parsed
for expansions for all possible options and ABB-
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BERT embeddings ti are stored in a lookup table
dict embed for each expansion. The parameters
for ABB-BERT and the table dict embed are then
frozen. ABB-BERT is modified by adding a single
feed forward layer g(.) parametrized by θ such that
for embeddings yi for sentences from equation 2
and embeddings tox for options from equation 3, is
modified. Training is done only on layer g(.) to
reduce training time.

uo
i = g(toi , θ)

and i ∈ I and for input sentences yi

zi = g(yi, θ)

Here uo
i and zi replaces toi and yi respectively in

equation 5. The model parameters are initialized
by θ0 such that x = g(x, θ0). During the personal-
ization phase, only parameters θ are trained which
is not computationally expensive and can be done
on the device. During inference, ABB-BERT does
a forward pass only for input sentence yi. ABB-
BERT does not need to do a forward pass on op-
tions and it can get embeddings toi directly from
dict embed and a forward pass with parameters θ.

3 Experimental Setup

3.1 Data Preparation and Pre-training
ABB-BERT

Training of ABB-BERT requires significant prepa-
ration of train, test, and validation data. We have
taken English Wikipedia and extracted random sen-
tences for datasets. We know that Wikipedia does
not have contractions as it is a very clean dataset.
Hence we had to create the datasets manually for
ABB-BERT based on short forms in algorithm 1
and algorithm 2 respectively. For contractions,
15% of words in a sentence are selected at ran-
dom. Using algorithm 1, a random contraction
is selected to get options from dict cont. Train,
test and validation datasets contains >1M, >100K
, >100k [ABB] tokens respectively. The ground
truth, which is the correct expansion, is always the
first word of the options in training, test, and vali-
dation datasets. In all the datasets, we have only 50
options per [ABB]. In real-world scenarios, there
will be thousands of options. Pre-training of ABB-
BERT was done on NVIDIA K80 GPUs for a week
on Wikipedia training data with Adam optimizer
and a lr equal to 5e − 06. After hyper parameter
optimization, m was chosen to be 0.8, and s was
30.

3.2 Results
Each sentence in ABB-BERT can have multiple
[ABB] and performance is calculated at each loca-
tion at I = (a, b, ...) There are two metrics relevant
to this experiment. First is the average of rank (R)
of the correct ground truth option, and second is av-
erage of difference (Dif ) between cosine value (φ)
of input sentence [ABB] & correct option which is
the first option in training data and average cosine
value of the input sentence [ABB] & rest of the
options

Dif = φ(t1a,yi)− (

oa∑
n=2

φ(tna ,yi))/(oa−1) (6)

We understand that the best average rank of the
model outcome on the test set is 1, and Dif should
be close to m on average. The larger the value
of Dif , the better ABB-BERT is in predicting the
outcome.

In the first experiment, we evaluate the impact
of short forms on any downstream task. In order
to model the impact, we took GLUE Benchmark
(Wang et al., 2018a) tasks as a downstream task. Ta-
ble 5 column Results A show the performance of
the BERT-base-uncased model on each task with-
out any changes to test data. We manually intro-
duced short forms in test sets of each task using
techniques mentioned in section 3.1. There is a
marked reduction of performance in most datasets,
as shown in table 5 in column Results B. Then
we corrected each test set with ABB-BERT pre-
dictions selecting only the 1st rank option from
50 options. The performance of the new test set
is shown in the table 5 in column Results C. In
the second experiment, we wanted to measure the
model performance improvement after the person-
alization phase. Hence we tested it out on three
domain datasets which were bio-medical, legal,
and reviews datasets. For the biomedical domain,
the Covid-19 QA dataset by Möller et al. (2020)
was used. For the legal domain, US Legislation
Corpus by Kornilova and Eidelman (2019) and Eu-
ropean Court for Human Rights (ECTHR) database
by Chalkidis et al. (2019) was used. For the tech-
nical domain, the Android Applications User Re-
view dataset by Grano et al. (2017) was used. Sen-
tences from paragraphs were extracted for train,
validation, and test datasets. The lookup tables
dict cont and dict abb were used to create short
forms for all the datasets and parameters θ of g(.)
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Pre-personalization Post-personalization
Avg.
Rank
over 50
options

[ABB]
count

Avg.
Diff

%(Top
3 ranks)
in test
set

Avg.
Rank

Avg.
Rank
improve-
ment

count of
[ABB]
Rank
increase

Avg.
Rank de-
crease

count of
[ABB]
Rank de-
crease

Wikipedia
(Pre-
training)

1.45 125079 0.67 - - - - - -

Covid
Dataset

1.58 16218 0.61 95.7 1.57 2 174 1.18 130

Application
Review

1.42 9150 0.67 97.7 1.32 8.89 140 1.6 164

US Bill 1.51 29470 0.64 96.5 1.46 5.17 396 1.49 332
ECTHR 1.26 22295 0.67 98.5 1.25 3.24 144 1.2 254

Table 7: ABB-BERT performance on different domain data pre and post personalization phase. In pre-personalization
phase, ABB-BERT was used without any domain training. The results are for short forms identified together in a
sentence. m is 0.8 and Avg Diff is very close to it. The average rank without training is very high leaving little scope
of big improvement. However there is improvement seen in rank of the correct option in post-personalization phase

were trained keeping ABB BERT parameters
static for this experiment. The number of options
for every [ABB] was 50 for every dataset.
ABB-BERT performance results on a test set are
shown in table 7. Without any training of pa-
rameter θ, ABB-BERT does very well in the pre-
personalization phase. The performance on the test
set in post-personalization gets better though not
noticeable because the average rank is close to 1 in
pre-personalization phase.
In the third experiment, we wanted to compare
our work with existing work. We could not find
the exact equivalent for this work, but we still de-
cided to baseline this work for contractions using
NeuSpell by Jayanthi et al. (2020). Neuspell is
an excellent algorithm for misspellings, but when
exposed to contractions, it makes many mistakes.
Results of the baseline can be found in table 6. As
expected, NeuSpell does well for lengthiest contrac-
tions than shortest contractions. The performance
of Neuspell was close to 0 for all the abbreviation
datasets. Hence, the results are not shown in the
table 6.
For abbreviations, we tested out the algorithm on
the SciAD dataset from Veyseh et al. (2020). ABB-
BERT, without training, gives an average rank of
1.76, which is lower compared to the best model by
Jin et al. (2019b). It is because the loss function of
the algorithm is designed for ranking on large num-
ber of options. However, the performance improves
after the personalization phase, with an average

ranking of 1.55.

3.3 Visualizing ABB-BERT results

In the datasets, ABB-BERT is given only 50 op-
tions. It does a great job in predictions with more
than 90% performance for the top 3 choices. If we
look at the results, we see that most of the time, the
one of top choices can make a correct substitution
for [ABB] in a sentence. Table 8 shows the options
that scored high and make much sense. It shows
that model can learn grammar and understands lan-
guage well. However, the model does not consider
commonsense or missing context in ranking. Ta-
ble 9 shows where the model makes mistakes in
predictions because of inherent challenges in this
task.

4 Conclusions and future work

In this work, we propose ABB-BERT for abbrevia-
tion and contraction disambiguation. ABB-BERT
tackles both of these irregularities in the text si-
multaneously and has the advantage that it takes
into account the context in the sentence when rank-
ing the possible alternatives. We designed it on
Wikipedia and tested it on domain data also. The
model may have a hard time getting the right op-
tions if they are grammatical appropriate based on
context but maybe wrong by commonsense. Future
work can help improve the model and suggest all
[ABB] at the same time based on commonsense and
missing context like geographical location, history
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Original Sentence With [ABB] top 5 alternatives and cosine scores
Young redheaded man holding
two bicycles near beach.

Young redheaded man holding
[ABB] [ABB] near beach.

ABB1:(two, 0.99), (twag, 0.20),
(twili,0.20), (tmfw,0.20), (townian,0.20)
ABB2:(bicycles: 0.86), (berchy: 0.20),
(binchy: 0.20), (bakley: 0.20), (besyde:
0.20)

This problem has been previ-
ously studied for zero-shot ob-
ject recognition but there are
several key differences.

This problem has been [ABB]
studied for zero-shot object
[ABB] but there are several key
differences.

ABB1:(previously, 0.99), (provincial,
0.98), (privateering, 0.2), (pāval, 0.2),
(primavera, 0.2) ABB2: (recognition,
0.99), (recréation, 0.26), (retroactive,
0.21), (rectification, 0.21), (revoluction,
0.20),

a vivid cinematic portrait. a [ABB] [ABB] portrait. ABB1:(vivid, 0.99), (vmvs, 0.20), (vhvi,
0.20), (vitruvius, 0.20), (vouvantes,
0.20) ABB2: (cinematic, 0.99), (chris-
tini, 0.20), (ciston, 0.20), (coeffient,
0.20), (clairant, 0.20)

Table 8: Selected examples of GLUE Benchmark datasets. The models made an accurate predictions on the options
it was given. The model understands grammar and takes in context in the sentence

Original Sentence With [ABB] top 5 alternatives and cosine scores
”It’s our judgment that the pos-
sible avenues to a peaceful res-
olution were not fully explored
at the Tokyo conference,” U.S.
State Department spokesman
Richard Boucher said.

” It’s our judgment that the pos-
sible avenues to a peaceful res-
olution were [ABB] fully ex-
plored at the Tokyo conference,”
[ABB] spokesman [ABB] said.

ABB1: (not ,0.99), (nudator, 0.204), (nafat, 0.204),(ndkt,
0.204), (nonotic, 0.203) ABB2:(United States
Delegation, 0.99), (Ukrainian Second Division,
0.99),(Ukrainian Soviet Division, 0.99), (Ukrainian
Social Democratic, 0.99), (Union of Social Democrats,
0.99), ABB3: (road between,0.99), (Rob Bradley, 0.99),
(Rosario Blanco, 0.99), (Ralph Barbara,0.99), (Roger
Barclay,0.99)

Maude and Dora saw a train
coming

[ABB] saw a [ABB] coming ABB1:(Mountain Daughter,0.99), (Mo Due, 0.99),
(Molino Dam, 0.99), (Mustard Digital, 0.99), (Maude
and Dora, 0.99) ABB2:(train, 0.99), (tegne, 0.20), (tan-
shi, 0.20), (thunderer, 0.20), (trumain, 0.20), (tenelea,
0.20),

Alan J. Konigsberg is related
to Levy Phillips & Konigsberg

[ABB] [ABB] related to [ABB] ABB1:(All Japan Kick,0.99), (Archbishop John
Kemp,0.52), (Arbab Jehangir Khan,0.35), (Ameri-
can John Kendrick,0.3), (Albert James Kingston,0.29)
ABB2:(is, 0.99), (istd, 0.20), (isthmo, 0.20), (inscs,
0.20), (istres,0.20), ABB3:(Lord Palatine of Kyiv, 0.99),
(Liverpool Park Keepers, 0.99), (La Palabra Kilomet-
ros, 0.99), (Long Pine Key, 0.99), (Lalitha Priya Ka-
malam,0.91)

Table 9: Selected examples of GLUE Benchmark datasets. The sentences are hard to predict because of the model
outcome might be correct grammatically but does not match the ground truth. Is some cases enough information is
not provided as input to make a correct prediction

of notes etc.
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