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Abstract
Recently Conformer-based models have
shown promising leads to Automatic

Speech Recognition (ASR), outperforming
transformer-based networks while meta-
learning has been extremely useful in
modeling deep learning networks with a
scarcity of abundant data. In this work, we use
Conformers to model both global and local
dependencies of an audio sequence in a very
parameter-efficient way and meta-learn the ini-
tialization parameters from several languages
during training to attain fast adaptation on the
unseen target languages, using model-agnostic
meta-learning algorithm (MAML). We anal-
yse and evaluate the proposed approach for
seven different Indic languages. Preliminary
results showed that the proposed method,
MAML-ASR, comes significantly closer
to state-of-the-art monolingual Automatic
Speech Recognition for all seven different
Indic languages in terms of character error
rate.

1 Introduction

"Ok, Google. Hi Alexa. Hey Siri." have featured an
enormous boom of smart speakers in recent years,
unveiling a trend towards ubiquitous and ambient
computing (Al) for better daily lives. As the com-
munication bridge between humans and machines,
multilingual ASR is of central importance. India is
a country with an enormous amount of languages
and catering to those languages is difficult without
having a large amount of label training corpora.
Pretraining on other language sources as the initial-
ization, then fine-tuning on target language is the
main approach for such low-resource setting, also
referred to as multilingual transfer learning pre-
training (Multi-ASR) (Vu et al., 2014) (Tong et al.,
2017). Multi-ASR models are designed to learn us-
ing an encoder to extract language-independent rep-
resentations to build a better acoustic model from
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Figure 1: The MAML algorithm learns a good param-
eter initializer 6 by training across various meta-tasks
such that it can adapt quickly to new tasks.

many source languages. The success of language
independent features to improve ASR performance
compared to monolingual training has been shown
in many recent works (Dalmia et al., 2018) (Cho
et al., 2018)(Tong et al., 2018). However, there per-
formance have been lacklustre compared to model
trained directly using target language, i.e., training
for single language only.

In this paper, we follow on the concept of multi-
lingual pretraining — Meta-learning. Meta-learning,
or learning-to-learn, has recently received consid-
erable interest within the machine learning com-
munity. The goal of meta-learning is to resolve
the matter of fast adaptation on unseen data, which
is aligned with our low-resource setting for differ-
ent Indic languages. We use model-agnostic meta-
learning algorithm (MAML) (Finn et al., 2017) in
this work. As its name suggests and seen in figure
1, MAML can be applied to any neural network
architecture since it only modifies the optimization
process following a meta-learning training method.
It doesn’t introduce any additional modules like
adversarial training or requires phoneme level an-
notation like hierarchical approaches (Hsu et al.,
2019).

In recent times, the Transformer architec-
ture based on self-attention (Zhang et al.,
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Figure 2: Transformer ASR model architecture.

2020)(Vaswani et al., 2017) has shown widespread
adoption for modeling sequences due to its abil-
ity to capture long-distance interactions and the
high training efficiency. Alternatively, convolu-
tions have also been successful for speech recog-
nition (Li et al., 2019) (Kriman et al., 2019)(Han
et al., 2020)(Sainath et al., 2013)(Abdel-Hamid
et al., 2014), that capture local context progres-
sively using local receptive field layer by layer.
However, models with convolutions or self-
attention each have their own limitations. While
Transformers are good at modeling long-range
global context, they are not very capable to extract
fine-grained local feature patterns. Convolution net-
works, on the other hand, exploit local information
and are used as the common computational block
in vision. They learn shared position-based kernels
over a local window which maintains translation
equivariance and can capture features like edges
and shapes. One limitation of using local connec-
tivity is that you need several layers or parameters
to capture global information. To tackle this is-
sue, contemporary work ContextNet (Han et al.,
2020) adopts the squeeze-and-excitation module
(Hu et al., 2018) in each residual block to capture
longer context. However, the model is still limited
in capturing dynamic global context because it only

applies a global averaging over the entire sequence.

Recently, combining convolution and self-
attention has shown significant improvement in au-
tomatic speech recognition model as they can learn
both position-wise local features and use content-
based global interactions. We have used Conform-
ers (Gulati et al., 2020) in this work. Conformers
are the combination of self-attention and convolu-
tion sandwiched between a pair of feed-forward
modules that achieves the best of both worlds i.e.,
self-attention learns the global interaction whilst
the convolutions coherently captures the relative
offset-based local correlations.

We evaluated the effectiveness of the proposed
model of several Indic languages. Our experiments
show that our model comes close to monolingual
models.

2 Proposed Method

In this section, we present the architecture of our
conformer-based speech recognition model and the
proposed meta-learning method for fast adaptation
to the multilingual speech recognition task.

2.1 Conformer Speech Recognition Model

As shown in Figure 2, we build our model using a
Conformers to learn to predict graphemes from the



speech input. Our model extracts learnable features
from audio inputs using a feature extractor module
to generate input embeddings. The encoder process
the input embeddings generated from the feature
extractor module using conformer blocks. Mathe-
matically, this means, for input x; to a Conformer
block ¢, the output z; of the block is:

1
T; = T; + §FFN($Z)
2, = & + MHSA ()

zy = 2 + Conv(z})

)
. no 1 "
z; = Layernorm(z; + §FFN(x2 )

where FFN refers to the Feedforward module,
MHSA refers to the Multi-Head Self-Attention
module, and Conv refers to the Convolution mod-
ule as described in the preceding sections (Gulati
et al., 2020).

Then the decoder receives the encoder outputs
from conformer blocks and applies multi-head at-
tention to its input to finally compute the logits of
the outputs. To generate the probability of the out-
puts, we then compute the value of logits using a
softmax function. We also apply a mask in the at-
tention layer to avoid any possible information flow
from future tokens. We then train our model by op-
timizing the next-step prediction on the previous
characters and by maximizing the log probability
shown below:

mgleogp(y”z’y;i;e), (2)

where z is the character inputs, y; is the next pre-
dicted character, and g, is the ground truth of the
previous characters. uring inference, we generate
the output sequence using a beam-search method
in an auto-regressive manner. Then we maximize
the following objective function:

nY_log P(yilz, §<i;0) + vV we(f<i),  (3)

where 7 is the parameter to control the decoding
probability from the decoder, and y is the parameter
to control the effect of the word count we(g<;) as
suggested in (Winata et al., 2019) and (Winata et al.,
2020).

2.2 Fast Adaptation via Meta-Learning

Model-agnostic meta-learning (MAML) (Finn
et al., 2017) learns to quickly adapt to a new task
from a number of different tasks using a gradient
descent method. In this paper, we apply MAML
to effectively learn from a set of languages and
quickly adapt to a new language in the few-shot
setting. We denote our Conformer based ASR as
fo parameterized by 6. Our dataset is consist a
set of languages A = {4, Ao, -+, Ay}, and for
each language 7, we split the data into A!"* and
AY4l, then update 6 into 6 by computing gradient
descent updates on A"

0; = 0 — aVoL gra(fo), )

where « is the fast adaptation learning rate. During
the training, the model parameters are trained to op-
timize the performance of the adapted model f(6;)
on unseen AY%. The meta-objective is defined as
follows:

main Z EA;jal(fe;): Z ﬁAgal(fe—avgﬁAﬁm(fg))-

Ai~p(A) Aj~p(A)
o

where £ ,va(fy) is the loss evaluated on AY%. We
collect the loss £ jvai( f@;) from a batch of lan-
guages and perform the meta-optimization as fol-
lows:

00-8 > VoLyulfy), (6
Ai~p(A)

where [ is the meta step size and fy is the adapted
network on language A;. The meta—éradient update
step is performed to achieve a good initialization
for our conformer based ASR model, then we can
optimize our model with few number of samples
on target languages in the fine-tuning step. In this

Table 1: Statistics of Indic Language Speech Data.

Language # Samples
Assamese (as) 36,000
Bengali (be) 232,537
Hindi (hi) 80,000
Marathi (ma) 44,500
Nepali (ne) 157,905
Sinhala (sh) 185,293
Tamil (ta) 62,000
Total 798,235




Table 2: Average Character Error Rate (% CER) comparison with single training.

Languages MAML Single Training
- 10%-shot 25%-shot 50%-shot 75%-shot all-shot -
Assamese 61.29 50.87 41.80 25.44 13.44 (+1.86) 11.58
Bengali 57.48 47.60 38.19 26.47 10.77  (+2.04) 8.73
Hindi 55.49 43.81 35.78 23.43 10.19 (+2.92) 7.27
Marathi 56.78 45.30 36.68 23.56 10.04 (+2.91) 7.13
Nepali 57.33 47.33 35.27 22.85 10.32  (+3.46) 6.86
Sinhala 54.36 45.22 35.15 24.36 11.69 (+4.36) 7.33
Tamil 60.38 48.70 39.89 27.41 19.74  (+4.21) 15.53
Table 3: Mean Human Evaluation score(0-5) for Indic Languages

Language MAML Single Training

- Mean Correct Mean Fluency | Mean Correct Mean Fluency

Assamese (as) 4.1 4.0 4.4 4.5

Bengali (be) 4.0 4.0 4.4 4.4

Hindi (hi) 4.2 4.1 4.4 4.5

Marathi (ma) 4.0 4.1 4.5 4.5

Nepali (ne) 4.1 4.0 4.6 4.5

Sinhala (sh) 4.1 4.1 4.5 4.4

Tamil (ta) 3.9 4.1 4.2 4.2

work, we use first order approximation MAML (Gu
et al., 2018) and (Finn et al., 2018), thus Equation
6 is further rewritten as:

00-5 Y  Volyul(fy)

Ai~p(A)

(7)

3 Experiments

3.1 Dataset

We use Assamese, Tamil, and Marathi datasets
from Government of India DeitY-TDIL and Ben-
gali, Sinhala and Nepali datasets (Kjartansson et al.,
2018) from Open-SLR. The statistics of the dataset
are shown in Table-1. The dataset is imbalanced
with languages with a large number of training
samples.

3.2 Experimental Details

We preprocess the raw audio inputs into a spectro-
gram before we fetch it into our conformer based
model. Our model utilizes a VGG model (Si-
monyan and Zisserman, 2015), a 6-layer CNN ar-
chitecture, as the feature extractor. Our speech
recognition model consists of sixteen conformer
encoders and three transformer decoder layers with
eight heads for multi-head attention. The con-
former consists of a dim.y,coger Of 512. In total, our

model has around 14.9M parameters. For both the
MAML and single training models (training model
on target language directly), we end the training
process after 3M iterations and 1M iteration respec-
tively. During the fine-tuning step for MAML, we
run 15 iterations for each sample. We evaluate our
model using a beam search withn = 1, v = 0.1,
and a beam size of 5. In the single-training setting
as well as MAML based training setting, we down-
sample the speech data to a 16 kHz audio sample
rate. The code can be found at here

We train and evaluate the effectiveness of
MAML for Indic languages by comparing its per-
formance with the stand-alone conformer model
trained on a single language i.e., single-training set-
ting. For each language in MAML taken as target
language during experiment, every other languages
are used in training. During testing we fine-tune the
MAML with target language and then We evaluate
the model performance using the character error
rate (CER) and run experiments ten times using
different test folds. We report the average and stan-
dard error of all folds in the 10%-shot, 25%-shot,
50%-shot, 75%-shot and all-shot settings, where g-
shot setting means only q% data is used in training
from training set.
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Figure 3: Output of some samples in Hindi, Bengali and Tamil Language for MAML and Single language trained

model.
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Figure 4: Few-shot results on Bengali Language using
MAML vs Single Training.

4 Results and Discussion

4.1 Quantitative Analysis

As shown in Table 2, MAML performance is very
close to the model when trained completely on
a single language. We have used character error
rate (CER) as evaluation criteria because Indic lan-
guages contain lot of vowel diacritic which sound
similar but are different hence using word error rate
(WER) to evaluate will not give correct informa-
tion on performance of model. Our approach yields
up to a 2-4% CER margin in the all-shot MAML

and single training. This difference is attributed to
low precision in prediction of vowel diacritic for
MAML compared to single training. In Figure-3,
you can see that sentence generated by MAML is
readable and sensible but not entirely correct since
there are few missing vowel diacritic.

4.2 Qualitative Analysis

We also evaluate the outputs produced by the model
for both MAML based method and the single train-
ing method. We evaluate them using a mean human
evaluation score that is averaged over 1000 sam-
ples for each language. This score is based on the
correctness of output and fluency. The scoring is
range 0-5 where 0 is for worst performance and 5
for best performance. The evaluation were done by
five independent native speakers of each languages.
The Table-3 shows the result of the mean human
evaluation score for all the languages experimented
with.

Few examples generated by both MAML based
model and single-language trained model are given
in Figure-3.



4.3 Efficacy of Few-Shot Fine-tuning

We investigate the number of samples required
to observe performance improvement after fine-
tuning the model. We start by training the model
with a very small number of samples, i.e., 10%-
25% of training data, where each sample approx-
imately consists of 3-4 seconds of audio. We ob-
serve that the model cannot adapt to the target lan-
guage with a such minuscule amount of data. We
attribute this to the fact that our model is unable to
capture the information from small audio samples
due to a large amount acoustic variation in the data.
Therefore, we increase the minimum threshold to
10% of the training data, and the model starts to
adapt to the target language accordingly. We do this
process until the threshold is set to 100%. Figure-4
shows the adaption and constant decrease in CER
with an increase in fine-tuning data for the Bengali
language.

5 Conclusion

In this paper, we analyse and evaluate the per-
formance of our proposed method for automatic
speech recognition in multilingual scenario for
seven different low-resource Indic languages. We
apply a fast adaptation method on Conformers
using model-agnostic meta-learning (MAML) ap-
proach to learn a robust automatic speech recogni-
tion model to rapidly adapt to unseen languages.
Based on the empirical results, MAML consistently
comes close to single trained model using target
unseen language with a margin of 2-4% CER 1in all
such low-resource multilingual scenarios for Indic
languages.
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