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Abstract

Current technological and scientific develop-
ments on assistive technologies result in a con-
siderable need for NLP models to success-
fully grasp the intention of the user in situ-
ated settings. Situated language comprehen-
sion, where different multimodal cues are in-
herently present and essential parts of the sit-
uations, can not be handled in isolation. In
this research proposal, we aim to quantify the
influence of each modality including the eye-
movements of the speaker as a deictic cue to
gain deeper understanding about multimodal
interaction. By doing this, we mainly focus
on the role of various referential complexities
in this interaction. The proposed model en-
codes the referential complexity of the situated
settings in the embedding space during the pre-
training phase. This will, in return, implicitly
guide the model to adjust to situation-specific
properties of an unseen test case.

In this paper, we summarize the challenges of
intention extraction and propose a methodolog-
ical approach to investigate a situation-specific
feature adaptation to improve crossmodal map-
ping and meaning recovery from noisy commu-
nication settings.

1 Motivation

In recent years, we have witnessed a considerable
increase in the use of assistive technologies that
can engage in communication and perform tasks.
These can come in different forms like smart speak-
ers and mobile devices that you can command with
audio, or more specialized task-oriented robots that
can actually realize users’ command in 3D envi-
ronments. The steady increase in the use of col-
laborative robots (IFR, 2018) in daily life brings
along another important Human-Computer Interac-
tion theme: the capability of engaging in a natural
and smooth spoken dialog with humans, which is a

major scientific and technological challenge. Par-
ticularly, being able to follow a communication that
conveys thoughts and intentions expressed in a flex-
ible manner without the restrictions of a close-set
of commands is a crucial component of assistive
robots for the handicapped and elderly people and
for the education / entertainment purposes.

Spoken and situated communication is com-
posed of various perceptual (e.g. audio, visual)
and representational modalities (e.g. language, de-
ictic eye-movements, gestures). Effectiveness and
fluency of human communication capabilities in-
spire us to develop robust language models that can
deal with uncertainties by evaluating all the avail-
able information from multiple sources and reach
a good-enough decision. In order to reach this
performance, we need to model our situated lan-
guage understanding systems to incorporate those
modalities and let them interact in a meaningful
way. This brings forth some important questions;
how to integrate different modalities and how to
utilize adaptive processing for effective situation-
awareness to be able to deal with cases where some
of the modalities are restricted due to noise in the
communication channels. This capability for cross-
modal integration can be a very important feature
in resolving references or executing commands for
smart speakers or helper robots that aid people in
their daily activities.

2 Situated Language Understanding

In a task-oriented setting (e.g. helper robots com-
pleting a given task), the goal of natural language
communication is to extract the intention of the
speaker. Such communication usually happens in
structurally rich visual environments like the one
in Figure 1, which contains several glasses of dif-
ferent types (wine and tea glasses), mice (computer
mouse and cat toy), windows (open and closed) etc..
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Figure 1: An example image for a living room scenario.

Some of them are even (partially) occluded from
the viewer’s perspective. The environments usually
also include people and their interactions with the
objects (actions). Visual information plays a crucial
role in determining the referential objects related
with the action and to accomplish the task. Thus,
computational solutions that incorporate those cues
are expected to perform better in grasping the mean-
ing compared to their (text-only) unimodal coun-
terparts (see Alaçam et al. (2020a) for a review).

Determining the correct intention of a user is not
always straightforward due to various reasons. Let
us take the following sentences as an example:

1. Can you bring me the wine, I want to open it.

2. Can you bring me the wine, I want to drink it.

In both cases, on the syntactic level, the pronoun it
refers to the wine. But in the referential world, the
first one clearly refers to a wine bottle, while the
second (with a lesser degree of certainty) refers to
a glass of wine.

In many cases, even the object names are ver-
bally omitted in spoken utterances. This kind of
implicit commands like “I prefer red, can you open
a bottle and bring it to me?”, require the hearer to
reconstruct the underlying intention “Open a bottle
of red wine, and bring the bottle” (Gundel et al.,
2012). Alternatively, depending on the spatial ar-
rangements of the agents and the objects in the
room, the intention of the speaker might be slightly
different and more complex. For example, when
the empty glasses are closer to the listener than
the speaker, the interpretation might be: “Open a
bottle of red wine, pour the wine into one of the
empty wine glasses and bring the glass of wine
to me”. Expressing this intention explicitly most
often results in unwieldy utterances.

Furthermore, when the environment is noisy, or

the communication partner suffers from a motor
or cognitive impairment, multimodal integration
plays a more critical role. Noise in communica-
tion can originate from various sources. It can be
linguistic noise (e.g. spelling mistakes, complex
attachments), visual ambiguities (e.g. clutter in
the environment, occlusions) or an acoustic noise.
Instead of waiting for clarification, combining the
uncertain information from the linguistic channel
with information from the other ones increases the
fluency and the effectiveness of the communica-
tion (Garay-Vitoria and Abascal, 2004). One of the
most well-known examples to this phenomenon is
the cocktail party effect, that highlights the human
ability to focus on one particular source while in-
hibiting the noisy ones. When the informativeness
of one modality is reduced due to environmental
conditions, the human language processing sys-
tem can successfully adjust itself by relying less
on the unclear modality and using other cues in
the environment. In this specific scenario, other
informative cues provide more reliable informa-
tion compared to the noisy linguistic input. These
cues can come from the surrounding environment
and from the communicational partners, and in-
clude eye-gaze direction or representational ges-
tures combined with their referential link to the
entities in the environment.

Eye-tracking is attracting considerable interest
in many assistive technologies such as educational
VR systems that provide embodied learning envi-
ronments or driver monitoring systems. The use of
eye-tracking in daily technological products such
as mobile phones, laptops and virtual reality head-
sets is increasing day by day (Brousseau et al.,
2020; Rogers, 2019; Khamis et al., 2018). There-
fore, incorporating eye-movements in our language
comprehension models is an inevitable outcome of
these latest developments, and this makes the sys-
tematic research on the combination of this modal-
ity with others very crucial.

3 Dataset Collection

The success of a situation-aware language compre-
hension model is highly dependent on the repre-
sentativeness of the modalities under various con-
ditions. This kind of coverage requires a richly an-
notated multimodal corpus that displays the variety
of language expressiveness and flexibility. Devel-
oping such a corpus is a very costly process. Thus,
a dataset that profoundly incorporates a variety of
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modalities and their various aspects addressing lan-
guage comprehension tasks is currently not avail-
able. Therefore, we plan to train the model on a
set of available multimodal datasets (as listed be-
low), by using whichever modality constellations
they can offer (including datasets from various do-
mains like psycholinguistics, language technology,
computer vision, human-robot interaction etc.) in a
stepwise manner; namely starting with simple / few
relations, then gradually increasing the complexity
of the interactions.

There are general-purpose multimodal datasets
that can be used for training:

• MS COCO (Lin et al., 2014) : an object de-
tection and captioning dataset with >200 K
labeled images and 5 captions in a sentence
form for each image

• Flicker30k (Plummer et al., 2015): 31 K im-
ages collected from Flickr, together with 5
reference sentences

• ImageNET (Deng et al., 2009): 14 M anno-
tated images, hierarchically organized (w.r.t.
WordNet)

• MVSO (Jou et al., 2015): 15 K visual con-
cepts across 12 languages, 7.36 M images

Additionally, there are multimodal datasets that
were created for a specific task:

• HuRIC 2.0 (Bastianelli et al., 2014): audio
files (656 sentences) paired with their tran-
scriptions referring to commands for a robot

• LAVA (Berzak et al., 2016): 237 sentences,
with 2 to 3 interpretations per sentence, and a
total of 1679 videos that depict visual varia-
tions of each interpretation

• CLEVR-Ref+ (Liu et al., 2019): 100 K syn-
thetic images with several referring expres-
sions

• Eye4Ref (Alaçam et al., 2020b): 86 system-
atically controlled sentence-–image pairs and
2024 eye-movement recordings from various
referentially complex situations

Multimodal embeddings will be created from
this pool of datasets. Creating embeddings from
various data sources will allow us to cover concepts
from various aspects such as linguistic, auditory
and visual representations. The variety on the vi-
sual modality will also help us to capture different
visual depictions in a range from synthetic images
to photographs. This will increase the representa-
tiveness of the concepts in the training dataset that
will in return improve the prediction when it comes

to unseen environments either in virtual reality or
in a real-world setting.

70 % of this collection will be used to create
multimodal concept embeddings. The remaining
30 % of the datasets will be included in the test and
development sets after semi-automatic and man-
ual annotation of contextual representations, target
words, missing words, etc. However, Eye4REF
will be used as main testset since it was system-
atically created to involve referentially complex
situations.

4 Objectives

One of the main objectives of this research proposal
is to quantify the effect of each modality and their
interactions by conducting systematic empirical re-
search with computational modeling and human
subject studies. Another objective lies in creat-
ing multimodal and multilayer embedding spaces
in which the layers will be sensitive to various
situation complexities, an approach that has not
been considered yet. Moreover, eye-movements
of the speakers, as a substantial but underrepre-
sented component of face-to-face communication,
are incorporated to further improve NLP methods
on meaning extraction and crossmodal reference
resolution.

Model. The proposed method will be able to pro-
cess several modalities that play a crucial role in
communication; (i) Linguistic Information (at syn-
tactic and semantic level), (ii) Situational Informa-
tion, (iii) Prototypical Knowledge and Relations,
and (iv) Speech-accompanying eye-movements of
the speaker. The initial base model will focus on
the first three capabilities by utilizing data-driven
language models such as fasttext (Bojanowski et al.,
2017) and commonsense knowledge-bases like
ConceptNet (Speer et al., 2017). At the same time,
two modules that (i) incorporate eye-movements
and (ii) perform situation-specific feature adapta-
tion will be developed from scratch. In brief, vo-
cabulary obtained from the pre-trained embeddings
is used as a bridge between the modalities. For
each vocabulary item, multimodal embeddings will
be created by processing every input channel, see
Figure 2. For each modality and their joint train-
ing, we will utilize an appropriate encoder, such
as Fast-R-CNN (Girshick, 2015) for images and
attention-based bi-directional LSTMs (e.g. Song
et al. (2019), for text and eye-movement data. A
neural network ensemble model will be trained on
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the embeddings for the task of intended object or ac-
tion prediction from situated settings with masked
information.

Guided Multi-Modal Data Fusion. Based on
the vast support provided (Qi et al., 2020; Ak-
bari et al., 2019; Niu et al., 2017; Aytar et al.,
2017; Kiros et al., 2014), a guided multilayer data-
driven approach will be utilized instead of fusing
all datasets together without any guidance. Despite
their impressive success to solve specific tasks so
far, deep learning methods are hardly interpretable
in understanding which properties of inputs con-
tribute to the final decision to which degree. Be-
sides, the abstraction capabilities, which are crucial
for dealing with new cases, are still very limited.
However, the more we know about the interactions
among the modalities, the more we can extract and
focus on relevant features, and the more we can
guide those effective deep learning methods to per-
form better in an explainable way. This will pave
the ground to advance current methods for cross-
modal interaction in situated language processing
with a comprehensive approach to process more
modalities, thus to deal with new situations even
under uncertainty.

We plan to obtain concept representations step-
by-step and build the concepts over each other with
increasing complexity, similar to the development
of the human cognitive system. One of the key
elements here is to encode referential complexity
of the each situated setting in the training data.
The multimodal embedding space for each con-
cept will consist of several embeddings, which are
sensitive to various complexities (as illustrated in
Figure 2) and this structure forms the backbone
of the situation-specific adaptation. By automat-
ically classifying the complexity of multimodal
input based on the predefined complexity factors,
each entry in the datasets will contribute to the re-
spective embeddings in the embedding space. This
presents a new approach for creating embeddings,
taking input complexity into account. Additionally,
this configuration also provides a testbed to investi-
gate another interesting question: does restricting
the model to use only a complexity embedding
that corresponds with input complexity improve
the crossmodal mapping task performance? For
example, when the multimodal input refers to a
highly featured concept representation (a dinner
accompanied by red wine), using a representation
that is created from coarse-grain samples (a clip-art

of a wine bottle) may yield misclassification and
vice versa.

Dynamics among different information sources.
In the second objective, we quantify the contri-
bution of each modality and their aspects given
the situation to mimic human heuristic processing
capability. Language comprehension involves com-
plex sequential decision making and is affected by
both uncertainty about the current input and lack
of knowledge about the upcoming material. Thus,
people use – to a large extent – fast and frugal
heuristics, i.e. choosing a good-enough representa-
tion (Ferreira, 2003). The heuristic view provides
a valid explanation for scenarios with a conver-
sation inside noisy conditions. Instead of wait-
ing / asking for clarification, the model will reach
a good-enough decision based on all information
gathered through all available input channels. In
order to do that, the set of important features given
the situated setting should be chosen automatically.

Structuring the embeddings to have separate
slots for each modality and for their combinations
will allow us to quantify the contribution of each
slot individually given the situation in various com-
plexities. Depending on the communication goal or
environmental factors, some modalities would con-
tribute to the solution while others could be simply
irrelevant or redundant. Understanding the inten-
tion of the user requires understanding of which
information provided by the modalities is (more)
relevant, complementary, or redundant. The human
language processing system does this adjustment
quite efficiently. Thus, a model will be designed to
pick the most effective perceptual and conceptual
cues and to ignore the irrelevant ones depending
on the situated context. Then, the attention will be
channeled towards the most relevant cue sources.

Integrating eye-movements of the speaker.
Many eye-tracking technologies in the market em-
ploy a sufficient sampling frequency to enable gaze-
contingent applications. With advancements in the
eye-tracking technology, incorporating eye move-
ments of a speaker or a listener enables us to pre-
dict / resolve which entity is being referred to in
a complex visual environment (Klerke and Plank,
2019; Mitev et al., 2018; Mishra et al., 2017; Kol-
eva et al., 2015). However, these studies are limited
to relatively simple scenes. Situated language un-
derstanding in a referentially complex environment
or under noisy situations imposes a different level
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Figure 2: Schematic overview of the hierarchical embeddings.

of challenge that we aim to address. The num-
ber of studies that utilize gaze features (Sood et al.,
2020; Park et al., 2019; Karessli et al., 2017) is very
limited. In this study, we propose to incorporate
the eye-movements of the speaker to improve the
crossmodal mapping performance. This additional
deictic modality may improve the recovery of the
intended meaning especially when the communi-
cation is noisy (acoustically or visually). The gaze
embeddings will be created by using existing eye-
movement datasets. However, there are only few
big-size eye-movement datasets available (Alaçam
et al., 2020b; Wilming et al., 2017; Ehinger et al.,
2009). Thus, to enlarge available data, we will con-
duct a set of experimental studies with increasing
referential complexity. There, we will record par-
ticipants’ instructions on a task-oriented scenario
and their eye-movements regarding target objects.

Evaluation of the assistive model. After all
information sources from various modalities are
made available and integrated, the contribution of
each modality will be investigated by performing
systematic manipulations (e.g. removing a modal-
ity one-by-one from the input). The standard accu-
racy and efficiency metrics will be used for evalu-
ating the models’ performance, including the over-
all runtime, modality-specific accuracy parameters
(such as PoS-tag or semantic class accuracy), target
mapping accuracy, and accuracy in recovering the
missing word.

In addition to evaluating how this model im-
proves the task of reference resolution for acous-
tically and / or visually noisy settings, its role as
assistive technology will be investigated by con-
ducting a user study. The experimental setup will
be very similar to the one in the data collection
phase. However, this time the participant will inter-
act with a demo model that displays all the above-
mentioned capabilities. The model will try to ex-

tract user intention by predicting the communica-
tionally relevant objects on the fly. The usability
study on the demo model will be evaluated based
on the efficiency (how long does it take to reach a
decision?), effectiveness (how accurate is the sys-
tem decision?) and the user satisfaction ratings
that will be obtained through the same evaluation
metrics and a user survey.

5 Conclusion

In this research proposal, we focus on three fac-
tors that can enhance the communication between
humans and assistive technologies. The first one
is the encoding of the referential complexity of
the situated settings while creating multimodal em-
beddings. As pointed out in (Singh et al., 2020),
pre-trained models, that were created by fusing the
modalities without constraints, are expected to be
an out-of-the-box solution and work well for a va-
riety of simpler tasks. In this research, we propose
to encode referential complexity during the train-
ing phase to see whether the complexity-sensitive
embeddings will improve the tasks of crossmodal
mapping and meaning recovery. We believe that
this will implicitly direct the model to focus on var-
ious textual and visual forms of the same concepts.

The second factor is the inclusion of eye-
movements as an additional modality to enhance
meaning recovery from noisy settings where some
parts of the sentences or visual labels are masked.

At last, this research will also contribute to a
better understanding of the contributions of each in-
dividual modality, of amodal and modality-specific
features and their interactions.

The proposed method will be beneficial for other
task-oriented communication scenarios, where the
cognitive systems need to understand the intention
and to aid the user in the most efficient and effec-
tive way, such as educational video-games, training
simulations, and assistive navigation systems.
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