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Abstract

In recent years, crowdsourcing has gained
much attention from researchers to generate
data for Natural Language Generation (NLG)
tools or to evaluate them. However, the
quality of crowdsourced data has been ques-
tioned repeatedly because of the complexity
of NLG tasks and crowd workers’ unknown
skills. Moreover, crowdsourcing can also be
costly and often not feasible for large-scale
data generation or evaluation. To overcome
these challenges and leverage the complemen-
tary strengths of humans and machine tools,
we propose a hybrid human-machine work-
flow designed explicitly for NLG tasks with
real-time quality control mechanisms under
budget constraints. This hybrid methodology
is a powerful tool for achieving high-quality
data while preserving efficiency. By combin-
ing human and machine intelligence, the pro-
posed workflow decides dynamically on the
next step based on the data from previous steps
and given constraints. Our goal is to provide
not only the theoretical foundations of the hy-
brid workflow but also to provide its imple-
mentation as open-source in future work.

1 Introduction

With the rapid development of Internet technolo-
gies, crowdsourcing has become one of the primary
resources to solve tasks such as image tagging,
transcribing the text, or digitizing print documents
that computers cannot yet solve and need human
intelligence (Bernstein et al., 2010; Kittur et al.,
2011; Tran-Thanh et al., 2015). Further, the cost
and time advantages of crowdsourcing have raised
the interest of many NLG researchers to generate
corpus or to evaluate the quality of NLG outputs
(Callison-Burch, 2009; Zaidan and Callison-Burch,
2011; Falke et al., 2017; Fan et al., 2018; Gao et al.,
2018). Despite the increasing popularity of crowd-
sourcing, the quality of crowdsourced data has been
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many times questioned because of crowd worker ‘s
potential inaccuracy and the complexity of NLG
tasks. As a solution, a variety of workflow ap-
proaches have been proposed with the aim of qual-
ity assurance, quality control, or cost optimization
(Kamar et al., 2012; Kulkarni et al., 2012; Lin et al.,
2012; Dai et al., 2013; Lofi and Maarry, 2014; Tran-
Thanh et al., 2015; Goto et al., 2016; Retelny et al.,
2017; Chen et al., 2019; Jiang et al., 2020).

However, all of these approaches are neither de-
signed explicitly for the given NLG task nor inte-
grate the NLG tools themselves into the workflow
dynamically. Therefore, we propose an automatic
hybrid human-machine workflow that decides on
the next step (when to use humans and when to use
an NLG tool) based on the given constraints and the
previous workflow step, optimizing the cost/quality
trade-off. With this hybrid dynamic methodology,
we aim to collect high-quality data while preserv-
ing efficiency. Since this is a work-in-progress,
we describe the logic and the theoretical aspects
of the workflow in this paper and will provide its
complete modeling and practical implementation
as open-source in future work.

2 Related Work

Many crowdsourcing platforms provide support for
repetitive independent micro-tasks, which can be
completed in a short amount of time (Hélouét et al.,
2020). However, the recent advances of Internet
technologies require human intelligence for more
complex tasks. As a solution, crowdsourcing work-
flows have been introduced to a variety of problems
such as taxonomy creation (Chilton et al., 2013),
entity resolution (Wang et al., 2012), and complex
work (Kittur et al., 2011; Kulkarni et al., 2012).
The main focus of these crowdsourcing workflows
are cost/quality optimization, task allocation, mod-
eling the incentive mechanism, or modeling the
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crowd workers’ skills (Kamar, 2016).

With artificial intelligence (AI) systems being an
important part of our lives, combining crowdsourc-
ing workflows with Al tools, hybrid intelligence,
promise great potential for improving human-only
workflows. Therefore, researchers have developed
intelligent hybrid systems for real-time speech tran-
scribing (Kushalnagar et al., 2012; Lasecki and
Bigham, 2012; Lasecki et al., 2012, 2013, 2017),
clustering data points (Gomes et al., 2011; Tamuz
et al., 2011; Heikinheimo and Ukkonen, 2013),
forecasting political or economic events (Baron
et al., 2014; Mellers et al., 2015; Atanasov et al.,
2017) or scheduling conference meetings (André
etal., 2013; Kim et al., 2013; Bhardwaj et al., 2014;
Chilton et al., 2014). These hybrid workflows have
been proven to perform better than human-only and
machine-only systems.

However, to this date, there is no hybrid human-
machine workflow that combines the human and
machine intelligence with quality control mech-
anisms for crowd workers and with a methodol-
ogy for cost/quality optimization. Usage of crowd-
sourcing to NLG has been limited to single crowd-
sourcing studies for quality evaluation or data la-
beling for semantic parsing (Wang et al., 2015),
information retrieval (Demartini, 2015), translation
(Callison-Burch, 2009; Zaidan and Callison-Burch,
2011) and summarization (Falke et al., 2017; Fan
et al., 2018; Gao et al., 2018; Iskender et al., 2020),
but the hybrid intelligence approach has not been
applied in these works. Therefore, we propose to
combine the strength of the human-only workflows
and NLG tools in the form of a hybrid human-
machine workflow with quality control mecha-
nisms. Such an integrative hybrid approach of-
fers great promise for the development of practical
applications by achieving high-quality data while
preserving efficiency.

3 Hybrid Human-Machine Workflow for
NLG

3.1 Research Aim

Our goal is to provide a hybrid human-machine
workflow optimizing the cost/quality trade-off and
its complete implementation using a workflow en-
gine. First, we will integrate the existing state-of-
the-art NLG tools into the workflow to create a
hybrid human-machine workflow. Following this,
we will model each step in the workflow to increase

efficiency in terms of cost/quality trade-off. Based
on the model and empirical data, the workflow will
decide dynamically on the next step whether to use
an NLG tool or humans. Additionally, we will im-
plement this workflow using a workflow engine and
provide its implementation as open-source. Such a
workflow would be especially beneficial for NLG
tools developed for low-resource languages, for
which it is harder to acquire available data sets. In
other languages, researchers usually need to create
the data set from scratch for the specific NLG task
with linguistic experts, which is extremely expen-
sive and time-consuming for large-scale datasets.

3.2 Workflow Logic

Figure 1 illustrates the workflow logic. To explain
it in detail, we use the summarization task as an
example of NLG tasks and demonstrate each step
in workflow for this task. The workflow starts with
the following inputs to the system: new source
document to be summarized, budget and time limit,
and expected quality level. Based on these input
factors (source text length and domain, budget and
time limit), the algorithm in DO: Creation Method
decides whether the summaries should be created
by automatic tools, crowd workers, or experts.

In machine creation, the workflow logic chooses
the most applicable summarization algorithm based
on the source document characteristics such as lan-
guage, length, domain, and the number of docu-
ments. If crowd creation is chosen, the input fac-
tors determine the crowdsourcing task design, such
as the required qualification of crowd workers, pay-
ment, number of crowd workers and repetition pat-
terns, and task duration. If the workflow decides
for the expert creation, the created summary will
be stored in the database, and the workflow will
end because expert creation is the gold standard in
NLG (van der Lee et al., 2019).

After crowd summary creation, there is a qual-
ity check for each summary to eliminate obvious
cheaters and low-quality answers. This quality
check is triggered after each crowd answer, and
it works on a single answer basis. If the algo-
rithm determines that the crowd worker is cheating
(path fail), then the answer will be rejected, and
the crowd worker will not be paid. The workflow
will go back to DO state to decide again about the
creation method. If the crowd worker is not cheat-
ing (path success) or machine summary is created,
then the workflow goes to state DI: Evaluation
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Figure 1: The Logic of the Hybrid Human-Machine Workflow for NLG

Method to decide about the evaluation method. In
this state, all the summaries created in the creation
part will be sent to the database to be stored. If the
workflow decides that it cannot estimate the quality
reliably at this early step, it may suggest triggering
additional crowd-evaluation.

Analog to the creation part, in the evaluation
part, the workflow establishes the most applica-
ble summarization evaluation method based on the
input factors from state DO and summary charac-
teristics. If the machine creation is chosen, an au-
tomatic evaluation tool will evaluate the summary
quality. If the algorithm decides for the crowd
evaluation, the time, budget, source, and summary
characteristics determine the task design, payment,
requirements for crowd workers, and the number
of crowd workers, and similar to creation, there is
again cheater detection step after crowd evaluation.
Lastly, in the case of expert evaluation, the evalua-
tions will be directly stored in the database, and the
workflow will be ended since the expert evaluation
is the gold standard evaluation in NLG.

After successful crowd evaluation or machine

evaluation, the workflow reaches the final decision
step D2: Loop or not. Here, all the evaluation data
will be sent to the database to be stored. Based
on previous states’ information, the workflow algo-
rithm determines if the collected data is satisfying
the requirements, e.g., cost and time limit, qual-
ity expectation, etc. In the following cases, the
workflow will terminate: 1) if the given cost and
time budgets are exceeded, or 2) if the quality of
collected data satisfies the expected quality. Other-
wise, the workflow will go back to Start state, and
the whole process will be repeated, and results from
the current loop serving as (additional) reference
or for decisions of DO, DI and D2. After collect-
ing sufficient number of summaries and summary
evaluations, the stored data can be used for train-
ing summarization tools or improving the existing
supervised summarization evaluation metrics.

3.3 Workflow Modeling

We plan to model the logic of the hybrid human-
machine workflow as Markov Decision Process
(MDP). MDP is defined as a discrete-time stochas-



Figure 2:
Machine Workflow as a Markov Decision Process

The Modeling of the Hybrid Human-

tic control process providing a mathematical frame-
work for modeling decision making in situations
where outcomes are partly random and partly un-
der the control of a decision-maker (Feinberg and
Shwartz, 2012). The reason for choosing MDP is to
model the uncertainty and randomness of workflow
added by the humans in the process and subjectiv-
ity of NLG tasks. Dai et al. (2013) have already
shown that MDPs are useful for optimizing crowd-
sourcing workflows in terms of cost and quality via
dynamic programming.

Figure 2 shows the MDP representation of the
hybrid human-machine workflow explained in sec-
tion 3.2. An MDP is a four-tuple (S, A, T, R),
where S is a finite set of discrete states (the nodes
in figure 2); A is a finite set of all actions (the paths
infigure 2); 7' : S x A x S — [0, 1] is the transi-
tion function; R : S x A — R is the reward for
taking an action in a state; 7 : S — A is the policy
mapping states to actions; and Q* — value is the
value of state action pair (s, a).

The refinement of the transition function, the re-
ward, and Q* — value will be part of future work.
We plan to solve the MDP model by empirically
collecting data from workflow applications for sev-
eral NLG tasks and the Monte Carlo (MC) sim-
ulation algorithm repeatedly simulating the trials
originating from the Start.

3.4 Workflow Implementation

The scientific workflows are generally represented
as directed acyclic graphs (DAGs), which illustrate
the computational tasks as nodes and the depen-
dencies between them as edges (Liu et al., 2015).
The task-driven approach, used by many workflow
management engines such as Makeflow (Albrecht
et al., 2012), and Pegasus (Deelman et al., 2015),
is the traditional approach that relies on triggering
tasks when the dependencies are satisfied. As next-
generation task-based approach, Airbnb has devel-

oped an open-source workflow engine Apache Air-
flow! which can trigger tasks without satisfying de-
pendencies. Another recent approach is triggering
workflow by data input and output rather than task
dependencies. Popular data-driven workflow en-
gines are Nextflow (Di Tommaso et al., 2017) and
Apache Hadoop YARN (Vavilapalli et al., 2013).

Mitchell et al. (2019) did a comparative analysis
of common task- and data-driven workflow engines
and showed that Apache Airflow suits both task-
and data-driven systems with its modular structure
and built-in operators. Apache Airflow is written
on Python without any other requirement, so the
workflow implementation is relatively easy and
flexible. With its scheduling feature (each task
in the workflow can be scheduled individually),
the whole DAG can be triggered periodically, e.g.,
hourly or daily. Although it is not as robust as data-
driven workflow engines, Apache Airflow allows
data flow between tasks. Therefore, we plan to im-
plement our hybrid human-machine workflow with
Apache Airflow, supporting data flow by external
databases.

4 Expected Contributions and Future
Work

The current crowdsourcing platforms offer mini-
mal guidance and support on how to interpret the
collected data or how to assure quality. With this
hybrid dynamic methodology, we aim to overcome
this challenge by providing the logic, modeling,
and implementation of a hybrid human-machine
workflow for NLG with quality control and cost op-
timization methods. In this way, the data creation
and evaluation can be accelerated for many lan-
guages leading to the enhancement of multilingual
NLG tools. Since many NLG tasks usually require
data creation and evaluation steps, the workflow
can be adjusted easily to other NLG tasks such as
translation, question-answering, or data-to-text.
As future work, after completing the modeling
and implementation, we plan to run experiments
with the proposed workflow to finalize the work-
flow decision algorithm and test it empirically. To
foster the development of the proposed workflow,
we welcome researchers in the NLG community
to join our experiments, use the proposed work-
flow to collect data or evaluate their tool, improve
the workflow based on empirical data and serve
high-quality results for the researchers.

"http://airflow.apache.org/
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