Human Perception in Natural Language Generation

Lorenzo De Mattei*°**, Huiyuan Lai*, Felice Dell’Orletta®, Malvina Nissim*
* Department of Computer Science, University of Pisa / Italy
¢ ItaliaNLP Lab, Istituto di Linguistica Computazionale “Antonio Zampolli”, Pisa / Italy
* CLCG, University of Groningen / The Netherlands
* Aptus.Al / Pisa, Italy
lorenzo.demattei@di.unipi.it
{h.lai,m.nissim}@rug.nl
felice.dellorletta@ilc.cnr.it

Abstract

We take a collection of short texts, some of
which are human-written, while others are au-
tomatically generated, and ask subjects, who
are unaware of the texts’ source, whether they
perceive them as human-produced. We use
this data to fine-tune a GPT-2 model to push
it to generate more human-like texts, and ob-
serve that the production of this fine-tuned
model is indeed perceived as more human-
like than that of the original model. Con-
textually, we show that our automatic evalua-
tion strategy correlates well with human judge-
ments. We also run a linguistic analysis to un-
veil the characteristics of human- vs machine-
perceived language.

1 Introduction

Pre-trained language models, such as the BERT
(Devlin et al., 2019) and the GPT (Radford et al.,
2018, 2019) families, are nowadays the core com-
ponent of NLP systems. These models, based on
the Transformer (Vaswani et al., 2017) and trained
using huge amounts of crawl data (which can con-
tain substantial noise), have been shown to produce
high quality text, more often than not judged as
human-written (Radford et al., 2019; De Mattei
et al., 2020; Brown et al., 2020). Existing eval-
uations of GPT-2 models (Ippolito et al., 2020;
De Mattei et al., 2020) have shown that while
generated sentences were ranked lower in human
perception than gold sentences, many gold sen-
tences were also not perceived as human-like. To
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make the model produce more human-like texts
one could train it only on gold data which is highly
perceived as human, but such data is costly, and full
model retraining is often a computationally non-
viable option. As an alternative route, we explore
whether and how an existing pre-trained model can
be instead fine-tuned to produce more humanly-
perceived texts, and how to evaluate this potentially
shifted behaviour.

We see the advantage of this experiment at least
in two ways. One is that the generation of more
human-like texts is highly beneficial for specific
applications, as for example human-machine in-
teraction in dialogues; the other is that it opens
the opportunity to investigate what linguistic as-
pects make a text more humanly-perceived. We run
our experiments on Italian, using GePpeTto (De
Mattei et al., 2020) as pre-trained model. First,
we collect human judgements on gold texts and
texts generated by GePpeTto in terms of how they
are perceived (human or automatically produced).
We then fine-tune GePpeTto with this perception-
labelled data. In addition, inspired by the classifier-
based reward used in style transfer tasks (Lample
et al., 2019; Gong et al., 2019; Luo et al., 2019;
Sancheti et al., 2020), we reward the model to
push its classification confidence. We evaluate the
new perception-enhanced models in comparison
with the original GePpeTto by running both an
automatic as well as a human evaluation on out-
put generated by the various models. Lastly, we
conduct a linguistic analysis to highlight which lin-
guistic characteristics are more commonly found
in human- and machine-perceived text.
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Contributions We show that a GPT-2 pre-
trained model can be fine-tuned to produce text that
is perceived as more human, and we release this
model for Italian. Second, we provide a stronger
automatic evaluation method where training is done
on perception labels rather than the actual source,
which yields results that correlate with human judg-
ments, providing a different angle for automatic
evaluation of generated sentences. Lastly, we run a
linguistic analysis of the humanly-perceived texts
that can open up to new opportunities for under-
standing and model human-like perception.

2 Data

We collected human judgments over a series of gold
and generated sentences in terms of how much a
given text is perceived as human-like. The obtained
labelled data is used to fine-tune our base model
towards generating more humanly-perceived texts;
it is also used to test the resulting models through
an automatic evaluation strategy that we implement
next to human judgements.

Training Data From the original GePpeTto’s
training corpus (De Mattei et al., 2020), we col-
lected 1400 random gold sentences in the following
way. We sentence split all the documents and we
picked the first sentence of each document. In order
to allow for length variation, which has an impact
on perception, we selected the first 200 sentences
with length 10, 15, 20, 25, 30, 35 and 40 tokens.

We also let GePpeTto generate texts starting
with the first word of randomly selected documents,
we sentence-split the generated texts, and select the
first 200 sentences with length 10, 15, 20, 25, 30,
35 and 40 tokens. This procedure creates a training
set with perception labels containing a total of 2800
instances (1400 gold and 1400 generated).

We asked native Italian speakers if they felt the
text they were seeing had been written, on a 1-5
Likert Scale, by a human (1) or a machine (5). Each
texts was assessed by 7 different judges. The sub-
jects for the task were laypeople recruited via the
crowdsourcing platform Prolific'. We did not con-
trol for, and thus did not elicit, any demographic
features. As a proxy for attention and quality con-
trol, we used completion time, and filtered out par-
ticipants who took too little time to perform the
task (we set a threshold of at least 5 minutes for 70
assessments as a reliable minimum effort).?

Thttps://www.prolific.co/
2Crowdworkers were compensated with a rate of £5.04 per
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Mapping the average of human judgements to
a binary classification (human if < 3), we obtain
the matrix in Tab. 1 showing perception labels and
the actual source labels. While human texts are
more often perceived as human-like than machine-
generated ones, the matrix shows that 44.2% of
the texts are perceived as artificial, suggesting that
a good portion of the training data might lead to
generation that is not so much human-like. We
train two classifiers on 80% of this data on the task
of detecting human-like perception and that of de-
tecting the actual source. The classifiers are built
adding a dropout (Srivastava et al., 2014) and a
dense layer on the top of UmBERTO0?, which is a
Roberta (Liu et al., 2019) based Language Model
trained on large Italian corpora. We train them us-
ing Adam (Kingma and Ba, 2015), initial learning
rate le-5, and batch size 16. On the remaining
20% of the data we obtain F=0.97 for the source
identification task, and F=0.92 for the perception
task, showing the feasibility of the classification
and thus the possibility of using these classifiers
for evaluation (Section 4).

Al-perceived humanly-perceived

62.3% 37.7%
44.2% 55.8%

GePpeTto
Gold

Table 1: Source vs perception matrix (training data).

Test Data We use 1400 sentences: 350 are pro-
duced by humans, 1050 are generated (350 for each
of the three models we use, see Section 3). As for
training, human texts were selected picking the first
50 sentences with 10, 15, 20, 25, 30, 35 and 40 to-
kens. For each system, we also picked the first
50 generated sentences with length 10, 15, 20, 25,
30, 35 and 40 tokens. Each of the 1400 sentences
was assessed by 5 users, on a 1-5 Likert scale, as
human- or artificial-like.

3 Models

We use three models for text generation, all based
on the GPT-2 architecture (Radford et al., 2019).
The basic model is GePpeTto, a GPT-2-based
model for Italian released by (De Mattei et al.,
2020). The others are built on GePpeTto using

estimated hour. In practice, tasks were completed in a shorter

time than estimated, so the hourly rate was a bit higher.
Shttps://huggingface.co/Musixmatch/

umberto-commoncrawl-cased-vl
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the perception-labelled data in fine-tuning and in a
reinforcement learning setting.

3.1 GePpeTto

GePpeTto is built using GPT-2 base architecture
with 12 layers and 117M parameters. GePpeTto is
trained on two main sources: a dump of Italian
Wikipedia, consisting of 2.8GB of text; and the
ItWac corpus (Baroni et al., 2009), which amounts
to 11GB of web texts. De Mattei et al. (2020)
show that GePpeTto is able to produce text which
is much closer to human quality rather than to the
text generated by other baseline models. Still, real
human-produced text is recognised as such more
often than GePpeT+to’s output.

3.2 GePpeTto fine-tuned

Using the original settings of GePpeTto, the model
is fine-tuned on the training portion of the humanly-
perceived sentences of the perception-labelled data
(Tab. 1), using the Huggingface implementation
(Wolf et al., 2020).*. We use the Adam optimiser
(Kingma and Ba, 2015) with initial learning rate
2e-5. The mini-batch size is set to 8. During fine-
tuning, we set an early stopping with patience 5 if
the performance on validation does not improve.’
The resulting model should produce text recog-
nised more frequently as human-produced than the
original GePpeTto.

3.3 GePpeTto rewarded

To further encourage GePpeTto-F to generate
more humanly-perceived texts, we introduce a con-
fidence reward based on the ‘perception classifier’
(PC) described in Section 2: the model gets re-
warded for generating more human-like text. The
PC’s confidence is formulated as

Reong = softmaxo(PC(y’,0)) )

where 6 are the PC’s parameters, fixed during fine-
tuning GePpeTto . Formally, the confidence is

“In preliminary experiments, we also fine-tuned
GePpeTto on a larger silver data-set obtained by letting
the perception classifier select what it deemed are human-
perceived texts from GePpeTto’s training set. The results
of our automatic evaluation were however not encouraging,
suggesting that the increased performance we obtain with the
fine-tuned model is indeed ascribable to manually labelled
gold data.

SDue to small training size, we validate against silver
data obtained by labelling generated and gold text with our
perception-classifier.
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used for policy learning that maximizes the ex-
pected reward E[R] of the generated sequence; the
corresponding policy gradient is formulated as

VoER) = Vg ) (Ply}, ;DR (2)
k

where ¢ are the parameters of GePpeTto, and Ry is
the reward of the k;, sequence y* sampled from the
distribution of model’s outputs at each time step
in decoding. The framework can be trained end-
to-end by combining the policy gradient with the
cross entropy loss of the base model.

4 Evaluation

We run both a human and an automatic evaluation,
in line with Ippolito et al. (2020)’s and Hashimoto
et al. (2019)’s suggestions in terms of evaluation’s
diversity and quality. For the automatic evaluation,
we train a regressor on the perception-labelled data
(with the original 1-5 values) adding a dropout
(Srivastava et al., 2014) and a dense layer on the
top of UmBERTo. We use Adam (Kingma and Ba,
2015) with initial learning rate is le-5, and set the
batch size to 16. We calculate the correlation of
the regressor’s scores with human judgements over
each single data point in the test set (N=1400), and
observe good scores (Pearson=0.54 (p < 1074) and
RMSE=0.75).

For the human evaluation, we assign to each sen-
tence the average score computed over all human
judgements. We then average all resulting scores
over the seven length bins. Results are shown in
two tables, as follows.

First, as we did for the training data (see Table 1),
we mapped the average of human judgements to
a binary classification (human if< 3), and obtain
the matrix in Table 2. This shows perception labels
and the actual source labels for the three models
and gold data. We see that the human produced
texts are the most humanly-perceived, but both the
fine-tuned and the rewarded model produced texts
that are more humanly-perceived than GePpeTto,
with the fine-tuned model performing better than
the rewarded one.

Second, Table 3 shows the average score
over all length bins for the four models:
GePpeTto, GePpeTto fine-tuned (GePpeTto-F),
GePpeTto rewarded (GePpeTto-R) and the origi-
nal human texts (Human). This table also reports
the average scores over all lengths as assigned by
the regressor.® The closer to 1, the more humanly-

®Detailed results per length are Appendix Tables A.1-A.2.



perceived the sentence.

Al-perceived humanly-perceived

GePpeTto 61.1% 38.96%
GePpeTto-F 55.7% 44.3%
GePpeTto-R 59.1% 40.9%
Gold 37.4% 62.6%

Table 2: Source vs perception matrix (test data).

model humans (std) regressor (std)
GePpeTto 2.85(0.83) 2.74 (0.71)
GePpeTto-F 2.74 (0.83) 2.49 (0.55)
GePpeTto-R 2.84 (0.87) 2.56 (0.57)
Human 2.41(0.77) 2.47 (0.66)
avg 2.71 (0.85) 2.57 (0.63)

Table 3: Scores for each system as evaluated by hu-
mans and by the regressor, averaged over test set in-
stances and thus over all sentence lengths.

As a first observation, in both the human and the
automatic evaluations the final rank for the systems
is the same, showing the reliability of the automatic
evaluation. The gold texts are perceived as most
human-like by humans (score: 2.41) and by the
regressor (score: 2.47). Regarding systems, the
fine-tuned model (GePpeTto-F) performs better
than both the basic and the rewarded model.

To compare the overall performance of machine
vs humans, in Fig 1 we plot the average perfor-
mance of the three models per length as judged by
humans (blue) and the regressor (red). These two
lines are compared with gold texts, again assessed
by humans (yellow) and the regressor (green).

Comparing the models and the humans as as-
sessed by humans (lines blue and yellow) we see
that while for short sentences humans perceive the
generated and the natural texts equally human-like,
this changes substantially for longer fragments. At
length 40, we observe the largest gap in perception
between the models and the natural texts, with the
latter being perceived much more human-like.

In terms of machine-based evaluation (lines red
and green), the behaviour of the BERT regressor
on human data is very similar to the human judge-
ments (line green vs yellow). Although the two
curves are similar also for the texts generated by
the models, the regressor here overestimates as
human-produced texts that are actually machine
generated (line red vs blue). This is potentially due
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= machine-human = machine-machine human-human

= human-machine

Perception Score

Sentence Length

Figure 1: Average perception scores for human vs ma-
chine generated texts as assessed by humans and our
regressor. In legend: <producer-assessor>. Machine
scores are averaged across the three models.

to the fact that GePpeTto-F and GePpeTto-R use
the same (human labelled) training data for fine-
tuning which is used to train the regressor model.
This phenomenon appears exacerbated with longer
texts, as the blue and red lines are more distant
after length 20.7 This behaviour of the regressor is
also reflected by its scores being more compressed
towards the middle. Indeed, the average standard
deviations in Table 3, show higher variability in hu-
man judgements than in the regressor’s assessment.
In Table 4 same examples of generated sentences
together with their scores are reported.

5 Linguistic Analysis

We ran a linguistic analysis over the human and the
generated text using Profiling-UD (Brunato et al.,
2020), a tool that extracts linguistic features of vary-
ing complexity, ranging from raw text aspects, such
as average length of words and sentences, to lexi-
cal, morpho-syntactic, and syntactic properties. In
particular, we study (i) which features characterise
the most humanly-perceived texts in the training
data, independently of who generated them; (ii)
the difference between human-produced texts and
those generated by our best model (GePpeTto-F)
in the test set when they are perceived as human.®

Regarding (i), the features that most correlate
with a text being perceived as human have to do
with sentence length and complexity. For example,
the longer the sentence or the clauses therein, or
the longer and deeper the syntactic links, the more
humanly-perceived is the text. On the other side of
the spectrum, linguistic features associated to texts
md tables in the Appendix further show this

divergence with specific scores per model.
8Findings summarised; detailed correlations in Appendix.



model

output

human-score

regressor-score

Human

GePpeTto-F

GePpeTto-R

GePpeTto

La ex Chiesa di Santa Caterina del Monte di Pieta era una chiesa cattolica
che si trova ad Alcamo, in provincia di Trapani. (The former Church
of Santa Caterina del Monte di Pieta was a Catholic church located in
Alcamo, in the province of Trapani.)

La nuova sede fu inaugurata il 19 luglio 1885 e inaugurata ufficialmente
il 30 novembre 1889, giorno in cui fu completata la facciata. (The new
headquarters were inaugurated on July 19, 1885 and officially inaugurated
on November 30, 1889, the day the facade was completed.)

La casa si trova in una posizione favorevole all’espansione del mercato
e, in alcuni casi, alla costruzione di tende per bambini. (The house is in
a favorable position for the expansion of the market and, in some cases,
for the construction of children’s tents.)

La squadra era composta di due squadre, una delle quali era la
”Rhodesliga” con il termine del “Propaganda Fiumana”. (The team
was made up of two teams, one of which was the "Rhodesliga” with the

1.71

1.86

3.14

3.15

1.88

2.34

2.68

3.07

term of Propaganda Fiumana”.)

Table 4: Sample model outputs and their sentence-level score. Prompt: “La” (“The; feminine)”)-

judged as machine-generated are heavy presence
of punctuation and of interjections and symbols.
For (ii), we zoom in on humanly-perceived texts
only, but looking at the source that generated them.
For human texts, length and complexity are still
the relevant features for being perceived as human;
these are proxied by complex verbal structures char-
actersied by auxiliaries, use of past tense, number
of main predicates in a sentence. For the generated
texts, instead, we observe that both those charac-
teristics that are similar to the human texts, such as
the use of the indicative mood and finite tenses, as
well as those more specific to machine-generated
texts, such as a low density of subordinate clauses
and shorter sentences, are simpler structures where
it is more likely that the machine does not incur ev-
ident mistakes: it is easier for the model to produce
human looking sentences if they are kept short and
simple. With longer sentences the model struggles
to ensure semantic and pragmatic coherence, two
aspects that most likely require further and more
complex modelling beyond simple fine-tuning.

6 Conclusions

We elicited judgements on the human-likeness of
gold and generated Italian texts and used these
judgements to fine-tune a pre-trained GPT-2 model
to push it to produce more human-like texts. Our
evaluation shows that people indeed find the output
of the fine-tuned model more human-like than that
of the basic one. Contextually, we show that our
proposed automatic evaluation correlates well with
human judgements, and it is therefore a reliable
strategy that can be applied in absence of subjects.
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An analysis of linguistic features reveals that
while complexity is associated with human-
likeness in gold data, simplicity is a key feature
of artificial texts that are assessed as human-like,
perhaps because simpler texts are less prone to ex-
pose machine behaviour.

Future work will include an expansion of the
perception-labelled data to (i) assess training size
in fine-tuning, and (ii) perform a finer-grained anal-
ysis correlating assessments to different text genres
and subject demographics.

Impact Statement

All work that automatically generates text could un-
fortunately be used maliciously. While we cannot
fully prevent such uses once our models are made
public, we do hope that writing about risks explic-
itly and also raising awareness of this possibility in
the general public are ways to contain the effects of
potential harmful uses. We are open to any discus-
sion and suggestions to minimise such risks. The
contributors of human judgements elicited for this
work have been fairly compensated.
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A Appendix

This Appendix contains:

e detailed results of human and machine evaluation for gold and all models’ data (Tables A.1-A.2),
expanding the compressed results shown in Table 2 in the main paper.

o details of linguistic features (correlated with human and machine perception, Tables A3—A4) which
are discussed in Section 5 in the main paper.

Length
Tipo 10 15 20 25 30 35 40 AVG

GePpeTto 280 2.83 3.05 2.89 3.08 255 277 2.85(0.83)
GePpeTto-F 244 2.68 257 285 274 297 293 2.74(0.83)
GePpeTto-R 2.61 3.01 2.87 283 297 285 278 2.84(0.87)
Human 259 245 238 237 248 239 218 2.41(0.77)

avg 261 274 272 274 282 269 2.67 2.71(0.85)

Table A.1: Average scores for each system grouped by sentence length as assigned by humans on the test set.

Length
Tipo 10 15 20 25 30 35 40 AVG

GePpeTto 279 278 288 2.80 276 2.53 268 2.74(0.71)
GePpeTto-F 2.53 2.62 252 244 244 246 243 2.49(0.55)
GePpeTto-R 2.68 2.67 2.67 245 263 238 244 2.56(0.57)
Human 274 270 238 255 251 220 216 2.47(0.66)

avg 2.68 2.69 2.61 256 259 239 243 2.57(0.63)

Table A.2: Average scores for each system grouped by sentence length as assigned by the BERT based regressor
on the test set.
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Human Texts

Generated Texts

Feature

Correlation (p-values) ‘

Feature

Correlation (p-values)

n_tokens

avg max_links_len
max_links_len
avg_max_depth
avg_links len
avg_token per_clause
upos_dist X
dep_dist_goeswith
verbal_head_per_sent
subj_pre
verbal_root_perc
avg_verb_edges
obj_post

verbs_num_pers_dist_+

dep_dist_det

0.2 (7.34e-14)
-0.19 (1.85¢-13)
-0.18 (2.52e-11)
-0.17 (1.86e-10)
-0.13 (2.43e-06)
-0.12 (1.20e-05)
0.1 (1.20e-04)

0.1 (1.43e-04)

-0.1 (3.50e-04)

-0.09 (4.07e-04)
-0.09 (6.48e-04)
-0.09 (1.03e-03)
-0.09 (1.04e-03)
-0.08 (1.54e-03)
-0.08 (1.58¢-03)

upos_dist_NOUN
dep_dist_compound
subj_pre
prep_dist_1

avg_prepositional _chain len
n_prepositional_chains

n_tokens
dep_dist_amod
upos_dist_AD]
dep_dist_nsubj
avg_max_depth
avg_token per_clause
dep_dist_case
max_links len
verbs_form dist_Inf

-0.15 (1.08¢-08)
-0.13 (2.17e-06)
-0.1 (8.90e-05)

-0.09 (6.15¢-04)
-0.09 (7.12e-04)
-0.09 (7.53e-04)
-0.09 (8.45e-04)
-0.08 (2.37¢-03)
-0.08 (2.39¢-03)
-0.08 (4.03e-03)
-0.08 (4.06e-03)
-0.08 (4.19¢-03)
-0.07 (8.76e-03)
-0.07 (9.10e-03)
-0.07 (9.78e-03)

dep_dist_iobj
dep_dist_appos
dep_dist_advcl
dep_dist_flat
lexical _density
subordinate_dist_3
dep_dist_nmod: tmod
aux_form dist Inf
dep_dist_nummod
upos_dist_PROPN
upos_dist_NUM
upos_dist_PUNCT
upos_dist_SYM
dep_dist_punct
dep_dist_root

0.04 (9.89¢-02)
0.05 (7.38¢-02)
0.05 (7.29¢-02)
0.06 (1.87¢-02)
0.06 (1.84¢-02)
0.06 (1.56e-02)
0.07 (1.38-02)
0.07 (9.01e-03)
0.08 (2.63¢-03)
0.11 (4.98¢-05)
0.12 (3.36e-06)
0.13 (2.08¢-06)
0.13 (1.26¢-06)
0.14 (1.65¢-07)
0.26 (2.07e-22)

dep_dist_nmod: tmod
verb_edges dist_1
dep_dist_advmod
aux_mood_dist_Imp
upos_dist_CCONJ
upos_dist_PROPN
dep_dist_discourse
dep_dist_appos
upos_dist_INTJ]
dep_dist_conj
verbs_form dist_Ger
upos_dist_SYM
dep_dist_root
upos_dist_PUNCT
dep_dist_punct

0.04 (1.15¢-01)
0.04 (1.10e-01)
0.04 (1.01e-01)
0.05 (8.17e-02)
0.06 (2.98¢-02)
0.06 (2.35¢-02)
0.08 (4.42¢-03)
0.08 (3.43e-03)
0.08 (2.43e-03)
0.08 (1.61e-03)
0.09 (1.01e-03)
0.11 (4.11e-05)
0.11 (1.70e-05)
0.25 (1.31e-21)
0.25 (4.71e-22)

Table A.3: Linguistic features in training data. Generated = GePpeTto base
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Human Texts

Generated Texts

Feature

Correlation (p-values) ‘

Feature

Correlation (p-values)

verbal_root_perc
verbs_tense_dist_Past
upos_dist_DET
dep_dist_det
aux_form dist Fin
upos_dist_AUX

aux num pers_dist_Sing+3
verbal_head_per_sent
aux_mood_dist_Ind
dep_dist_obl
dep_dist_expl
dep_dist_case
aux_tense_dist_Past
dep_dist_cop
upos_dist_ADP

-0.28 (9.25¢-08)
-0.21 (6.34e-05)
-0.18 (8.41e-04)
-0.17 (1.19¢-03)
-0.17 (1.33e-03)
-0.17 (1.51e-03)
-0.17 (1.65¢-03)
-0.17 (1.79¢-03)
-0.16 (2.11e-03)
-0.16 (2.31e-03)
-0.16 (2.45¢-03)
-0.14 (6.99¢-03)
-0.14 (7.98¢-03)
-0.13 (1.22e-02)
-0.13 (1.55¢-02)

principal proposition dist
dep_dist_nsubj:pass
dep_dist_aux:pass
dep_dist_root

aux mood dist_Ind
aux_form_dist_Fin
aux_tense dist Past

aux num_pers_dist_Sing+3
dep_dist_obl:agent
verbal _root_perc
dep_dist_flat
dep_dist_det

lexical density
upos_dist_AUX
verb_edges_dist_5

-0.2 (1.33e-04)

-0.19 (3.55¢-04)
-0.18 (5.71e-04)
-0.18 (7.22¢-04)
-0.18 (7.45¢-04)
-0.17 (1.94¢-03)
-0.16 (1.97¢-03)
-0.16 (2.87¢-03)
-0.16 (3.25¢-03)
-0.14 (7.63e-03)
-0.13 (1.20e-02)
-0.13 (1.57¢-02)
-0.12 (2.06e-02)
-0.12 (2.74e-02)
-0.11 (4.33e-02)

dep_dist_flat:name
verbs_tense_dist_Pres
verbs_form dist_Inf
char _per_tok
dep_dist_compound
dep_dist_root
upos_dist_PUNCT
dep_dist_punct
upos_dist PROPN
dep_dist_nmod
upos_dist_SYM
dep_dist_nummod
lexical_density
dep_dist_flat
upos_dist_NUM

0.1 (5.16e-02)

0.11 (3.77e-02)
0.11 (3.54e-02)
0.12 (2.98e-02)
0.12 (2.40e-02)
0.14 (1.08e-02)
0.14 (9.63¢-03)
0.14 (9.63e-03)
0.15 (6.28¢-03)
0.17 (1.81e-03)
0.17 (1.63e-03)
0.17 (1.17e-03)
0.17 (1.12e-03)
0.22 (2.46¢-05)
0.25 (2.08¢-06)

n_prepositional _chains
verbs_num_pers_dist_Plur+3
dep_dist_punct
upos_dist_PUNCT
dep_dist_nummod
dep_dist_conj
upos_dist_PRON
upos_dist_SYM
dep_dist_acl:relcl
dep_dist_appos
n_tokens
tokens_per_sent
avg_links len
avgmax_links_len
max_links len

0.12 (2.02e-02)
0.13 (1.59¢-02)
0.13 (1.48¢-02)
0.13 (1.40e-02)
0.15 (4.12¢-03)
0.15 (3.76e-03)
0.16 (3.56e-03)
0.16 (2.19¢-03)
0.17 (1.36e-03)
0.17 (1.29¢-03)
0.19 (4.73e-04)
0.19 (4.73e-04)
0.25 (1.94e-06)
0.26 (1.02-06)
0.26 (1.02¢-06)

Table A.4: Linguistic features on test data. Generated = GePpeTto-F.
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