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Abstract
This paper describes the submission by NUIG-
DSI to the GEM benchmark 2021. We par-
ticipate in the modeling shared task where
we submit outputs on four datasets for data-
to-text generation, namely, DART, WebNLG
(en), E2E and CommonGen. We follow an
approach similar to the one described in the
GEM benchmark paper where we use the pre-
trained T5-base model for our submission. We
train this model on additional monolingual
data where we experiment with different mask-
ing strategies specifically focused on masking
entities, predicates and concepts as well as a
random masking strategy for pre-training. In
our results we find that random masking per-
forms the best in terms of automatic evaluation
metrics, though the results are not statistically
significantly different compared to other mask-
ing strategies.

1 Introduction

The GEM Benchmark (Gehrmann et al., 2021) is a
living benchmark focusing on generation, evalua-
tion and metrics for a variety of natural language
generation tasks including summarization, simpli-
fication, dialog and data-to-text generation. In
general, the field of natural language generation
(NLG) is concerned with automatic generation of
human understandable texts, typically from a non-
linguistic or textual representation of information
as input (Reiter and Dale, 2000). Traditionally,
most applications for NLG have relied on rule-
based systems designed using a modular pipeline
approach (Gatt and Krahmer, 2018). However, re-
cently approaches based on neutral networks with
an encoder-decoder architecture trained in an end-
to-end fashion have gained popularity. These typi-
cally follow the paradigm of pre-training on a large
corpus followed by fine-tuning on a task specific
dataset and have been shown to achieve state-of-the-
art results on many natural language tasks (Raffel

et al., 2020; Lewis et al., 2020). When evaluated by
human annotators, neural models for data-to-text
generation have been found to produce fluent text
though such models might struggle in terms of data
coverage, relevance and correctness where rule-
based systems score high (Castro Ferreira et al.,
2020).

In our participation in the GEM benchmark, we
submit outputs for four datasets including DART
(Nan et al., 2021), WebNLG (Gardent et al., 2017;
Castro Ferreira et al., 2020), E2E (Novikova et al.,
2017; Dušek et al., 2019) and CommonGen (Lin
et al., 2020). We use the pre-trained T5-base model
architecture (Raffel et al., 2020) for our submis-
sion implemented using the transformers library
from Hugging Face (Wolf et al., 2020). We first
train on monolingual data before fine-tuning on the
task-specific dataset. For DART and WebNLG, we
use abstracts from DBpedia (Auer et al., 2007) for
training while for the other two datasets, we use
monolingual target-side references for pre-training
with a masked language modeling objective. We
experiment with different masking strategies where
we mask entities and predicates (for DART), mean-
ing representation fields (for E2E) and concepts
(for CommonGen) and compare the results with
commonly used approach of random masking. Our
results suggest that random masking achieves the
best scores for automatic evaluation metrics for
DART, WebNLG and E2E while additional pre-
training appears to hurt the performance for Com-
monGen.

2 Methodology

In this section we define our methodology on the
four datasets where we make a submission and
subsequently discuss the results based on automatic
evaluation metrics defined in the GEM benchmark.
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Tripleset Antioquia Department country Colombia
Bandeja paisa ingredient Chorizo
Bandeja paisa region Antioquia Department

linearisation Antioquia Department country Colombia Bandeja paisa ingredient Chorizo Bandeja paisa region Antioquia
Department

tags <SUB> Antioquia Department <PRED> country <OBJ> Colombia <SUB> Bandeja paisa <PRED> ingredient
<OBJ> Chorizo <SUB> Bandeja paisa <PRED> region <OBJ> Antioquia Department

entity types <LOCATION> Antioquia Department <PRED> country <LOCATION> Colombia <FOOD> Bandeja paisa
<PRED> ingredient <SAUSAGE> Chorizo <FOOD> Bandeja paisa <PRED> region <LOCATION> Antioquia
Department

NER tags <ORG> Antioquia Department <PRED> country <GPE> Colombia <PERSON> Bandeja paisa <PRED> ingre-
dient <UNKNOWN> Chorizo <PERSON> Bandeja paisa <PRED> region <ORG> Antioquia Department

(a) Additional tags added to the linearised tripleset.

Lexicalisation Chorizo is an ingredient in Bandeja paisa, a dish from the Antioquia Department region, in Colombia.

Random Masking Chorizo is an ingredient in Bandeja paisa, a dish [MASK] Antioquia Department [MASK], in Colombia.

Entity Masking [MASK] is an ingredient in [MASK], a dish from the [MASK] region, in [MASK].

Predicate Masking Chorizo is an [MASK] in Bandeja paisa, a dish from the Antioquia Department [MASK], in Colombia.
(b) Masking strategies for pre-training on monolingual data.

Figure 1: Example of a tripleset from the DART dataset with additional information tags included after linearisa-
tion for fine-tuning (top) and different masking strategies applied to a sentence for pre-training (bottom).

2.1 DART

DART (Nan et al., 2021) consists of open domain
data records structured in the form of triples paired
with crowd-sourced textual annotations in English
describing those triples. The data is collected from
multiple different sources including tables from
Wikipedia, questions from WikiSQL and merged
with two existing data-to-text datasets, namely,
WebNLG (en) (Gardent et al., 2017) and cleaned
E2E (Dušek et al., 2019).

Since both DART and WebNLG are concerned
with the task of triple-to-text generation and have
the same input data structure, we follow the same
approach as defined in Pasricha et al. (2020) for the
WebNLG+ challenge. We use the pre-trained T5
model architecture and first train it on a corpus of
abstracts from DBpedia with a masked language
modeling objective. For masking, we adopt the
commonly used approach of randomly masking
15% of the tokens in texts. We further compare this
with an approach where we specifically mask only
the entities or only the predicates or a combination
of both as shown in Figure 1(b). The abstracts are
downloaded from DBpedia for the entities which
are present in the triples contained in the training
set of the DART dataset. Since we did not find
an abstract for each unique entity in the training

BLEU METEOR ROUGE-L

baseline 46.10 37.24 59.61

masked pre-training

random masking 47.16 37.51 59.99
entity masking 45.92 37.14 59.56
predicate masking 46.73 37.36 59.79
entity + predicate 46.37 37.23 59.51

Table 1: Results from automatic evaluation on the
DART validation set with different masking strategies
on DBpedia abstracts for pre-training using the T5-
small model.

set, we ended up with 9,218 abstracts consisting on
1,654,239 tokens and 83,583 types in total with an
average of 179.45 tokens per abstract. After pre-
training, we fine-tune on the DART training set to
predict the target text conditioned on the linearised
tripleset.

For fine-tuning we linearise the input tripleset
into a sequence without modifying the order of the
triples in the input. We incorporate additional infor-
mation to mark the subject, predicate and object in
each triple in the input by using <SUB>, <PRED>

and <OBJ> tags respectively. Additionally, we also
include tags for the type of an entity using DBpedia
as shown in Figure 1(a). In the instances where we
do not find the type of an entity on DBpedia, we
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check whether it refers to a time period or a date
and assign it the type <TIMEPERIOD>. Otherwise,
we assign the type <MEASUREMENT> to an entity
containing a numeric value followed by some text.
The type <NUMERIC> is assigned to entities which
only consist of numeric values and <UNKNOWN> to
everything else. Furthermore, as a comparison, we
add tags for entities using the named entity recogni-
tion pipeline from the spaCy library1. All of these
tags are included as additional special tokens to the
model vocabulary.

For our experiments with masking during pre-
training on DBpedia abstracts, we use the small
variant of the T5 model architecture. This model
has approximately 60 million parameters and is
much faster to train compared to other larger vari-
ants. We use the pre-trained model implementation
from Hugging Face’s transformers library (Wolf
et al., 2020) which consists of 6 layers each in
the encoder and decoder with a multi-head atten-
tion sub-layer consisting of 8 attention heads. The
word embeddings have a dimension of 512 and the
fully-connected feed-forward sublayers are 2048-
dimensional. Pre-training on DBpedia abstracts
is done on a single Nvidia GeForce GTX 1080 Ti
GPU for 10 epochs with a batch size of 8 using
the Adam optimizer with a learning rate of 0.001.
All the other hyperparameter values are set to their
default values. Table 1 shows scores for the output
generations on the validation set for BLEU (Pap-
ineni et al., 2002), METEOR (Banerjee and Lavie,
2005) and ROUGE-L (Lin, 2004). We find random
masking to perform the best in terms of automatic
evaluation metrics compared to specifically mask-
ing entities or predicates, though the results are not
statistically significantly different.

Furthermore, in our experiments we compare
the results when additional tags are added to the
input either as entity types from DBpedia or NER
tags from spaCy or just the <SUB>, <PRED> and
<OBJ> tags. For this, we use the T5-base model
with approximately 220 million parameters. This
model consists of 12 layers each in the encoder
and decoder with 12 attention heads in each multi-
head attention sublayer. The word embeddings are
768-dimensional for this model and feed-forward
sublayer is 3072-dimensional. This model is first
pre-trained on DBpedia abstracts with a masked
language modeling objective where 15% of the
tokens are corrupted randomly. For fine-tuning,

1https://spacy.io

BLEU METEOR ROUGE-L

baseline 51.06 40.23 60.86

tags 51.71 40.68 61.10
DBpedia types 50.75 40.33 60.45
spaCy NER 51.05 40.42 61.30

Table 2: Results from automatic evaluation on the
DART validation set with different tags for fine-tuning.
The results are shown here using the T5-base model
which is first pre-trained with the random masking on
a corpus of DBpedia abstracts.

we train on the DART training set for 10 epochs
on a single Nvidia GeForce GTX 1080 Ti GPU
with a batch size of 16 and select the checkpoint
with the highest BLEU score on the validation set.
We set the maximum output sequence length to
50 words and apply beam search during inference
with a beam of size equal to 5. Here we find that
adding the three <SUB>, <PRED> and <OBJ> tags
achieves the best results compared to tags from
DBpedia or spaCy though the differences in the
automatic evaluation results are again not statisti-
cally significant. For our final submission to the
GEM benchmark, we submit the outputs from this
model which is fine-tuned with the added <SUB>,
<PRED> and <OBJ> tags.

2.2 WebNLG

WebNLG (Gardent et al., 2017) introduced the task
of RDF-to-Text generation focused on generating
a verbalisation in a human language in the output
based on a set of RDF-triples in the input. The
WebNLG corpus consists of data units made up of
RDF-triples extracted from DBpedia (Auer et al.,
2007) and paired with reference text lexicalisations.
These texts were collected using crowd-sourcing
and contain sequences of one or more short sen-
tences in English, verbalising the data units in the
input. The first version of the corpus contained
triplesets from 15 DBpedia categories and is di-
vided into two subsets, seen and unseen for evalua-
tion. The ten seen categories are Airport, Astronaut,
Building, City, ComicsCharacter, Food, Monument,
SportsTeam, University and WrittenWork and the
five unseen categories are Artist, Athlete, Celestial-
Body, Company, MeanOfTransportation and Politi-
cian. WebNLG+ (Castro Ferreira et al., 2020) was
further introduced to include Russian as another
output language and added the category Company
to the training set as well as three categories Film,
MusicalWork and Scientist to the test set.

https://spacy.io
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BLEU METEOR ROUGE-L

baseline 33.73 36.52 53.72

masked pre-training

MR masking 34.09 36.62 53.64
random masking 34.21 36.50 53.85

Table 3: Results from automatic evaluation on the
E2E validation set with different masking strategies on
monolingual data for pre-training using the T5-base
model.

Since the entire WebNLG (en) corpus is already
included the DART dataset without any modifica-
tions, we use the same model as defined in §2.1
without any further fine-tuning to generate outputs
on the WebNLG (en) dataset. Our overall approach
is same as Pasricha et al. (2020) for the WebNLG+
challenge 2020 except here we use additional 6,678
DBpedia abstracts for pre-training and the larger
DART dataset for fine-tuning which results in a
higher scores for automatic evaluation metrics.

2.3 E2E

E2E (Novikova et al., 2017) is concerned with gen-
erating texts for a dialogue system from meaning
representations (MR) in the restaurant domain. It
was introduced with the aim of motivating research
in domain-specific end-to-end data-driven natural
language generation systems. The input for E2E
comprises of meaning representations with up to
8 different fields including name, near, area, food,
eatType, priceRange, rating and familyFriendly
while the output comprises of sentences typically
made of up 20 – 30 words in English verbalising
the input.

We follow the same approach as described in
§2.1 and experiment with masking strategies for
pre-training on monolingual data. Instead of us-
ing additional out-of-domain data, we use the tar-
get side references from the E2E dataset for pre-
training with a masked language modeling objec-
tive. Here we compare the results on two masking
strategies, one where we mask 15% of the token
spans randomly and another where we mask spe-
cific values based on meaning representation fields
such as restaurant names, area, price, etc. This
approach is similar to the one described in §2.1
where we masked specifically masked entities and
predicates. Table 3 shows scores for the output
generations on the validation set for BLEU, ME-
TEOR and ROUGE-L. We again find that random

BLEU METEOR ROUGE-L

baseline 28.94 31.03 55.78

masked pre-training

concept masking 27.81 29.61 54.87
random masking 26.87 29.83 54.17

Table 4: Results from automatic evaluation on the Com-
monGen validation set with different masking strate-
gies on monolingual data for pre-training using the T5-
base model.

masking appears to perform better though the dif-
ferences in terms of automatic evaluation metrics
are not significantly different.

For our submission to the GEM benchmark, we
use the same model architecture and hyperparam-
eter values as described previously for DART to
generate the output submissions on the E2E test set
and challenge sets. This model is first pre-trained
on the monolingual target side with a masked lan-
guage objective where the spans of text are masked
randomly and the fine-tuned on the E2E training
set containing pairs of meaning representations and
target texts.

2.4 CommonGen

CommonGen (Lin et al., 2020) was introduced with
the goal of testing state-of-the-art text generation
systems for the ability of commonsense reasoning.
The task for CommonGen is to generate a coherent
sentence in English describing an everyday sce-
nario using a set of concepts such as man, woman,
dog, throw and catch. Lin et al. (2020) have shown
that large pre-trained language models are prone
to hallucinations and can generate incoherent sen-
tences such as “hands washing soap on the sink”
for the concept set {hand, sink, wash, soap}. Two
key challenges identified by the creators of this
dataset are relational reasoning with underlying
commonsense knowledge for given concepts and
compositional generalization for unseen combina-
tions of concepts.

We again start with the T5-base model and exper-
iment with masked pre-training on the monolingual
target side of CommonGen. As described in §2.3
we compare two strategies of masking where we
mask spans of text randomly or specifically mask
tokens which correspond to concepts in the training
set. Table 4 shows scores for the output generations
on the validation set for BLEU, METEOR and
ROUGE-L. For fine-tuning we shuffle the concepts
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Dataset subset Metrics (Lexical Similarity and Semantic Equivalence)
METEOR ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore BLEURT

CommonGen val 0.310 64.37 33.08 55.78 28.77 0.893 -0.380
sample 0.304 63.72 32.52 54.82 28.24 0.890 -0.391

DART val 0.396 72.44 48.75 58.77 49.42 0.916 0.192

E2E clean

val 0.366 72.12 45.70 53.87 34.21 0.909 0.228
test 0.354 73.23 45.71 53.45 31.74 0.913 0.205
sample 0.365 71.72 45.39 53.81 34.20 0.910 0.221
scramble 0.349 72.06 44.32 51.69 30.52 0.910 0.176

WebNLG (en)

val 0.391 76.08 53.59 62.51 52.10 0.931 0.282
test 0.341 71.41 46.66 57.13 41.43 0.910 0.138
sample 0.389 75.48 53.00 62.38 51.35 0.929 0.260
scramble 0.343 71.54 47.02 57.07 41.74 0.909 0.140
numbers 0.338 70.36 45.98 56.78 41.33 0.909 0.101

Dataset subset Metrics (Diversity and System Characterization)
MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 |V| Output Len.

CommonGen val 0.54 0.11 0.37 6.9 10.3 532 2.4k 1.2k 10.9
sample 0.55 0.16 0.46 6.8 10.0 455 1.6k 862 11.0

DART val 0.42 0.05 0.15 7.4 9.9 1.3k 5.0k 3.1k 22.7

E2E clean

val 0.26 0.001 0.004 5.6 7.0 11 68 144 23.4
test 0.27 0.001 0.005 5.7 7.1 5 33 136 22.4
sample 0.44 0.01 0.027 5.6 7.0 6 43 117 23.7
scramble 0.47 0.01 0.034 5.7 7.1 7 56 117 22.4

WebNLG (en)

val 0.54 0.10 0.30 8.5 11.9 1.1k 4.8k 3.2k 19.2
test 0.65 0.04 0.16 8.0 10.9 368 2.1k 1.5k 19.5
sample 0.57 0.20 0.50 8.3 11.3 942 3.0k 1.9k 19.2
scramble 0.50 0.11 0.32 7.9 10.6 362 1.5k 2.9k 19.8
numbers 0.65 0.12 0.32 7.9 10.6 426 1.6k 1.1k 19.6

Table 5: Results from automatic evaluation metrics measuring lexical similarity, semantic equivalence, diversity
and system characteristics on the validation set, test set and the three challenge sets – sample, scramble and numbers
for DART, WebNLG (en), E2E and CommonGen.

in the input before concatenating them into a single
sequence. We find in our results that additional
pre-training on monolingual data on the target ap-
pears to hurt the performance when measured with
automatic evaluation metrics. This is true in both
the cases when masking is done randomly or when
only specific concepts are masked.

3 Results

Table 5 shows results on the validation set, test
set and the challenge sets evaluated using GEM
metrics2. At the time of writing we do not have
access to all the references in the test set as well
as the challenge sets for DART and CommonGen,
hence scores on some subsets are not shown.

The evaluation metrics are divided into different
categories measuring lexical similarity, semantic
equivalence, diversity and system characteristics.
Popular metrics such as BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005) and
ROUGE-1/2/L (Lin, 2004) are used for lexical sim-
ilarity, while recently proposed metrics such as

2https://github.com/GEM-benchmark/
GEM-metrics

BERTScore (Zhang et al., 2020) and BLEURT
(Sellam et al., 2020) which rely on sentence embed-
dings from pre-trained contextualised embedding
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) are used for evaluating
semantic equivalence. To account for the diverse
outputs, Shannon Entropy (Shannon et al., 1950)
is calculated over unigrams and bigrams (H1, H2)
along with the mean segmented type token ratio
over segment lengths of 100 (MSTTR) (Johnson,
1944). Furthermore, the ratio of distinct n-grams
over the total number of n-grams (Distinct1,2), and
the count of n-grams that appear once across the
entire test output (Unique1,2) is calculated (Li et al.,
2018). The size of the output vocabulary (|V|) and
the mean length of the generated output texts are re-
ported as system characteristics (Sun et al., 2019).

Compared to the baselines described in the GEM
benchmark (Gehrmann et al., 2021), we observe
higher scores in our submissions for automatic met-
rics on the CommonGen and DART datasets while
scoring lower on the cleaned E2E and WebNLG
(en) datasets especially on the test and challenge
subsets for both E2E and WebNLG.

https://github.com/GEM-benchmark/GEM-metrics
https://github.com/GEM-benchmark/GEM-metrics
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4 Conclusion

We presented a description of the system submit-
ted by NUIG-DSI to the GEM benchmark 2021.
We participated in the modeling shared task and
submitted outputs on four datasets for data-to-text
generation including DART, WebNLG (en), E2E
and CommonGen using the T5-base model. We
first trained this model with monolingual data from
DBpedia abstracts and target side references before
fine-tuning on respective training datasets. Addi-
tionally we experimented with various masking
strategies focusing specifically on masking enti-
ties, predicates and concepts as well as a random
masking strategy for training. We found random
masking to perform the best and submit our final
outputs using this approach.
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