
NUS-IDS at FinCausal 2021: Dependency Tree in Graph Neural Network
for Better Cause-Effect Span Detection

Fiona Anting Tan, See-Kiong Ng
Institute of Data Science

National University of Singapore, Singapore
tan.f@u.nus.edu, seekiong@nus.edu.sg

Abstract
Automatic identification of cause-effect spans
in financial documents is important for causal-
ity modelling and understanding reasons that
lead to financial events. To exploit the ob-
servation that words are more connected to
other words with the same cause-effect type in
a dependency tree, we construct useful graph
embeddings by incorporating dependency re-
lation features through a graph neural network.
Our model builds on a baseline BERT token
classifier with Viterbi decoding, and outper-
forms this baseline in cross-validation and dur-
ing the competition. In the official run of Fin-
Causal 2021, we obtained Precision, Recall,
and F1 scores of 95.56%, 95.56% and 95.57%
that all ranked 1st place, and an Exact Match
score of 86.05% which ranked 3rd place.

1 Introduction

We worked on the shared task of FinCausal 2021
(Mariko et al., 2021) that aims to identify cause
and effect spans in financial news. This task builds
on the previous shared Task 2 (Mariko et al., 2020)
by introducing additional annotated data.

Contributions: We propose a solution to include
dependency relations in a sentence to improve iden-
tification of cause-effect spans. We do so by rep-
resenting dependency relations in a graph neural
network. Our model is an extension of a baseline
BERT token classifier with Viterbi decoding (Kao
et al., 2020), and outperforms this baseline in cross-
validation and test settings. This improvement also
holds for two BERT pretrained language models
that were experimented with. During the compe-
tition, we ranked 1st for Precision, Recall, and F1
scores and 3rd for Exact Match score.

Organization: Section 2 outlines our approach
for this task. Section 3 introduces the task dataset
and evaluation datasets. Our results are presented
and discussed in Section 4 while Section 5 con-
cludes with some future directions.

2 Our Approach

In this section, we outline our approach 1. Ad-
ditional architectural and experimental details are
provided in the Appendix.

2.1 Framing the Task

Given an example document, which could be one or
multiple sentence(s) long, the task is to identify the
cause and effect substrings. We converted the span
detection task into a token classification task, simi-
lar to many state-of-the-art methodologies for span
detection (Pavlopoulos et al., 2021) and Named
Entity Recognition (Lample et al., 2016; Tan et al.,
2020) tasks. Figure 1 demonstrates an example
sentence that has its Cause (C) span highlighted in
green, and Effect (E) span highlighted in orange,
while all other spans are highlighted in grey. The
sentence was tokenized and subsequently aligned
against the target token labels. We included the
BIO format (Begin, Inside, Outside) (Ramshaw
and Marcus, 1995) in our labels to better identify
the start of spans. Thus, we have five labels: B-C,
I-C, B-E, I-E and O.

Figure 1: Illustrative training example (ID:
0477.00020) with Cause (C) and Effect (E) spans
highlighted in green and orange respectively. We
include Begin (B), Inside (I) and Outside (O) prefixes
to create 5 labels in our token classification task.

2.2 Baseline

Kao et al. demonstrated that their BIO tagging
scheme with a Viterbi decoder (Viterbi, 1967) that

1Our source code is available at https://github.
com/tanfiona/CauseEffectDetection.

https://github.com/tanfiona/CauseEffectDetection
https://github.com/tanfiona/CauseEffectDetection


utilised BERT-encoded document representations
is useful for this cause-effect span detection task.
Their model topped the competition last year across
all metrics. Therefore, we adapted their pipeline
and proposed distinct additions highlighted later
in Section 2.3 for improved performance. In the
immediate subsections, we motivate the benefits in
retaining the key components of Kao et al.’s model,
and highlight any differences in our approach.

2.2.1 BERT Embeddings
We employed the Bidirectional Encoder Repre-
sentations from Transformers (BERT) (Devlin
et al., 2019) for its tokenizer and encoder model,
fine-tuned on our task. We used pretrained lan-
guage models from Huggingface (Wolf et al.,
2020). Apart from bert-base-cased, we also
used bert-large-cased for improved perfor-
mance.

2.2.2 Viterbi Decoder
The Viterbi decoding algorithm is only applied dur-
ing evaluation. Since the true cause-effect spans
are consecutive sequences, but the token classifica-
tions from the neural network could produce non-
consecutive sequences, the Viterbi algorithm serves
as a forward error correction technique and is an
important element for the success of this pipeline.

2.2.3 Parts-of-Speech
Kao et al. (2020) showed that Parts-of-Speech
(POS) did not improve their model performance.
We reconfirm this finding later in Section 4.2. How-
ever, we found POS features to be useful inclusions
for our proposed model.

2.3 Dependency Tree

Our key contribution is the inclusion of dependency
tree relations into the neural network for improved
cause-effect token classification. Dependencies in
text can be mapped into a directed graph representa-
tion, where nodes represent words and edges repre-
sent the dependency relation. Figure 2 shows some
example sentences, highlighted by their Cause and
Effect labels. We notice that there is a tendency
for words of the same cause-effect label to be more
connected in these graphs and thus wish to incorpo-
rate these information into the model as features.

Figure 3 reflects our neural network model, with
the addition of our GNN module that produces
graph representations, which are then concatenated
with the BERT and POS embeddings and fed into a

linear layer for token classification. The following
subsections describe the GNN module further.

2.3.1 Document to Graph
Each example was represented as a directed graph,
where nodes are token features (the concatenation
of BERT and POS embeddings), while edges are
directed connections pointing head to tail tokens 2

based on dependency tree parsing 3.

2.3.2 Graph Neural Network
Our graph neural network (GNN) comprised of
two graph convolutional layers for message pass-
ing across dependency relations that are two steps
apart. Specifically, we used SAGEConv operator
(Hamilton et al., 2017) for its ability to include
node features and generate embeddings by aggre-
gating a node’s neighbouring information. To cap-
ture the long-term contextual dependencies in both
forward and backwards order of the original sen-
tence, we added a bi-directional long short-term
memory (BiLSTM) layer (Hochreiter and Schmid-
huber, 1997) onto the graph embeddings.

3 Data

3.1 Task Dataset
Our main dataset is the FinCausal 2021 dataset
(Mariko et al., 2021) comprising of 2393 train and
638 competition test examples.

3.2 Evaluation
We evaluated our proposed models in cross-
validation (CV) against the Viterbi BERT model
(Kao et al., 2020) that achieved first place in the pre-
vious run of this shared task. We refer to this model
as the Baseline in subsequent sections. To check
if our proposed models has statistically significant
improvements from the Baseline, we adapted Diet-
terich (1998)’s approach using a 3-fold CV setup
for 5 iterations, each iteration initialised with a
random seed 4. This gives us 5 ∗ 3 = 15 sets of
evaluation results to perform Paired T-Tests for sta-
tistical significance.

To obtain test predictions for submission on Co-
dalab 5, we used a new seed = 123 to train on
the full train data and applied the model onto the
unseen competition test data for online submission.

2If head or tail words are split into multiple tokens, each
head (sub) piece is connected to each tail (sub) piece.

3Stanza (Qi et al., 2020) was used for dependency parsing.
4The 5 random seeds used were 916, 703, 443, 229, 585
5https://competitions.codalab.org/

competitions/33102
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Figure 2: Dependency-tree represented as directed graphs, with Cause, Effect, and Other spans highlighted in
green, orange and grey respectively.

Model Precision Recall F1 ExactMatch
A. bert-base-cased
1 Baseline 95.62 95.90 95.76 88.18
2 + Node features, BiLSTM 95.42 95.95 95.68 88.07
3 Baseline w/ POS 95.39^ 96.02 95.70 88.24
4 + Node features 95.66 95.81 95.73 88.20
5 + BiLSTM 95.46 95.99 95.72 88.06
6 + Node features, BiLSTM (Proposed) 95.73 96.05^ 95.89 88.35

B. bert-large-cased
7 Baseline 95.64 96.01 95.82 87.65
8 + Node features, BiLSTM 93.75* 95.56 94.61* 86.44
9 Baseline w/ POS 94.46 96.08 95.22 87.28
10 + Node features 95.61 95.98 95.79 88.24
11 + BiLSTM 95.60 95.78^ 95.69 87.94
12 + Node features, BiLSTM (Proposed) 95.72 96.11 95.91 88.35

Table 1: Average evaluation results over cross-validation sets from 5 random seeds, each with 3 folds. Notes.
Scores are reported in percentages (%). Best score per Panel per column is bolded. Baseline models are our
replications of the models introduced by Kao et al. (2020). For each Panel A and B, Paired T-test of the models
was conducted against Row 1 and 7 respectively, with statistical significance indicated by: ***< 0.05, **< 0.10,
*< 0.15, ^< 0.20.

Model Precision Recall F1 ExactMatch
Baseline 93.47 93.42 93.65 80.25
Proposed (bert-base-cased) 94.24 94.21 94.37 83.23
Proposed (bert-large-cased) 95.56 95.56 95.57 86.05
Best Score 95.56 95.56 95.57 87.77

Our Ranking 1st 1st 1st 3rd

Table 2: Results over test sets submitted to Codalab (As of 01 September 2021). Notes. Scores are reported in
percentages (%). Best score per column is bolded. The models of the first three rows corresponds to Rows 1, 6,
and 12 in Table 1 for CV respectively.



Figure 3: Neural network pipeline. Appendix A.1 out-
lines this further.

4 Results and Analysis

Table 1 reflects the model performances in CV,
while Table 2 reflects the results during the com-
petition. In both cases, we demonstrate that our
model (Proposed) surpasses the Baseline.

For the CV setting, Proposed (Row 6) obtained
95.73% Precision (P), 96.05% Recall (R), 95.89%
F1 and 88.35% exact match (EM) scores. These
exceed the Baseline (Row 1) by 0.11%, 0.15%,
0.13% and 0.18% respectively 6. For test set-
ting, large performance increments were observed:
Proposed achieved P/R/F1/EM scores of 94.24%,
94.21%, 94.37% and 83.23%, which are improve-
ments from Baseline by a magnitude of 0.77%,
0.78%, 0.72% and 2.98% respectively 7.

4.1 Size of Pretrained Models

The two sections of Table 1 shows that the inclusion
of dependency-based graph embeddings improved
performance against Baseline irregardless of the
pretrained BERT model choice.

Between the two investigated BERT mod-
els, bert-large-cased outperforms
bert-base-cased by a small amount in
CV and by a significant amount in testing across
metrics. With bert-large-cased, the
Proposed model achieved P/R/F1/EM scores of
95.56%, 95.56%, 95.57% and 86.05% during
the competition, which are improvements from
Baseline by a magnitude of 2.09%, 2.14%, 1.92%
and 5.80% respectively 8.

6We did not obtain P-values (< 5%) of statistical signifi-
cance when comparing Proposed against Baseline.

7We were unable to run repeated iterations to conduct
Paired T-Tests for significance testing in competition test sets
as we do not have access to the true labels.

8We did not upload a Baseline model using

4.2 Features and Layers

Table 1 also includes results from CV exper-
iments where we removed components of our
model. In this subsection, we discuss the im-
portance of each component in the context of
bert-base-cased, but note that similar find-
ings persisted in the bert-large-cased.

POS: Inclusion of the POS into the Baseline led
to mixed outcomes across the four metrics against
the Baseline (Row 3 vs Row 1). However, adding
POS features in Proposed improved performance
in all metrics (Row 6 vs Row 2).

Node features: We reran a model that takes in
nodes with no features (i.e. all nodes are repre-
sented by “1”). The results from this model corre-
sponds to Row 5. No obvious improvements from
Baseline (Row 1) was found, however, the perfor-
mance was consistently worse off than Proposed
for all metrics (Row 6), suggesting that informative
node features are important to include in the GNN.

BiLSTM: Comparing our proposed model with
(Row 6) and without (Row 4) the BiLSTM layer
suggested the layer was an important addition. Our
hypothesis is that the BiLSTM helps to align the
graph embeddings into a sequential manner cor-
responding to the original token order. A simple
example is the punctuation full-stop “.” in Figure
2. The target label of the full-stop in these cases
coincides with the immediate label of the word be-
fore it. However, our dependency tree attributed
the full-stop as a tail of another word far away from
it in the sentence (E.g. “said”→ “.”).

5 Conclusions and Future Work

We have demonstrated the benefits of including de-
pendency tree features as graph embeddings in a
neural network model for better cause-effect span
detection. A key caveat of our approach, which re-
quires further research, is that dependency parsing
occurs within sentences, resulting in disconnected
graphs for examples with multiple sentences 9. An-
other future work is to apply our cause-effect de-
tection model trained on financial texts onto other
domains (E.g. academic journals) to study its gen-
eralizability.

bert-large-cased, which would have allowed for
a fairer comparison, due to time and upload constraints.

9Preliminary experiments to tie coreferential entities to-
gether to link dependency across sentences did not produce
fruitful results.
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A Appendix

A.1 Architecture of Proposed Model
An example with n tokens can be represented by
the vector of tokens w = (w0, w1, ..., wn)

T, where
w refers to a BERT input token. A single token in
this vector is represented by wi, where i denotes
the location index of the token within the example.
The tokenized example also has a matrix of POS
features V = (v0, v1, ..., vn)

T, where each vi ∈
IRdPOS refers to a one-hot encoding across all POS
tags, and so dPOS reflects the number of possible
POS tags.

To obtain BERT representations (r), we run the
tokenized sequence vector through the BERT en-
coder (T ) to obtain r for each token i. Thus, we
have that,

ri = Tw(w)i, ri ∈ IRdBERT (1)

where dBERT refers to the output dimension for
BERT encoder.

A dropout layer is represented by δ ∼
Bernoulli(ρ), where ρ refers to the dropout prob-
ability. We apply the dropout layer onto the BERT
representations as follows,

r̃i = δ ∗ ri, ri ∈ IRdBERT (2)

We combine the BERT and POS representations
of each token together by a simple concatenation
along the feature dimension.

r2i = [r̃i, vi], r2i ∈ IRdBERT+dPOS (3)

Our GNN model generates graph embedding
based on these concatenated features, which are
then concatenated together to arrive at our final
embeddings.

r3i = GNN(r2i), r3i ∈ IRdGNN (4)

r4i = [r2i, r3i], r4i ∈ IRd (5)

dGNN refers to the output dimension for the last
layer in our GNN module introduced in Section
2.3. That is, if BiLSTM is opted, then dGNN refers
to the size of the output dimension of the BiLSTM
layer. If not, it refers to the output dimension for the
second SAGEConv layer. Our final representations
have a feature dimension size of d = dBERT +
dPOS + dGNN .

Next, we run our combined embeddings through
a linear layer to obtain predicted probabilities per

token. c refers to the number of classes to be pre-
dicted.

oi = r4i ∗W + bi,

W ∈ IRd×c, oi, bi ∈ IRc

(6)

Cross entropy loss was used during training to op-
timize model weights. In evaluation, the logits ran
through a Viterbi decoder for adjustment. Finally,
all logits ran through an argmax function to obtain
the predicted class that had the highest probability.

In our implementation, we set dBERT = 768,
dPOS = 51, dGNN = 512 and c = 5.

A.2 Replication Checklist
• Hyperparameters: Our pretrained BERT mod-

els were initialized with the default configura-
tion from Huggingface (Wolf et al., 2020). To
train our model, we used the Adam optimizer
with β1 = 0.9, β2 = 0.999. Learning rate
was set at 2e−05 with linear decay. GPU train
batch size was set as 4. Maximum sequence
length was 350 tokens. For GNN, the graph
hidden channel dimensions (i.e. output dimen-
sion of the first SAGEConv layer) was 1024,
the graph output dimension (i.e. output dimen-
sion of the second SAGEConv layer) was 512,
and the BiLSTM output dimension was also
512. Probability for all dropout layers was
0.1.

• Device: All experiments were ran on the
NVIDIA A100-SXM4-40GB GPU.

• Time taken: For 3 folds over 10 epochs each,
the Proposed model took us on average (over
the 5 random seeds) 1hour : 48minutes :
28seconds for bert-base-cased and
1hour : 22minutes : 24seconds for
bert-large-cased to train, validate and
predict. For a single run over 10 epochs
to generate our submission, the code took
28minutes : 17seconds and 20minutes :
52seconds to train and predict for the base
and large models respectively.

A.3 Qualitative Results
In Table 3, we provide examples where the
Proposed versus Baseline model predicts cor-
rectly when the other predicts wrongly. The
predictions are obtained from the CV set of the
bert-large-cased model with seed = 916
and the first fold.



Index Baseline Proposed Right?
0036
.000
11

<E>Future sales agreements with suppliers in-
creased during the period, and aggregate con-
tracted sales volumes are now 11.7m tonnes per
annum</E>, following <C>new European sup-
ply agreements.</C>

<C>Future sales agreements with suppliers in-
creased during the period, and</C> <E>aggre-
gate contracted sales volumes are now 11.7m
tonnes per annum</E>, following new European
supply agreements.

Base-
line

0270
.000
09

<E> It comes with a £250 free overdraft and
requires a £1,000 monthly deposit</E> to
<C>avoid a £10 monthly fee.</C>

<C>It comes with a £250 free overdraft</C> and
requires a £1,000 monthly deposit to <E>avoid a
£10 monthly fee.</E>

Base-
line

0209
.000
33

<C>Fiserv believes that this business combina-
tion makes sense from the complementary assets
between the two companies, projecting higher rev-
enue growth than</C> <E>it would achieve on
its own and costs savings of about $900 million
over five years.</E>

<C>Fiserv believes that this business combina-
tion makes sense from the complementary assets
between the two companies</C>, <E>projecting
higher revenue growth than it would achieve on
its own and costs savings of about $900 million
over five years.</E>

Prop-
osed

0003
.000
19

<E>Additionally, the Congress provided $125
million in the current fiscal year for sustainable
landscapes programming</E> to <C>prevent for-
est loss.</C>

<E>Additionally, the Congress provided $125
million in the current fiscal year</E> for <C>sus-
tainable landscapes programming to prevent for-
est loss.</C>

Prop-
osed

Table 3: Predicted Cause-Effect spans for CV set from seed = 916 on first fold (i.e. K0). Notes. Cause and Effect
spans highlighted in green and orange respectively.


