Grammatical Error Correction with Contrastive Learning
in Low Error Density Domains

Hannan Cao

Wenmian Yang

Hwee Tou Ng

Department of Computer Science, National University of Singapore

caoh@u.nus.edu,

Abstract

Although grammatical error correction (GEC)
has achieved good performance on texts writ-
ten by learners of English as a second lan-
guage, performance on low error density do-
mains where texts are written by English
speakers of varying levels of proficiency can
still be improved. In this paper, we propose
a contrastive learning approach to encourage
the GEC model to assign a higher probability
to a correct sentence while reducing the prob-
ability of incorrect sentences that the model
tends to generate, so as to improve the accu-
racy of the model. Experimental results show
that our approach significantly improves the
performance of GEC models in low error den-
sity domains, when evaluated on the bench-
mark CWEB dataset.

1 Introduction

Grammatical error correction (GEC) is the task
of correcting errors in a source sentence and gen-
erating a well-written and grammatically correct
target sentence. Good results have been achieved
by state-of-the-art GEC systems based on the
seq2seq transformer architecture (Grundkiewicz
etal., 2019; Choe et al., 2019; Omelianchuk et al.,
2020). However, most prior approaches in GEC are
all targeting English-as-a-second-language (ESL)
datasets, where GEC systems are trained to correct
errors made by ESL learners. In fact, grammati-
cal and other writing errors are made not only by
ESL speakers but also by native speakers. There-
fore, correcting grammatical errors made by native
speakers should also be considered, which helps to
broaden the application of GEC.

Compared to the errors made by ESL learners,
native English speakers are less likely to make
grammatical errors, so the density of errors in the
sentences is much lower. The GEC model may
end up over-correcting or failing to correct certain
errors unique to native speakers.

{yangwm,

nght } @comp.nus.edu.sg

To address the problem mentioned above, it is
necessary to improve the ability of the model to
discriminate grammatical features from ungram-
matical features with minor differences. Recently,
supervised contrastive learning (CL) was proposed
by (Chen et al., 2020), which allows the model to
learn discriminative features through pushing the
features of positive samples closer together and
negative samples further apart. However, since
GEC is a text generation task, it is not clear how to
generate positive sample sentence pairs. To bridge
the gap, we instead incorporate CL by increasing
the probability of the model generating the right
corrections and further reducing the probability of
generating the wrong corrections, thereby improv-
ing the ability of the model for error correction in
low error density domains.

More specifically, we use the negative log-
likelihood (NLL) loss to increase the probability
of a model to generate positive samples (the right
corrections) and use a margin-based CL loss to
increase the gap between the probability of posi-
tive samples and the probability of negative sam-
ples (the wrong corrections) predicted by the GEC
model. In this paper, the negative samples are gen-
erated in two ways. The first kind of negative sam-
ples consists of those wrong corrections generated
with high probability by the GEC model during
beam search. The second kind of negative samples
consists of erroneous sentences from the dataset
that require some correction. Through the above
negative sampling method, we make the model
avoid over-correcting a correct sentence or neglect
to correct an erroneous sentence.

The main contributions of this paper are as fol-
lows:!

* We propose a new loss function based on CL,
which allows the model to achieve higher per-
formance in low error density domains. To the

'Our source code is available at https://github.
com/nusnlp/geccl.

4867

Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4867-4874
November 7-11, 2021. ©2021 Association for Computational Linguistics

https://github.com/nusnlp/geccl
https://github.com/nusnlp/geccl

best of our knowledge, our work is the first to
incorporate CL in GEC.

* We design a negative sampling method with
two strategies, which makes the GEC model
avoid over-correcting a correct sentence or
neglect to correct an erroneous sentence.

* Experimental results on the benchmark
dataset show that our CL approach can signif-
icantly improve the performance of seq2seq
GEC models compared to direct fine-tuning
in low error density domains.

2 Method

In this section, we will first introduce the back-
ground of grammatical error correction in Section
2.1, and then introduce our contrastive learning
method in Section 2.2.

2.1 Background of Grammatical Error
Correction

Let () be an ungrammatical source sentence and
() be the corrected grammatical target sentence.
For a grammatical error correction (GEC) model
parameterized by 6, the goal is to minimize the
NLL for a set of M sentence pairs {<s(i) @) }ij\il,
as follows:

LY, (0) = —1ogP(tD|s®),) (1)

M
1 i
Lyie(0) = 47 > LY.(0) 2
=1

Given trained parameters 0, the hypothesis sen-
tence £ is generated using beam search to select
the candidate with the highest probability, as fol-
lows:

t K3

2.2 Contrastive Learning for GEC

2.2.1 Overview

As we mentioned above, the GEC model may end
up over-correcting or fail to correct certain errors
unique to native speakers. To tackle this problem,
we propose the use of contrastive learning (CL)
to expand the loss gap between positive sample
pairs (the right corrections) and negative sample
pairs (the wrong corrections) so that the model can

Algorithm 1 Contrastive Learning for GEC

Input: Dp, D
Output: é() I
1: Obtain optimal 6 for the GEC model trained
on Dr via Eq. 2.
2: Construct Dz automatically based on D and
6 by the negative sampling method.
3: Obtain the optimal parameters for the GEC
model fine-tuned on D via Eq. 5.

better distinguish grammatically correct features
from grammatically incorrect features.

Our proposed contrastive learning approach is
described in Algorithm 1, which consists of three
steps. Specifically, in the algorithm, the input D
and D represent the datasets used for training (i.e.,
the standard GEC dataset) and fine-tuning (i.e., the
low error density GEC dataset), respectively. In
the first step, the GEC model is trained on Dr
via Eq 2 described in Section 2.1. In the second
step, the negative sample dataset D 7 is constructed
using the negative sampling method that will be
described in Section 2.2.3. In the third step, the
model is fine-tuned via Eq 5 to be described in
Section 2.2.2.

2.2.2 Loss for Contrastive Learning

The idea of supervised contrastive learning is to
make features of samples from the same class close
together, and to make features of samples from
different classes far apart (Khosla et al., 2020),
thereby improving the feature discrimination of
the model. However, since the GEC task is a text
generation task instead of a classification task, no
samples belong to the same class.

To overcome this problem, we instead improve
model feature discrimination by increasing the
probability of the model generating positive sam-
ples (right corrections) and further reducing the
probability of the model generating negative sam-
ples (wrong corrections).

Specifically, to discourage the model from gen-
erating ungrammatical sentences, we design a
margin-based contrastive learning loss as follows:

Ni
L& (0) = NL > max(—logP(t"]s®, §)

n=1

“)
+1ogP(i9[s%,8) + +,0)

where (s“%f@) is a negative sample pair. For

4868

the i-th positive sample, it is possible to have N*
negative sample pairs, which will be described in
Section 2.2.3. We utilize L(CZ)L(é) to ensure that the
margin of log-likelihood between a positive sample
pair and a negative sample pair is higher than ~.

To further encourage the model to generate gram-
matically correct sentences, we combine L(é) (0)
with the NLL loss, and obtain the combined loss
as:

M . N . N
L0)= 3, @+ 18,0} ©
i=1

2.2.3 Negative Sampling Method

We choose the wrong corrections that the model
tends to generate and the incorrect sentences that
the model neglects as the negative samples. In this
way, the model can learn more significant gram-
matically correct features. More formally, given
a ground-truth sentence pair (s, t()) from D,
a set of negative sample pairs (s, (")) will au-
tomatically be constructed by the following two
strategies:

« For a positive sample pair (s, t()), we feed
s() to the model parameterized by 6, and
choose the top k output sentences with the
highest probability generated by beam search.
Each sentence among these top k output sen-
tences that is not identical to the target t@ is
selected as a negative sentence ¢() and forms
a negative sample pair (s(), £()).

o If 5 is not identical to ¢t in the positive
sample pair (s, t(")) (i.e., some edits are
made to s to generate the corrected sentence
(), we further form a new negative sample
pair (s, ().

3 Experiments

In this section, we demonstrate the effectiveness of
our CL approach.

3.1 Datasets

To evaluate the efficiency of our CL approach in
low error density domains, we conduct experiments
on the public dataset CWEB (Flachs et al., 2020)2,
which is currently the only public dataset for na-
tive English speakers. Following most existing
work, we use BEA 2019 (Bryant et al., 2019)3 as

“https://github.com/SimonHFL/CWEB
3https://www.cl.cam.ac.uk/research/nl/bea2019st/

Usage Dataset #sent | err% | els
Train BEA-train 1,162,256 | 51.6 | 2.6
Fine-tune | CWEB-train 4,729 | 219 | 1.5
Dev CWEB-dev 2,000 | 223 | 1.5
Test CWEB-S-test 2,864 | 245 | 15

CWEB-G-test 3981 | 256 | 1.9

Table 1: Dataset statistics. e/s is the number of edits
per sentence calculated on erroneous sentences. err%
is the percentage of erroneous sentences in the entire
dataset.

the training set, consisting of NUCLE (Dahlmeier
et al., 2013), FCE (Yannakoudakis et al., 2011),
Lang-8 (Tajiri et al., 2012), and W&I (Bryant et al.,
2019). Detailed statistics of the datasets are shown
in Table 1.

CWEB is a low error density dataset consisting
of two domains, S and G. Compared to G, S fo-
cuses more on professional writings and contains
fewer errors. CWEB-dev is the combination of
the first 1,000 sentences from the CWEB-S devel-
opment set (2,862 sentences in total) and the first
1,000 sentences from the CWEB-G development
set (3,867 sentences in total), and the remaining
4,729 sentences are regarded as CWEB-train, simi-
lar to the setting used in (Flachs et al., 2020). When
testing on CWEB-S/G-test, we use BEA-train for
training and CWEB-train for fine-tuning.

3.2 GEC Systems

In this paper, we employ our CL approach on two
state-of-the-art seq2seq GEC systems, i.e., GEC-
PD (Kiyono et al., 2019), and GEC-BART (Kat-
sumata and Komachi, 2020) to verify its effective-
ness. The detailed description of these two systems
follows.

GEC-PD uses a Transformer-based framework
(Vaswani et al., 2017) with the Transformer-big
setting. This system is first pre-trained on 70 mil-
lion parallel synthetic sentences. Then, it is further
trained on the BEA-train erroneous portion by only
choosing sentence pairs whose source sentence is
not identical to the target sentence, consisting of
561,525 sentence pairs. During fine-tuning, we
use the training setting in (Kiyono et al., 2019) but
change its optimizer to Adam. Note that we do
not apply any of the post-processing steps used in
GEC-PD, because our goal is to compare our CL
approach against direct fine-tuning.

GEC-BART builds the GEC system based on
the BART-large (Lewis et al., 2020) pre-trained
model. GEC-BART is also further trained on the

4869

GEC-PD GEC-BART
Method S G S G

p R Fo.5 p R Fo.5 p R Fo.5 p R Fo.5
DI 1727 15.75 1691 | 21.34 23.00 2158 | 18.90 9.94 16.00 | 2644 17.72 2397
NLL 3591 1296 2646 | 42.09 1656 32.01 | 40.52 1143 26,79 | 41.38 1249 23.14
CL™ 3532 1869 2993 | 3654 2045 3138 | 3924 1387 2867 | 41.99 1576 31.35
CL 3630 2040 31347 | 3721 23.15 33.03*T | 40.16 15.08 30.08*T | 43.68 16.81 32.92*T

Table 2: Results of two GEC systems evaluated on CWEB-test (in %). DI (direct inference): The systems are
loaded with their trained weights from BEA-train and then tested on CWEB-test. NLL: The systems are fine-tuned
by minimizing the NLL loss in Eq 2. For DI and NLL for the GEC-PD system, we use the reported results from
(Flachs et al., 2020). For the GEC-BART system, we obtain the DI and NLL results by following the original
setting in (Katsumata and Komachi, 2020). CL™ and CL: The systems are fine-tuned with our CL approach by
minimizing the loss in Eq. 5 without and with the second strategy of the negative sampling method. For the detailed
training setting, please see Appendix A.4. Statistically significant improvements (p < 0.001) of the CL approach
over the NLL approach and the CL™ system are marked with an asterisk (*) and a dagger (}), respectively.

BEA-train erroneous portion as GEC-PD does. For
fine-tuning, we choose the same setting as (Kat-
sumata and Komachi, 2020).

3.3 Settings and Hyper-parameter Selection

In this paper, we implement the GEC systems
based on publicly available code*, and fine-tune
the model using NVIDIA V100 GPU. Unless oth-
erwise stated, we use the same hyper-parameters as
the original GEC systems. For evaluation, we use
the ERRANT scorer (Bryant et al., 2017) for all
datasets and carry out statistical significance tests
using one-tailed sign test with bootstrap resampling
on 100 samples.

There are two hyper-parameters in our CL ap-
proach: the number £ of top-ranked candidates dur-
ing beam search in Section 2.2.3, and the margin
parameter y from the loss function in Eq. 4. We se-
lect v in the range (0.1, 1.0) with a step size of 0.05,
and k in the range of (2,3, 4) using grid search.
We get the best results on CWEB-dev when k = 3,
v = 0.25 for GEC-PD, and k = 3, v = 0.85 for
GEC-BART, respectively.

3.4 CWEB Results

The results of our CL approach with fine-tuning
on CWEB-train are shown in Table 2. Since each
CWEB sentence was annotated by two annotators,
following the setting in (Flachs et al., 2020), we
first calculate the Fy 5 score based on each individ-
ual annotator, and report the average score as the
final result.

In the S domain, GEC-PD with CL achieves
the best performance with Fy 5 score of 31.34%

*GEC-PD: https://github.com/butsugiri/gec-pseudodata;
GEC-BART:https://github.com/Katsumata420/generic-
pretrained-GEC

and also achieves the most significant improvement
of 4.88% compared with NLL. In the G domain,
GEC-PD with CL achieves the best performance
too, with Fy 5 score of 33.03%, while GEC-BART
achieves the most significant improvement with
4.78% compared with NLL.

Compared with NLL, our CL approach can sig-
nificantly increase recall and achieve competitive
precision in both of the systems, except for GEC-
PD in the G domain. This is likely because GEC-
PD is pre-trained with a large amount of synthetic
data. Although CL fails to increase the precision
for GEC-PD in the G domain, the overall Fy 5 score
still increases and the increase is statistically sig-
nificant.

3.5 Ablation Study

We also carry out an ablation study to show the
importance of the second strategy in the negative
sampling method in low error density domains. The
performance of CL without and with the second
strategy of the negative sampling method is shown
in Table 2.

The results show that after adding the second
strategy of the negative sampling method, both
precision and recall increase for both GEC systems.
This shows that adding neglected error sentences as
negative samples is an effective way for low error
density domains.

3.6 Effect on Over Correction and Ignored
Correction

We use the Overdone Edit (OE) ratio and Ignored
Edit (IE) ratio to measure over-correction and ig-
nored correction, respectively. Specifically, we
use the closed interval [start, end] to indicate the
range of an edit. Then, an edit in the gold edits is

4870

counted as IE if its range does not intersect with
any model-generated edits. Similarly, an edit in
the model-generated edits is counted as OE if its
range does not intersect with any gold edits. Those
model-generated edits that intersect with the gold
edits but not correct are counted as wrong edits, not
counted as the above two cases.

The IE ratio is calculated by dividing the number
of IEs by the number of gold edits, and the OE ratio
is calculated by dividing the number of OEs by the
number of model-generated edits. The results of
the OE ratio and IE ratio are shown in Table 3.

Category GEC-PD GEC-BART
NLL | CL NLL | CL
S IEratio | 53.99 | 38.20 | 52.01 | 45.23
OE ratio | 53.54 | 52.02 | 46.02 | 44.35
G IEratio | 37.88 | 24.33 | 41.69 | 35.87
OEratio | 43.25 | 45.74 | 40.95 | 37.50

Table 3: IE ratio and OE ratio (in %) of the GEC-PD
and GEC-BART systems on the CWEB test set.

We have successfully reduced the IE ratio and
the OE ratio for both systems in S and G domain,
except for the case of GEC-PD in G domain. This
result demonstrates that CL can effectively reduce
the over correction problem and ignored correction
problem.

4 Related Work

4.1 Grammatical Error Correction

The state-of-the-art approach in GEC uses
sequence-to-sequence learning with transformer
neural networks (Grundkiewicz et al., 2019; Choe
et al., 2019; Omelianchuk et al., 2020). Several
task-specific techniques have been proposed for
the seq2seq GEC models. (Zhao et al., 2019) in-
corporated a copy mechanism into transformer net-
works (Vaswani et al., 2017), since many words in
a source sentence are often correct and they should
be kept. Diverse ensembles (Chollampatt and Ng,
2018a), rescoring (Chollampatt and Ng, 2018b),
and iterative decoding (Omelianchuk et al., 2020;
Lichtarge et al., 2019) have also been applied to
improve the accuracy of GEC.

4.2 Contrastive Learning

Contrastive learning has been used to learn a good
representation by contrasting positive with nega-
tive samples. (Chen et al., 2020) demonstrate that
contrastive learning could boost the performance

of semi-supervised learning and self-supervised
learning in computer vision.

In natural language processing, contrastive learn-
ing has also been used. In word2vec (Mikolov et al.,
2013), a center word and a word in its surround-
ing context are regarded as a positive sample and
their vector representations are pushed together,
while a center word and a randomly chosen word
are regarded as a negative sample and their vector
representations are pushed further apart. Besides
word2vec, contrastive learning has also been used
in natural language inference (Cui et al., 2020),
language modeling (Liza and Grzes, 2018), and
knowledge graph embeddings (Bose et al., 2018).

Most of the above methods work at the sample
level and have to generate both positive and nega-
tive samples. However, since the positive samples
are hard to generate in the GEC task, the above
methods are not suitable for GEC. Compared to the
above methods, our approach does not need to gen-
erate extra positive samples. Although (Yang et al.,
2019) propose a sentence-level margin loss-based
method for machine translation to reduce the word
omission errors and do not need positive samples
too, their negative samples are generated by word
omission at the token level and cannot be used in
GEC. In contrast, our approach uses beam search to
generate erroneous sentences as negative samples
at the sentence level, which effectively prevents
the model from making mistakes and thus is more
suitable for the GEC task.

5 Conclusion

In this paper, we propose a contrastive learning
approach and a corresponding negative sampling
method to improve the performance of seq2seq
GEC models in low error density domains. By
assigning a higher probability to grammatical cor-
rections and reducing the probability of wrong cor-
rections that the model tends to generate, we im-
prove the performance of GEC models in low error
density domains.

Acknowledgements

This research is supported by the National Re-
search Foundation, Singapore under its Al Sin-
gapore Programme (AISG Award No: AISG-
RP-2019-014). The computational work for this
article was partially performed on resources of
the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

4871

References

Avishek Joey Bose, Huan Ling, and Yanshuai Cao.
2018. Adversarial contrastive estimation. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1021—
1032.

Christopher Bryant, Mariano Felice, @istein E. An-
dersen, and Ted Briscoe. 2019. The BEA-2019
shared task on grammatical error correction. In Pro-
ceedings of the Fourteenth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 52-75.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. Automatic annotation and evaluation of error
types for grammatical error correction. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics, pages 793-805.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020. A simple framework
for contrastive learning of visual representations. In
Proceedings of the 37th International Conference on
Machine Learning, Proceedings of Machine Learn-
ing Research, pages 1597-1607.

Yo Joong Choe, Jiyeon Ham, Kyubyong Park, and
Yeoil Yoon. 2019. A neural grammatical error cor-
rection system built on better pre-training and se-
quential transfer learning. In Proceedings of the
Fourteenth Workshop on Innovative Use of NLP for
Building Educational Applications, pages 213-227.

Shamil Chollampatt and Hwee Tou Ng. 2018a. A mul-
tilayer convolutional encoder-decoder neural net-
work for grammatical error correction. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, pages 5755-5762.

Shamil Chollampatt and Hwee Tou Ng. 2018b. Neural
quality estimation of grammatical error correction.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2528-2539.

Wanyun Cui, Guangyu Zheng, and Wei Wang. 2020.
Unsupervised natural language inference via decou-
pled multimodal contrastive learning. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing, pages 5511-5520.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications,
pages 22-31.

Simon Flachs, Ophélie Lacroix, Helen Yannakoudakis,
Marek Rei, and Anders Sggaard. 2020. Grammati-
cal error correction in low error density domains: A
new benchmark and analyses. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing, pages 8467-8478.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications, pages 252-263.

Satoru Katsumata and Mamoru Komachi. 2020.
Stronger baselines for grammatical error correction
using a pretrained encoder-decoder model. In Pro-
ceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 10th International Joint Conference
on Natural Language Processing, pages 827-832.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Proceedings of the
Advances in Neural Information Processing Systems,
pages 18661-18673.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study
of incorporating pseudo data into grammatical error
correction. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing, pages 1236-1242.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871-7880.

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 3291-3301.

Farhana Ferdousi Liza and Marek Grzes. 2018. Im-
proving language modelling with noise contrastive
estimation. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 5277-5284.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of the Advances in Neural Infor-
mation Processing Systems, pages 3111-3119.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR — grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163—170.

4872

https://doi.org/10.18653/v1/P18-1094
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/W19-4406
https://doi.org/10.18653/v1/P17-1074
https://doi.org/10.18653/v1/P17-1074
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/W19-4423
https://doi.org/10.18653/v1/D18-1274
https://doi.org/10.18653/v1/D18-1274
https://doi.org/10.18653/v1/2020.emnlp-main.444
https://doi.org/10.18653/v1/2020.emnlp-main.444
https://aclanthology.org/W13-1703
https://aclanthology.org/W13-1703
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/2020.emnlp-main.680
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://doi.org/10.18653/v1/W19-4427
https://www.aclweb.org/anthology/2020.aacl-main.83
https://www.aclweb.org/anthology/2020.aacl-main.83
https://papers.nips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://papers.nips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/D19-1119
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N19-1333
https://doi.org/10.18653/v1/N19-1333
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.18653/v1/2020.bea-1.16
https://doi.org/10.18653/v1/2020.bea-1.16

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics, pages 198-202.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the Advances in Neural
Information Processing Systems, pages 5998—6008.

Zonghan Yang, Yong Cheng, Yang Liu, and Maosong
Sun. 2019. Reducing word omission errors in neu-
ral machine translation: A contrastive learning ap-
proach. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,

pages 6191-6196.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180-189.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 156-165.

4873

https://aclanthology.org/P12-2039
https://aclanthology.org/P12-2039
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1623
https://doi.org/10.18653/v1/P19-1623
https://doi.org/10.18653/v1/P19-1623
https://aclanthology.org/P11-1019
https://aclanthology.org/P11-1019
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014
https://doi.org/10.18653/v1/N19-1014

A Appendix

A.1 Experimental Details

In this part, we will introduce the software pack-
ages we have used, implementation details and the
training time required for each epoch.

Software configurations: All models are imple-
mented based on Fairseq® and PyTorch packages.
More specifically, we use Python 3.7 and PyTorch
1.7.0 (or above).

Implementation details: Our implementation of
the loss function for contrastive learning is based
on cross-entropy loss with label smoothing, which
is widely used to avoid overfitting for the model.

Note that each CWEB sentence was annotated
by two annotators with two possible corrections.
We only use the first correction as the target for
negative sampling.

A.2 Dev Set Performance

In this part, we will introduce the validation perfor-
mance for fine-tuning on the two datasets.

CWEB: The validation performance for fine-
tuning on the CWEB dataset using our contrastive
learning approach is shown in Table 4.

Systems CWEB - dev

P R F0.5
GEC-PD 40.49 | 23.33 | 35.25
GEC-BART | 52.85 | 22.34 | 41.51

Table 4: Validation performance (in %) of the 2 systems
on the CWEB dataset.

All results are obtained by using their optimal
hyper-parameters. The Fg 5 scores in this table
represent the validation scores on CWEB-dev.

A.3 Performance against Both Annotations

The performance of fine-tuning the GEC systems
when calculated against both annotations (non-
averaged) using the ERRANT toolkit is shown in
Table 5.

A.4 Training Configuration

Shttps://github.com/pytorch/fairseq/tree/9f4256edf60554a
fbcaadfal14525978c141f2bd

System P R FO0.5
o [NLL [4365 | 31.10 | 40.39
CL | 46.57 | 46.65 | 46.59
GEC-PD o [NLL [5388 | 3424 | 4833
CL 1 49.76 | 44.80 | 48.68
s [NLL [5333 | 28.10 | 4521
CL | 54.07 | 35.70 | 49.02
GEC-BART G [NLL [5307 [2653 | 4422
CL | 58.02 | 34.94 [51.25

Table 5: Test set performance (in %) of the 2 systems
on the CWEB dataset, fine-tuned using either NLL or
our CL approach.

Configuration Value

Model Architecture BART ("large" setting)
. Adam (/51=0.9, £2=0.999,

Optimizer e=1x10"%

Max Sequence Length | 1400

Learning Rate 3.00 x 1077

Learning Rate Polynomial Decay

Scheduler

Number of Epochs 20
Best epoch 18
Dropout 0.3

Beam search Beam size 1

Table 6: CL fine-tuning setting for the GEC-BART
model

Configuration Value

Model Architecture Transformer ("large" setting)
Opimize Adam (=09, ;=098
Max Sequence Length | 4096

Learning Rate 3.00 x 10°°

Learning Rate

Schedulir Constant

Number of Epochs 10

Best epoch 3

Dropout 0.3

Beam search Beam size 5

Table 7: CL fine-tuning setting for the GEC-PD model

4874

