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Abstract

Lacking sufficient human-annotated data is
one main challenge for abstract meaning rep-
resentation (AMR) parsing. To alleviate this
problem, previous works usually make use
of silver data or pre-trained language models.
In particular, one recent seq-to-seq work di-
rectly fine-tunes AMR graph sequences on the
encoder-decoder pre-trained language model
and achieves new state-of-the-art results, out-
performing previous works by a large mar-
gin. However, it makes the decoding rela-
tively slower. In this work, we investigate
alternative approaches to achieve competitive
performance at faster speeds. We propose
a simplified AMR parser and a pre-training
technique for the effective usage of silver
data. We conduct extensive experiments on
the widely used AMR2.0 dataset and the re-
sults demonstrate that our Transformer-based
AMR parser achieves the best performance
among the seq2graph-based models. Further-
more, with silver data, our model achieves
competitive results with the SOTA model, and
the speed is an order of magnitude faster. De-
tailed analyses are conducted to gain more in-
sights into our proposed model and the effec-
tiveness of the pre-training technique.

1 Introduction

Abstract meaning representation (AMR) parsing
aims to abstract semantics from a natural language
sentence into a rooted, directed, and labeled graph,
where the nodes represent concepts and edges rep-
resent semantic relations (Banarescu et al., 2013).
Figure 1 gives an example.

One main challenge of AMR parsing is the
lack of large-scale annotated data, which limits
the model representative ability. To alleviate the
problem and boost the performance, early works
propose to use silver (pseudo) data that are gen-
erated from some released AMR parsing models
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Figure 1: AMR example of the sentence “Facing the
caprice of nature, humankind is really insignificant.”

(van Noord and Bos, 2017; Konstas et al., 2017).
Apart from AMR silver data, Xu et al. (2020) try
to use other kinds of large-scale silver data to train
a pre-trained model, such as constituent parsing
data and machine translation data. With the de-
velopment of pre-trained language models, recent
works try to use pre-trained language models to
enhance the model input representative ability (Cai
and Lam, 2019; Zhou et al., 2021). Most of the
them use pre-trained models in the model encoder
side since it naturally provides powerful contex-
tualized representations for sentences. Recently,
Bevilacqua et al. (2021) propose a seq2seq AMR
parser based on BART (Lewis et al., 2020), which
is one encoder-decoder fashion pre-trained lan-
guage model. They first convert the AMR graph
into a text sequence with symbols indicating the
concepts’ graph positions. Then, they propose to
fine-tune the sentence sequence and AMR graph
sequence on BART, achieving large improvements
compared with previous works, including those
with BERT. However, it makes the model relatively
slower, which parses 31 tokens per second. We
think there are two main reasons: 1) the 12-layer
Transformer decoder and 2) the longer converted
graph sequences that include the added symbols.

In this work, we investigate alternative ap-
proaches to achieve competitive performance at
faster speeds. We propose a simplified AMR parser
and a pre-training technique for effective use of
silver data. First, we propose a simple Transformer-
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based seq2graph AMR parser, denoted as TAMR,
that only needs one external bi-affine scorer (Dozat
and Manning, 2017) for the relation classification.
The remaining question is how we do concept gen-
eration and edge classification with Transformer,
which is usually used for encoding sequences. Our
answer is giving the Transformer attention mecha-
nisms more meanings. In detail, we try to demon-
strate that the self-attention in the decoder cap-
tures the semantic relation that can guide estab-
lishing the connections for the concepts and the
cross-attention implicitly links the concept with
its surface word, which is similar to the core of
attention-based machine translation. Based on the
inspirations, we use the copy mechanism (Zhang
et al., 2019b; Cai and Lam, 2020) to copy words or
lemmas as candidate concepts for concept predic-
tion, in which we treat the cross-attention between
the encoder and decoder as the probability. Another
source of candidate concepts is the extracted con-
cept vocabulary from the training data. For edge
classification, we directly treat part of the decoder
self-attention values as the edge scores between
concept nodes.

Second, to achieve competitive performance
with the current SOTA model, we seek to use sil-
ver data to enhance the model representative abil-
ity. Specifically, we employ three different per-
formance AMR models (denoted as “father” mod-
els) to generate three different performance silver
data and try to investigate several questions which
are seldom discussed in previous works: 1) What
are the best learning schedules to build pre-trained
models with silver data and later fine-tune with
the gold-standard data, respectively? 2) Are all
the different performance silver data beneficial for
our model, even its father model lags behind our
model? and 3) Whether using multiple different
performance silver data can provide more informa-
tion than the best performance one or not, i.e., can
the higher performance silver data benefits from
lower performance silver data? Based on the an-
swers to these questions, which are shown in Sec-
tion 6.2, we propose a stack pre-training technique
for effectively using silver data.

We conduct extensive experiments on the com-
monly used AMR2.0 dataset. The experimental
results show that our proposed model achieves the
best results among the seq2graph-based models.
Utilizing the silver data, our final model achieves
comparable results with the current SOTA model,

and the speed is an order of magnitude faster. Our
contributions are threefold: (I) We propose a sim-
ple Transformer-based AMR parser, which only
needs to add one external bi-affine scorer for the
relation classification. (II) We investigate how to
ensemble different models via the proposed stack
pre-training method. (III) Detailed analyses show
more insights into our model and several interesting
findings of utilizing the silver data.

2 Related Work

AMR parsing approaches can mostly be catego-
rized into four classes: pipeline-based, transition-
based, seq2seq-based, and seq2graph-based ap-
proaches.

Pipeline-based approaches mainly consist of two
steps: 1) concept identification and 2) relation iden-
tification. Flanigan et al. (2014) is the first AMR
parsing work (JAMR) that treats concept identifica-
tion as a sequence labeling problem and relation
identification as a maximum-scoring connected
graph searching problem, in which they also pro-
pose an influential rule-based aligner for aligning
the concepts and words. Lyu and Titov (2018) treat
the alignment as latent variables and propose a joint
model for AMR parsing. Zhang et al. (2019a) first
use the attention-based copy mechanism to predict
concepts in a BiLSTM encoder-decoder framework
and then use the bi-affine scorer for edge and rela-
tion prediction based on the predicted concepts.

Transition-based methods aim to design a se-
ries of actions to generate the AMR graph. Wang
et al. (2016) propose to transform the sentence’s de-
pendency tree into its AMR graph. Ballesteros and
Al-Onaizan (2017); Naseem et al. (2019) use Stack-
LSTM transition-based AMR parser that trans-
forms the sentence into the AMR graph, which
is different from Wang et al. (2016). With the
rise of Transformer, Astudillo et al. (2020); Zhou
et al. (2021) propose to use Stack-Transformer for
transition-based AMR parsing.

Seq2seq-based approaches convert the AMR
graph generation problem into a symbolic sequence
generation problem, where the hierarchy structure
is converted into human-defined symbols. Kon-
stas et al. (2017) propose a seq2seq-based AMR
parser, which uses millions of unlabeled data with
self-training. van Noord and Bos (2017) leverage
a character level seq2seq-based model and silver
data, achieving promising improvements. Recently,
Bevilacqua et al. (2021) fine-tune the the gold-
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standard data on BART (Lewis et al., 2020), which
achieves new SOTA performance.

Seq2graph-based methods generate a new con-
cept node and its connections with previously gen-
erated concepts at one time step, thus are relatively
faster than seq2seq-based methods. Zhang et al.
(2019b) propose a BiLSTM encoder-decoder-based
model for several semantic tasks, including AMR.
Cai and Lam (2019) present a top-down AMR
parser that generates the concept nodes in a root-to-
leaf way. Cai and Lam (2020) introduce an iterative
inference for the decoding process on the Trans-
former encoder-decoder architecture. Motivated by
the seq2graph methods’ generation process and the
Transformer encoder-decoder framework, we pro-
pose to adapt AMR parsing into the Transformer ar-
chitecture. The main difference between our model
and previous seq2graph models is that our model
mostly relies on Transformer, only added one bi-
affine scorer for relation classification.

3 Methodology

3.1 Task Formulation.
Given one sentence s = w1, w2, ..., wn, AMR
parsing aims to parse the sentence into an AMR
graph G = {N , E}, where N = {c1, c2, ..., cm} is
the set of concept nodes in the AMR graph1 and
E = {(ci, cj , r)|1 ≤ i ≤ m, 1 ≤ j ≤ m, r ∈ R}
is the set of edges in the graph. R is the set of
AMR relations.

Overall, our Transformer-based model consists
of the following modules, i.e., input layer, encoder
layer, decoder layer, concept generator, edge gen-
erator, and relation classifier. We will describe the
model architecture in detail and show how to adapt
the AMR parsing process into Transformer in the
following sections.

3.2 Input Layer.
Encoder Input. The model input of each word
wi in the sentence s is composed of its character
representation which is generated by a convolu-
tional neural network (CNN) (Kalchbrenner et al.,
2014), randomly initialized lemma, part-of-speech
tag, named entity tag, and dependency label em-
beddings (Xia et al., 2019), which is denoted as
fi = repchar

wi
⊕ emblem

wi
⊕ embPoS

wi
⊕ embNE

wi
⊕

embDL
wi

, where ⊕ means the concatenation oper-
ation. We also use BERT (Devlin et al., 2019) to

1We follow the breadth-first-traversal order to determine
the index of a concept node in the graph.

enhance the word representation. To get the word-
based representations, we make average pooling
to sub-word-based representations. And due to
the GPU limitation, we fix the BERT model pa-
rameters as Zhang et al. (2019b). The final model
input representation for wi is computed as xw

i =√
dim ∗ (MLP(fi) + MLP(repwi|s

BERT )) + embp
i ,

where dim is the embedding dimension and embp
i

is the i-th sinusoidal position embedding.
Decoder Input. In the decoder, we use the

concatenation of the concept character represen-
tation and the randomly initialized concept em-
bedding as the concept representation, denoted as
xc
j =
√
dim∗(MLP(repchar

cj ⊕embcon
cj ))+embp

j .

3.3 Encoder Layer.
Given the encoder input representations, we use
the Transformer encoder (Vaswani et al., 2017) to
encode the sentence. Formally,

r1, r2, ..., rn = TFenc(x
w
1 ,x

w
2 , ...,x

w
n ), (1)

where TFenc means the multi-layer Transformer
encoder. As the Transformer has been widely used,
we refer our readers to their original paper for the
details. The left part of Figure 2 shows the process.

3.4 Decoder.
We will describe the decoder layer, concept genera-
tor, edge generator, and relation classifier together
in this part for better understanding. In general,
given the sentence representation and a start con-
cept node START, the decoder needs to generate
the AMR graph one concept by one concept. Fig-
ure 2 shows the process at the second step.

Decoder Layer. Given the concept node in-
put representations of the decoder, we compute
the output representations as h1,h2, ...,ht =
TFdec(x

c
1,x

c
2, ...,x

c
t |r1, r2, ..., rn), where TFdec

is the multi-layer Transformer decoder.
Concept Generator. Following previous works

(Zhang et al., 2019a; Cai and Lam, 2020), our
model generates the concept node from two
sources, i.e., the concept vocabulary and the source
words (or lemmas) in the sentence. First, given the
t-th decoder output representation ht, we employ a
MLP to re-encode it for dislodging the irrelevant
information (Dozat and Manning, 2017), denoted
as ct = MLP(ht). Next, we compute the candidate
concept probability distribution over the concept
vocabulary as:

P c_voc = Softmax(Wc_vocct + bc_voc), (2)
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Figure 2: The architecture of our proposed model, which shows the second step of the generation process.

where Wc_voc and bc_voc are linear projection pa-
rameters.

Second, we treat the cross-attention (Vaswani
et al., 2017) αc

t as the latent alignment between
the currently predicting concept node nt and the
surface words (or lemmas) in the sentence. Based
on this assumption, we compute the probability
of copying tokens and lemmas of the sentence as
follows:

P copy
tok =

n∑
i:wi=nt

αc
t [i], P

copy
lem =

n∑
i:li=nt

αc
t [i], (3)

where wi means the i-th word, li means the i-th
lemma, and [i] means indexing the i-th token. The
final probability of predicting concept nt is:

P c
t = λ1 ∗P c_voc+λ2 ∗P copy

tok +λ3 ∗P copy
lem , (4)

where λ1, λ2, and λ3 are normalized weights,
which are computed by a single MLP and the soft-
max function on ct.

Edge Generator. To connect the current pre-
dicted concept node nt and previously concepts
n1, n2, ..., nt−1, we directly use the self-attention
αs in the decoder. Intuitively, we can treat the
self-attention αs as the relevancy between current
node nt and previous concept nodes. The edge
prediction module of Figure 2 shows the workflow.
Specifically, we use the self-attention of the upmost
decoder layer, which is computed as:

αs = softmax(
WQht(W

Kh1:t)
>

√
dk

). (5)

Finally, to determine the edges for the current node
and previously generated nodes, we use half of the
attention and compute the edge scores as:

pet [i] = max
H/2
h=1{α

s
h[i]}, (6)

where H is the number of attention heads. If
pet [i] > 0.5, we connect concept nt and ni. Specifi-
cally, this strategy allows the current node to attend
to all previous nodes with multi connections, which
is a crafty way to handle the reentrancy problem.

Relation Classifier. After the current concept
node and related edges are generated, the left pro-
cess is to assign an appropriate label for each edge.
In this work, we directly use the bi-affine scorer
(Dozat and Manning, 2017) to classify the seman-
tic relation for each concept node pair. Formally,
given the predicted concept nt and any previous
concept nj , we compute the relation scores as,

bi-affine(ct, cj) = c>t Wcj+U[c>t ⊕cj ]+b. (7)

where ct = hN
t , cj = h

N/2
j . N is the number of

decoder layers. W, U and b are learnable param-
eters. Intuitively, at the i-th step in the decoder,
the lower half of decoder layers are used to repre-
sent the i-th concept, and the upper half decoder
layers are used to represent and predict the i+ 1-
th concept. Therefore, we use the N/2-th layer
representation to represent the other concepts that
participate in relation classification.

With the above-described model architecture,
TAMR generates the AMR graph one node by one
node, until a special ending node END generated.

Training & Testing. In training, we employ
masked self-attention in the decoder, which ensures
each node in the concept sequence can attend to
all preceding nodes. For the training objective,
our model aims to maximize the log-likelihood of
the gold-standard AMR graph given one sentence,
which is the sum of the decomposed log-likelihood
of each model component.

During testing, we use the beam search method
to search the highest-scoring AMR graph.
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4 Stack Pre-training with Silver Data

Reviewing the progress of AMR parsing, we can
find that the performance boosting with the devel-
opment of deep learning in the NLP community,
especially the usage of silver data and evolution of
pre-trained language models like BERT. Injecting
BERT representations (Zhang et al., 2019b; Cai and
Lam, 2020) into AMR parsing models brings signif-
icant improvements compared with previous BERT-
free models (Lyu and Titov, 2018; Cai and Lam,
2019), which is an effective way to potentially alle-
viate the data sparsity problem and enhance model
representative ability. However, BERT can only
provide powerful representations for the sentence,
which can not directly bring benefits to the decoder
module in the encoder-decoder framework.

Recently, Bevilacqua et al. (2021) propose a
BART-based (Lewis et al., 2020) seq2seq AMR
parsing model (SPRING), where the hierarchy struc-
ture of AMR graph is represented by human-
defined symbols. BART is a pre-trained seq2seq
model that provides powerful representations for
both encoder and decoder. Thus, Bevilacqua et al.
(2021) achieve new SOTA performance on AMR
benchmarks by simply fine-tuning BART with gold-
standard AMR data. We think the powerful repre-
sentations of encoder and decoder contribute to
the success of Bevilacqua et al. (2021). How-
ever, SPRING runs relatively slower than previ-
ous seq2graph-based methods because of the auto-
regression generation process for the hierarchy
symbol-based graph sequence, which needs 26 min-
utes to test the AMR2.0 test data (about 0.88 sen-
tences/second). Unfortunately, training seq2graph
models based on the seq2seq fashion pre-trained
models is tricky because BART uses sub-word rep-
resentations, which is difficult to establish edges
for concept nodes. So, can we train a model that
has the competitive performance with SPRING and
runs as fast as the classic seq2graph models? The
answer is yes and we can utilize large-scale silver
data (Konstas et al., 2017). In this work, we first
employ large-scale silver data to train pre-trained
TAMR models for simulating the role of pre-trained
language models. Then we fine-tune the pre-trained
model with the gold-standard AMR data.

To better understand the effect of silver data and
investigate some valid questions that are seldom
discussed before, we conduct experiments with
silver data that are generated from three differ-
ent performance models, i.e., JAMR, TAMR, and

Unlabelled Data

JAMR

TAMR

Spring

TAMR

TAMR

TAMR

Silver Data

Silver Data

Silver Data

1. Pre-training

TAMR

TAMR

TAMR

2. Fine-tuning

TAMR TAMRTAMR
Silver Data BSilver Data A

Gold
AMR Data

1. Pre-training 2. Fine-tuning

Gold
AMR Data

Gold
AMR Data

Gold
AMR Data

Figure 3: The process of utilizing silver data on TAMR,
where the top workflow shows the usage of separate
silver data and the bottom workflow shows the usage
of ensemble silver data (stacked pre-training).

SPRING. Figure 3 shows the overall process of our
usage of these different performance silver data.
First, we use the three models to parse the large-
scale BLLIP data to generate three different perfor-
mance silver data. Second, we use the silver data
to train three different pre-trained AMR models
with TAMR. Third, we fine-tune these pre-trained
models with the gold-standard AMR data and in-
vestigate whether the model performance can boost
or not. Furthermore, we also investigate whether
we can utilize all the silver data with some ensem-
ble techniques for further improvements, which
can also be seen as an ensemble of different AMR
parsing models. To this purpose, we propose a
stack pre-training method that progressively learn-
ing with these silver data, which is depicted by the
bottom workflow in Figure 3. We will discuss these
details with the experimental results in Section 6.2.

5 Experiments

5.1 Settings.
Data. We conduct extensive experiments on the
commonly used AMR2.0 (LDC2017T10) dataset.
Following the standard data split, AMR2.0 contains
36,521, 1,368, and 1,371 samples in the training,
development, and test data. BLLIP2 data is chosen
as the large-scale unlabeled data, which contains
1,795,984 sentences that belong to the newswire
domain. We implement our model with Pytorch3.

Hyper-parameters. Table 1 shows the detailed
hyper-parameter settings of our model. We use the
base-cased version BERT to enhance the sentence

2https://catalog.ldc.upenn.edu/LDC2000T43
3We release our code, configurations, and silver data at

https://github.com/KiroSummer/AMR.

https://github.com/KiroSummer/AMR
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Input Layer
character 32
lemma 300
PoS tag 32
NER tag 16
dependency label 64
concept 300
BERT BERT-base-cased
Encoder Layer
Transformer encoder 4
Decoder Layer
Transformer decoder 8
Concept Generator
hidden size 1024
Relation Classifier
hidden size 100

Table 1: Hyper-parameter settings.

representation and BERT is fixed in our work due
to the GPU memory limitation. The encoder and
decoder consist of 4 and 8 Transformer blocks, re-
spectively. Each Transformer block has 8 heads,
the feed-forward hidden size is 1024, and the hid-
den size is 512.

Implementation Details. We use Stanford
CoreNLP (Manning et al., 2014) for tokeniza-
tion, lemmatization, part-of-speech tagging, and
named entity tagging. The dependency relations
are obtained by the bi-affine dependency parser
(Dozat and Manning, 2017) implemented in SuPar
(Zhang et al., 2020). Previous works (Zhang et al.,
2019b; Cai and Lam, 2020) usually use graph re-
categorization to reduce the complexity and sparse-
ness of the AMR graph. In this work, we use
the same script from Cai and Lam (2020) for pre-
and post-processing. Our models are trained with
Adam (Kingma and Ba, 2015) optimizer and learn-
ing rate with warm-up same as to Vaswani et al.
(2017). We use the evaluation tool of Damonte
et al. (2017) to test our model.

Training Criterion. We train our models for at
most 2,020 epochs and choose the best model to
evaluate the test data according to the performance
on development data.

5.2 Experimental Results.

Results of TAMR. Table 2 shows the experimental
results of our base model TAMR and comparison
with previous graph-based models. We can see that
our model achieves slight improvements over the

Methods Smatch Unlabeled-Smatch
Zhang et al. (2019a) 76.3 –
Zhang et al. (2019b) 77.0 80.0
Cai and Lam (2020) 80.2 82.8

TAMR 80.3 83.5

Table 2: Smatch scores of our model TAMR and
comparison with previous seq2graph-based models on
AMR2.0 test data.

Silver Data Pre-train Fine-tune
Dev Test Dev Test Dev Test

JAMR – 67.0? 70.5 70.8 80.8 81.0
TAMR 80.6 80.3 81.5 81.2 82.4 82.2

SPRING – 83.8 83.0 82.7 83.8 83.7

Table 3: Smatch scores of our pre-trained models with
separate silver data and fine-tuning models. “Silver
Data” shows the original model performance. ? JAMR
is evaluated on LDC2015E86, which contains 16,833
training sentences and the same development and test
data with AMR2.0.

previous best seq2graph-based model of Cai and
Lam (2020) on Smatch score. Besides, it is inter-
esting that our model achieves a better unlabeled
Smatch score than Cai and Lam (2020) with +0.7.
Cai and Lam (2020) conduct edge prediction based
on an iterative state, while we directly model the
edge information on the decoder self-attention.

Results of TAMR with Separate Silver Data.
Table 3 shows the experimental results of our pre-
trained models with separate silver data and the
corresponding fine-tuning results on the AMR2.0
dataset. The “Silver Data” column shows the silver
data performance, i.e., the original model perfor-
mance (training with the AMR2.0 training data
set). The “Pre-train” column shows the results of
the three pre-trained models with the separate sil-
ver data. We define the pre-trained model with
specific silver data d as TAMR

pre
d and fine-tuned

model with specific silver data d as TAMR
ft
d . For

example, the pre-trained model with JAMR silver
data is denoted as TAMR

pre
JAMR. We can see one inter-

esting finding that pre-trained models TAMR
pre
JAMR

and TAMR
pre
TAMR both outperform their original mod-

els, while TAMR
pre
SPRING does not. We think this is

mainly because the average annotator vs. inter-
annotator agreement (Smatch) is 83.0 (Banarescu
et al., 2013). Thus, the SPRING silver data can
bring a limited benefit of Smatch score around 83.0.
Besides, we can see that fine-tuning the pre-trained
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Pre-train Fine-tune
Pre-train Methods Dev Test Dev Test
TAMR 81.5 81.2 82.4 82.2
SPRING 83.0 82.7 83.8 83.7
→JAMR→TAMR 81.9 81.9 82.4 82.2
→JAMR→SPRING 83.2 83.0 84.0 83.9
→TAMR→SPRING 83.3 83.0 84.3 84.0
→JAMR→TAMR→SPRING 83.4 83.2 84.3 84.2

Table 4: Smatch scores of our ensemble pre-training
models on AMR2.0 development and test data with
stack pre-training, where “→A→B” means we stack
pre-training with silver data A and then silver data B.

models with gold-standard AMR data can consis-
tently improve a lot, even on TAMR

pre
SPRING, which

already outperforms our base TAMR model. This
indicates the effectiveness of the silver data for
AMR parsing. There is another interesting point
that the fine-tuned TAMR

ft
SPRING did not outperform

the pre-trained model of TAMR
pre
SPRING, which indi-

cates the upper-bound of utilizing silver data?
Results of TAMR with Stacking Silver Data.

Previous works (van Noord and Bos, 2017; Zhou
et al., 2021) usually use one single silver data for
improving AMR parsing performance. We think
it is interesting to explore the effects of different
performance silver data, which is seldom discussed
before. In this work, we propose a stacking pre-
training approach, i.e., pre-training different sil-
ver data from low-performance silver data to high-
performance silver data one by one. Table 4 shows
the results of stack pre-training experiments. First,
we can see that stack pre-training TAMR silver
data on TAMR

pre
JAMR can bring slight improvement

of +0.4 Smatch score (81.9-81.5=0.4), indicating
the usefulness of JAMR silver data even though it
is generated from a relatively lower performance
model. The improvements are consistent in all
the combinations, demonstrating the effectiveness
of our proposed stack pre-training. Second, we
can observe two other interesting findings of the
fine-tuning results: 1) Fine-tuning on TAMR

pre
TAMR

and TAMR
pre
JAMR→TAMR with the gold-standard AMR

data achieve the same result of 82.4, even though
their pre-trained models differ. We think this
is because TAMR silver data comes from TAMR

model, which can not provide additional valid in-
formation. 2) Fine-tuning the TAMR

pre
∗→SPRING pre-

trained models achieve promising improvements
over TAMR

pre
SPRING. This demonstrates an interesting

conclusion that lower performance silver data that
comes from different sources can still provide bene-
ficial information, which is also effective for higher

Layer Num. Smatch Unlabeled-Smatch
4 79.8 82.6
6 80.1 83.1
8 80.6 83.6

Table 5: Results of different number of decoder layers
on the AMR2.0 development data.
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Figure 4: Convergence curves (Smatch score vs.
training epochs) of pre-training TAMR silver data on
AMR2.0 development data set.

performance silver data. So, we break the “upper-
bound” with the stack pre-training method. In addi-
tion, we also try to generate silver data with the best
performed model of TAMR

ft
JAMR→TAMR→SPRING and

use it in the pre-training process for another itera-
tion. The pre-training step reaches 83.9 Smatch
score on the development data, outperforming
TAMR

pre
JAMR→TAMR→SPRING by +0.5 Smatch score.

However, compared with the 84.3 Smatch score
of TAMR

ft
JAMR→TAMR→SPRING, the succedent fine-

tuning process didn’t bring further improvement in
our current settings. We think our proposed stack
pre-training technique has sufficiently tapped the
potential of the silver data and there is little space
for further iterations.

6 Analysis

6.1 Effect of TAMR Decoder Layers.

The decoder plays the main role of TAMR, in which
the number of layers matters a lot. Table 5 shows
the results. We can see that with the increasing
of decoder layers, the performance improves ac-
cordingly. The 8-layer decoder achieves the best
results on the development and test data, respec-
tively. However, we didn’t increase more layers
because of the GPU memory limitation.

6.2 Effect of Methods with Silver Data.

In order to find a better pre-training and fine-tuning
pipeline strategy, we conduct detailed experiments.
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1e-5 5e-5 Ori.
JAMR 80.8 80.8 80.9
TAMR 82.4 82.3 81.9

SPRING 83.8 83.8 83.3

Table 6: Results of fine-tuning with different learning
rates on AMR2.0 development data set.

AVG_P AVG_S SP
{JAMR, TAMR} 28.7 82.2 82.4
{JAMR, SPRING} 16.9 83.0 84.0
{TAMR, SPRING} 48.6 83.5 84.3
{JAMR, TAMR, SPRING} 17.4 83.2 84.3

Table 7: Results of different ensemble techniques on
AMR2.0 development data. “AVG_P” means averag-
ing the model parameters of fine-tuned specific models,
“AVG_S” means averaging the scores of last decision
layers of different models, and “SP” means stack pre-
training.

Model Speed (Tokens/Second)
SPRING 31
TAMR 300

Table 8: Speed comparison with previous works.

Analyses of Pre-training. Konstas et al. (2017)
propose to pre-train model with a fixed learning
rate of 1e-5. In this work, we compare two learning
rate strategies with the TAMR silver data: 1) train-
ing with the base model learning rate strategy (Ori.)
and 2) training with fixed learning rate of 1e-3, 1e-
4, and 1e-5. The convergence curves are shown in
Figure 4. We can see that the original learning rate
strategy achieves the best results. Besides, using
the fixed learning rate of 1e-3 makes the model
crashed, which only achieves 0.16 Smatch score on
the AMR2.0 development data set.

Analyses of Fine-tuning. Given the pre-trained
models, how to effectively fine-tune with the gold
data is also a valid problem to discuss. In this work,
we investigate three learning rate settings. Table 6
shows the results. We can see that 1) Fine-tuning
with a small learning rate can achieve promising
results, in which 1e-5 is slightly better than 5e-5. 2)
Using the original learning rate strategy can achieve
better results on TAMR

pre
JAMR, but lags behind in the

other two pre-trained models. Thus, we use the
fixed learning rate of 1e-5 in our experiments.

Analyses of Ensemble Techniques. In order
to find a better way to use multiple silver data, we
compare with the wildly used model ensemble tech-

nique of averaging model parameters (Zhou et al.,
2021), averaging the last decision layer scores, and
our proposed stack pre-training technique. Table 7
shows the results on different model combinations.
It is surprising that the averaging method crashed in
all the combinations. We think this is because these
models’ pre-trained models differ a lot on their rep-
resentative space due to the different performance
silver data. The averaging scores of the decision
layer method achieves reasonable results, but can-
not outperform the better one of the merged models.
Our proposed stack pre-training technique achieves
consistently best results in all combinations. There-
fore, we use our proposed stack pre-training meth-
ods for our ensemble experiments. Besides, we
experiment with different kinds of combinations
and finally found that stacking high-performance
silver data on low-performance silver data benefits
more. From the observations, we think our pro-
posed stack pre-training technique can also be ap-
plied into other models and other NLP tasks which
have limited human annotated data.

6.3 Speed Comparison.
Table 8 shows the speed comparison between our
model and SPRING. To evaluate the AMR2.0 test
data, our TAMR needs 2min41s, while SPRING

needs more time of 20min2s. We think there are
two main reasons for the relatively low speed of
SPRING. First, the BART backbone has a huge
number of parameters to compute in the decoder.
Second, the resulting AMR graph text sequence
contains a lot of external symbols, making the num-
ber of decoding steps increased a lot. While our
seq2graph model TAMR, it has a relatively small
decoder and only need to generate the concepts and
the connected relations at each step.

6.4 Final Results.
Table 9 shows the final results of our model and
comparison with previous works. We can find that
the progress of pre-trained language models influ-
ences the development of AMR parsing. Before
the rise of seq2seq pre-trained language models,
the BERT/RoBERTa-based seq2graph and transi-
tion approaches achieve the best results. With the
seq2seq pre-trained language models, Bevilacqua
et al. (2021) achieve amazing improvements com-
pared with previous seq2seq models, resulting in
new SOTA result of 84.5 Smatch score. Our final
model that uses stack pre-training technique with
multiple silver data achieves comparable results to
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Model Pre-LM G.R. Smatch Fine-grained Results
Unlabeled No WSD Concept SRL Reent. Neg. NER wiki

Pipe. Zhang et al. (2019a) - Y 74.6 - - - - - - - -
Zhang et al. (2019a) BERT Y 76.3 79.0 76.8 84.8 69.7 60.0 75.2 77.9 85.8

Tran.
Naseem et al. (2019) BERT Y 75.5 80 76 86 72 56 67 83 80

Zhou et al. (2021) RoBERTa N 81.8 85.5 82.3 88.7 80.8 71.1 69.7 88.5 78.8
Zhou et al. (2021)† RoBERTa N 83.4 - - - - - - - -

S2S.

Xu et al. (2020) - N 71.5 - - - - - - - -
Xu et al. (2020)† - N 80.2 83.7 80.8 87.4 78.9 66.5 71.5 85.4 75.1

Bevilacqua et al. (2021) BART N 83.8 86.1 84.4 90.2 79.6 70.8 74.4 90.6 84.3
Bevilacqua et al. (2021) BART Y 84.5 86.7 84.9 89.6 79.7 72.3 79.9 83.7 87.3

S2G.

Cai and Lam (2020) - Y 77.3 80.1 77.9 86.4 69.4 58.5 76.5 78.4 86.1
Cai and Lam (2020) BERT Y 80.2 82.8 80.8 88.1 74.2 64.6 78.9 81.1 86.3

TAMR BERT Y 80.3 83.5 80.8 88.6 73.7 63.3 77.6 80.8 86.6
TAMR† BERT Y 84.2 86.5 84.6 90.6 78.9 70.2 81.4 83.8 87.0

Table 9: Smatch scores of our final models and comparison with previous works on AMR2.0 test data. “Pipe.”,
“Trans.”, “S2S”, and “S2G.” represent the pipeline-based, transition-based, seq2seq-based, and seq2graph-based
methods, respectively. G.R. means using graph re-categorization and † means using silver data.

Bevilacqua et al. (2021), yet has a faster speed.

7 Conclusion

In this work, we propose a simple Transformer-
based AMR parsing model that adapts AMR pars-
ing into the Transformer architecture, in which the
attention mechanisms are given more meanings of
latent alignment and the connections between con-
cepts. Based on our proposed model, we conduct
detailed experiments to investigate several strate-
gies for using silver data and propose an effective
stack pre-training method for ensemble different
models. The experimental results show that our
proposed model achieves the best performance of
seq2graph-based models and demonstrate the ef-
fectiveness of using silver data. Our final model
achieves comparable results with the SOTA model,
and the speed is an order of magnitude faster. De-
tailed analyses show the effectiveness of our pro-
posed ensemble technique of stack pre-training for
using multiple silver data.
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