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Abstract

Automatic hate speech detection is hampered
by the scarcity of labeled datasetd, leading to
poor generalization. We employ pretrained
language models (LMs) to alleviate this data
bottleneck. We utilize the GPT LM for gener-
ating large amounts of synthetic hate speech
sequences from available labeled examples,
and leverage the generated data in fine-tuning
large pretrained LMs on hate detection. An
empirical study using the models of BERT,
RoBERTa and ALBERT, shows that this ap-
proach improves generalization significantly
and consistently within and across data distri-
butions. In fact, we find that generating rele-
vant labeled hate speech sequences is prefer-
able to using out-of-domain, and sometimes
also within-domain, human-labeled examples.

1 Introduction

Hate speech refers to the expression of hateful or
violent attitudes based on group affiliation such as
race, nationality, religion, or sexual orientation. In
light of the increasing prevalence of hate speech on
social media, there is a pressing need to develop
automatic methods that detect hate speech manifes-
tation at scale (Fortuna and Nunes, 2018).
Automatic methods of hate speech detection typ-
ically take a supervised approach that heavily de-
pends on labeled datasets. However, the difficulty
of collecting hate speech samples often leads to
biased data sampling techniques, focusing on a
specific subset of hateful terms or accounts. Con-
sequently, relevant available datasets are limited
in size, highly imbalanced, and exhibit topical and
lexical biases. Several recent works have indicated
these shortcomings, and shown that classification
models trained on those datasets merely memorize
keywords, where this results in poor generaliza-
tion (Wiegand et al., 2019; Kennedy et al., 2020).
In this work, we seek to improve hate speech gen-
eralization using large pretrained language models

(LMs). We focus our attention on the transformer-
based language encoder of BERT (Devlin et al.,
2019) and its variants, all of which have been
pretrained on massive heterogeneous corpora. In
classification, the network parameters of the pre-
trained models are adapted to a target task using
supervised training via a model finetuning proce-
dure (Devlin et al., 2019). Due to the deep lan-
guage representations encoded in these large LMs,
they typically achieve improved performance in
low-resource classification settings (Kennedy et al.,
2020). Yet, large volumes of high-quality labeled
examples must be provided to achieve high model
generalization on the target task. In order to im-
prove the performance of pretrained LM classifiers
when labeled data is limited, it has been suggested
to continue pretraining the models using unlabeled
in-domain text, or expose the models to unlabeled
task-related data (Gururangan et al., 2020). As hate
speech is scarce and diverse, constructing a large
and representative corpus of relevant texts is non-
trivial, and attempts to continue pretraining BERT
using some of the existing datasets have not yielded
improvements so far (Isaksen and Gambick, 2020).

In this work, we rather extend the available
manually-curated hate speech datasets with large
amounts of generated labeled examples. We em-
ploy synthetic text sequences generated using the
LM of GPT2 (Radford et al., 2019), having it been
biased to generate hate (and non-hate) speech us-
ing the human-labeled examples (Wullach et al.,
2021). We then augment the existing gold-labeled
datasets with large amounts of synthetic examples,
increasing their size from tens to hundreds of thou-
sands of labeled examples. In experiments using
the LMs of BERT, RoBERTa (Liu et al., 2019) and
ALBERT (Lan et al., 2020), we show substantial
and consistent improvements using the synthetic
data. Remarkably, we observe improved general-
ization in cross-dataset evaluation, sometimes even
surpassing the respective within-dataset results, and
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show gains in comparison to out-of-domain authen-
tic labeled examples. As of today, it is not common
practice to incorporate mass amounts of synthetic
data for finetuning LM classification models. Our
findings therefore have implications for text classi-
fication in general, and hate detection in particular.

2 Related work

A recent related work (Anaby-Tavor et al., 2020)
synthesized new examples from existing training
data with the objective of improving multi-class
classification. They finetuned GPT2 by prepend-
ing the class label to text samples, and used the
finetuned model to generate new labeled sentences
conditioned on the class label. A BERT classifier
was then trained on both the existing and the syn-
thesized data. While similar to our approach, they
focused on balancing topical multi-class datasets,
generating a small number of examples per class
from a handful samples. Another work generated
up to several thousands of examples per class with
the goal of dataset balancing (Tepper et al., 2020) .

Previous attempts to augment hate speech
datasets using synthetic examples similarly focused
on remedying the class imbalance within those
datasets as means for improving generalization.
Rizos et al (2019) proposed several data augmen-
tation techniques, including word swapping and
replacement, and class-conditional recurrent neural
language generation. They achieved limited per-
formance gains. Cao and Lee (2020) proposed a
GAN architecture to guide the generation of hate-
ful texts, and showed average 5% improvement in
terms of hate detection F1 using LSTM and CNN
classifiers. They too focused on dataset balancing,
using limited amounts of synthetic data.

In this work, we apply sequence generation at
large scale, increasing the original dataset size
by magnitudes of order. We previously observed
that this data augmentation approach improves the
performance of a CNN-based hate speech classi-
fier (Wullach et al., 2021). Here, we apply pre-
trained LMs for extensive data synthesis, and then
leverage this data in finetuning pretrained LM text
classifiers. Performance-wise, classifiers based
on pretrained LMs achieve favorable results in re-
source limited settings, and we show that large-
scale data generation and augmentation further
boosts performance, significantly improving the
generalization of hate speech detection.

3 Methods

We follow the approach by Wullach et al. (2021),
comprised of the following steps. (i) Given a
dataset d’ that consists of hate and non-hate labeled
examples {d}, d' , }, we generate additional class-
conditioned synthetic text sequences. We utilize
GPT2, a LM that had been pretrained using mass
amounts of Web text for this purpose.! In order to
bias the model towards the genre of micro-posts,
hate speech, and the topics and terms that char-
acterise each dataset, we continue training GPT2
from its distribution checkpoint, serving it with the
labeled text sequences. Concretely, we adapt dis-
tinct GPT2 models per dataset and class, i.e., for
each dataset d’, we obtain two models, G, and G?,, .
(i) In text synthesis, we provide no prompt to the re-
spective GPT2 model, that is, the token sequences
are generated unconditionally, starting from the
empty string. Similar to the labeled datasets, we
generate sequences that are relatively short, up to
30 tokens. (iii) Presumably, not all of the text se-
quences generated by G}; are hateful. We utilize
the labeled examples d’ for finetuning a BERT clas-
sifier on hate detection, and apply the resulting clas-
sifier to the sequences generated by G%. We then
only maintain those sequences that are perceived as
hateful by the model, setting a threshold over the
classifier confidence scores. In our experiments,
following manual tuning, we set the threshold to
0.7, discarding about two thirds of the generated
hate speech sequences. Finally, we augment the
labeled examples d’ with an equal number of hate
and non-hate synthetic examples. Additional tech-
nical details are given in the appendix.

pretrained LMs We consider the popular
transformer-based model of BERT, that has been
pretrained on the texts of books and English
Wikipedia. We also experiment with RoBERTa,
that has been trained on ten times more data, in-
cluding news articles and Web content. Due to this
augmentation of training data, and other modifica-
tions to the pretraining procedure and cost function,
RoBERTa has been shown to outperform BERT
on multiple benchmark datasets (Liu et al., 2019).
We apply the base configurations of BERT and
RoBERTa, which both include 110 million param-
eters. We also consider the model of ALBERT, a
light architecture of BERT with fewer parameters
due to factorized embeddings and cross-layer pa-

"We used GPT2-large (764M parameters).
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Dataset Size [K] Hate ratio
DV (Davidson et al., 2017) 6 0.24
FT (Founta et al., 2018) 53 0.11
WS (Waseem and Hovy, 2016) 13 0.15
SF (StormFront) (de Gibert et al., 2018) 9.6 0.11
SE (SemEval) (Basile et al., 2019) 10 0.40

Table 1: The experimental hate speech datasets

rameter sharing. ALBERT has been pretrained
using similar data to RoBERTa, and further in-
troduced inter-sentence coherence as optimization
goal (Lan et al., 2020).2

In all cases, we follow the standard practice of
passing the final layer [CLS] embedding to a task-
specific feedforward layer, while finetuning the
pretrained models using labeled examples (Devlin
et al., 2019). In finetuning, we extend d’ with vary-
ing amounts of generated sequences.

4 Experiments

We wish to assess whether and to what extent the
generated synthetic data is sufficiently relevant and
diverse for improving the generalization of pre-
trained LMs on the hate detection task. We there-
fore consider both within- and cross-dataset setups.

Datasets Table 1 provides details about the ex-
perimental datasets. Some of datasets originally
used a fine annotation scheme, e.g., distinguishing
between hate speech and abusive language. Since
we perform transfer learning across datasets, we
maintain the examples strictly annotated as hate
and non-hate, and discard the examples assigned to
other categories. As shown, the datasets are small
(6-53K labeled examples) and skewed, with as little
as 1-6k hate speech examples available per dataset.
All of the datasets include tweets, except for SF,
which includes individual sentences extracted from
the StormFront Web domain. Additional details
about these datasets, as well as examples of the
tweets generated per dataset, are available in Wul-
lach et al. (2021). In our experiments, we randomly
split the available examples into fixed train (80%)
and test (20%) sets, while maintaining similar class
proportions. Only the train examples are used in
the sequence generation process (§ 3).

Within-dataset results Table 2 presents our re-
sults on the held-out test examples, having fine-
tuned the models using the labeled train exam-

2We experiment with a variant of ALBERT that has 17
million parameters; https://huggingface.co/albert-large-v2

ples within the same dataset d' ("base’), and ad-
ditional balanced amounts of synthetic examples
(10/80/240K overall) generated by G and G ,.
We report precision, recall, and F1 performance
with respect to the hate class. The table highlights
the best F1 results per method and dataset, and
summarizes the average improvements per model
and data augmentation setup. As shown, substan-
tial improvements are achieved using as few as
10K synthetic examples. Further gains are obtained
with additional generated data, where augmenta-
tion of 240K generated examples achieves the best
results in most cases. The improvements in F1
are mainly due to a boost in recall (8.3-23.6% rel-
ative improvement), yet precision is not severely
compromised, and even improves in some cases
(-1.7-4.7% relative change).

Interestingly, there are large differences in the
performances of BERT, AIBERT and RoBERTa.
As noted in Sec. 2, the models have been trained
on different data and use different training goals
and parameters, where we use these models ‘out of
the box’. Nevertheless, following finetuning using
large amounts of synthetic data, the differences
between the models are greatly reduced.

In another experiment, we contrast data augmen-
tation using the synthetic weakly-labeled examples
generated from the target dataset d’ with authentic
examples drawn from other gold-labeled datasets,
d’,j # i, where we augment the train set with all
of the examples included in the other (4) datasets.
(The number of added examples is ~80K in this
setup, except for FN, for which there exist ~40K
relevant examples, with a minority of the exam-
ples being hate speech; see Table 1.) The results
are detailed in Table 2 ("GL’). As shown, F1 im-
proves by -0.7-7.0% across datasets in this setup.
However, using as few as 10K in-domain synthetic
examples gives preferable results in all cases, yield-
ing 1.1-8.1% relative improvement in F1. And, the
gap is larger when contrasted with 80K synthetic
examples, leading to 2.8-11.3% change in F1.

Cross-dataset results In practice, the target dis-
tribution of hate speech may differ or vary over
time from the train set distribution. A more realis-
tic evaluation of model generalization is therefore
transfer learning, training and testing the models
across datasets. Similar to other works (Wiegand
et al., 2019), we observed steep degradation in per-
formance in this setup for some dataset pairs.
Since the target data distribution is typically
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No augmentation (base) | GL [~80K] | Gen:10K | Gen:80K | Gen:240K
P R Fl | P R Fl_| P R __Fl | P R FI_| P R Fi

FT
BERT 73.0  65.0 68.8 69.1 76.2 72.5 86.9 64.2 73.8 84.9 67.8 754 89.0 63.7 74.3
RoBERTa 89.7 39.7 55.0 62.0 55.1 58.3 84.4 46.6 60.0 78.6 51.1 61.9 75.7 54.6 63.4
ALBERT 769 557 64.6 74.9 55.4 63.7 75.6 58.3 65.8 75.5 59.1 66.3 75.5 59.3 66.4
SF
BERT 60.9 562 58.5 63.6 57.5 60.4 68.0 573 62.2 71.9 60.2 65.5 68.1 60.4 64.0
RoBERTa 80.9 63.7 71.3 69.6 77.6 73.4 80.6 77.2 78.9 87.2 73.6 79.8 82.5 76.6 79.4
ALBERT 833 913 87.1 83.2 78.7 80.9 88.5 86.1 87.3 90.7 85.3 87.9 85.0 91.6 88.2
DV
BERT 98.1 70.6 82.1 86.0 84.5 85.2 93.2 80.0 86.1 87.5 86.8 87.1 86.2 81.8 83.9
RoBERTa 824 60.5 69.8 81.8 71.3 76.2 71.7 78.0 74.7 73.0 85.0 78.5 86.4 75.5 80.6
ALBERT 813 804 80.8 87.8 78.3 82.8 82.9 81.5 82.2 81.4 84.3 82.8 82.0 84.3 83.1
SE
BERT 69.6 535 60.5 72.8 7.7 722 65.2 81.4 72.4 68.5 85.1 75.9 68.3 87.9 76.9
RoBERTa 64.0 64.2 64.1 71.2 66.2 68.6 57.8 85.6 69.0 70.6 80.8 75.4 68.5 84.7 75.7
ALBERT 79.0 66.0 71.9 73.6 77.0 75.3 62.4 87.9 73.0 71.9 83.2 77.1 71.4 84.7 71.5
WS
BERT 944 944 94.4 95.9 99.2 97.5 97.4 95.4 96.4 97.9 96.9 97.4 98.0 98.0 98.0
RoBERTa 84.1 84.7 84.4 87.7 82.9 85.2 85.5 84.0 84.7 83.4 89.3 86.2 90.5 87.5 89.0
ALBERT 984 959 97.1 96.8 93.4 95.1 99.2 95.9 97.5 97.5 98.0 97.7 98.5 97.2 97.8
Average improvement vs. base:
BERT -1.4%  15.6% 7.0% 4.5% 134% 8.1% | 5.1% 192% 11.3% | 4.7% 17.9%  10.1%
RoBERTa -6.0%  16.0% 5.2% -5.5%  200% 7.0% | -1.3% 23.2% 11.4% 1.2% 23.6% 13.2%
ALBERT -0.6%  -06% -0.7% | -2.7% 6.7% 1.1% | -0.5% 6.5% 2.8% -1.7% 8.3% 3.1%

Table 2: Within-dataset results: synthetic examples vs. no augmentation (’base’) or related labeled data "GL’)

No Aug. (base) | Gen:240K
1-vs-1: best performing dataset pair (DV-FT)

BERT 453 49.6
RoBERTa 47.2 51.2
ALBERT 42.5 46.7
1-vs-1: weighted average

BERT 30.6 40.0
RoBERTa 31.2 34.1
ALBERT 25.1 342
4-vs-1

BERT 50.7 55.7
RoBERTa 429 54.1
ALBERT 48.5 53.6

Table 3: Cross-dataset learning strategies, evaluated on
FT test set, before ("base’) and post augmentation

unknown apriori, and considering that finetuning
generally benefits from larger amounts of labeled
examples, we opt for a resource-inclusive cross-
dataset strategy, where a model is trained using
multiple (4) datasets, and then applied to the test
examples of a single held-out dataset. In our ex-
periments, we found that this strategy is generally
favorable to training the models using some indi-
vidual source dataset. For example, Table 3 de-
tails cross-dataset classification results using the
different models, applied to the held-out test exam-
ples of the FT dataset. As shown, our approach
(’4 vs 1) is favorable to training using individual
source datasets (1 vs 1’), as summarized by a size-
weighted average of the respective results, and also
exceeds the results obtained by the best performing
dataset pair (DV-FT, in this case.) We observed
similar trends while targeting the other datasets.

Table 4 shows our results pre and post train data

| 4-vs-1 | 4-vs-1: Gen [240K]
[P R FI | P R Fi
FT
BERT 65.3 41.5 50.7 60.9 51.3 55.7
RoBERTa 56.5 42.5 48.5 87.5 38.6 53.6
ALBERT 67.8 31.4 429 53.3 55.0 54.1
SF
BERT 60.3 48.3 53.6 60.5 57.1 58.8
RoBERT2 | 687 817 746 | 806 82.6 816
ALBERT 58.5 55.6 57.0 63.6 62.5 63.0
DV
BERT 98.1 70.6 82.1 76.0 83.2 79.4
RoBERTa 82.4 60.5 69.8 82.4 80.4 814
ALBERT 81.3 80.4 80.8 75.9 75.1 75.5
SE
BERT 66.8 43.7 52.8 51.0 93.1 65.9
RoBERTa 60.7 52.3 56.2 56.2 65.3 60.4
ALBERT 76.1 17.9 29.0 46.5 93.2 62.0
WS
BERT 92.8 82.4 87.3 94.0 84.7 89.1
RoBERTa | 942 809 87.0 | 947 85.1 89.6
ALBERT 93.5 79.1 85.7 94.2 80.4 86.8
Average improvement vs. no augmentation:
BERT -4.3% 32.8% 10.5%
RoBERTa 14.3% 4.5% 6.7%
ALBERT -9.2% 103.7% 31.7%

Table 4: Detailed cross-dataset (4-vs-1) hate-F1 re-
sults pre- and post-augmentation. Cross-dataset results
that exceed within-dataset performance (see Table 2:
"base’) are underlined.

augmentation in the 4-vs-1 cross-dataset experi-
ments. While this setup is more challenging com-
pared with within-dataset training, incorporating
additional 240K synthetic examples that are bal-
anced across source dataset and class leads to a
steep rise in recall, and overall large improvements
in F1 (6.7-31.7%). As indicated in the table, a
striking outcome is that in a third of the experi-
ments (5/15), data augmentation in this setup leads
to superior hate speech detection, i.e., better gener-
alization, compared to within-dataset training.
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Figure 1: Intra-dataset, BERT, hate F1

Comparison with previous Results It is not
straightforward to compare with previous results
due to different data splits, or labeled tweets becom-
ing unavailable over time. The best hate detection
results on the SemEval (SE) dataset were reported
to be 0.65 in macro-F1 (Paetzold et al., 2019). Our
results are favorable, ranging from 0.68-0.80 in
macro-F1. Our results also outperform a variant
of BERT that has been pretrained using hateful
texts (Caselli et al., 2020): we achieved 0.61 in
hate-F1 using the generic BERT finetuned on the
original SE dataset vs. their 0.65, and improved
this result to 0.77 with data augmentation. Com-
pared with the CNN-GRU results (Zhang et al.,
2018) reported in Wullach et al (2021), we obtain
better results both prior and post augmentation in
most cases.

5 Additional Analyses

Number of generated examples As illustrated
in Figure 1, we found that adding synthetic se-
quences beyond 240K examples maintains a posi-
tive trend, where F1 performance continues to rise
for some models, albeit at a slower pace. Indeed,
it is reasonable that the marginal gains obtained
due to increased data diversity get smaller as more
sequences are added. Nevertheless, the fact that
performance keeps improving across this range,
even if slowly, suggests that large scale data aug-
mentation is beneficial.

Qualitative evaluation To assess the impact of
data augmentation qualitatively, we examined the
top words that characterized the hate class in the
original vs. augmented datasets based on the PMI
measure (Wiegand et al., 2019). Improved gener-
alization is expected if the language observed in

training is richer and more diverse. Indeed, we
found many high-scoring hate-related terms in the
synthetic tweets that were not included in the origi-
nal data, e.g., ‘ghetto’, ‘barbarians’, ‘terrorizing’,
‘detest’, ‘deranged’, ‘asshats’, ‘commies’, ‘pakis’
etc. Furthermore, hateful terms typically appear
a small number of times in the original data, and
many more times in the synthetic data, providing
more distinctive lexical statistics to learn from. We
note however that existing models are limited in
the contextual understanding of hateful language,
including sarcasm and implicit hate speech acts.
We believe that our approach mainly contributes to
generalization by means of lexical diversification.

Stability of the results While Table 2 reports
the results of fixed train-test data splits, we also
conducted 5-fold experiments (where this involved
repeated data generation for the different train sets)
using the BERT model and all (5) datasets. The
standard deviation of hate-F1 was roughly 1.5 point
(0.015) with no augmentation, and smaller at 0.8
points using augmentation of 240K additional ex-
amples. We also ran 5 repeated runs using the fixed
80-20 data splits, where this yielded a standard
deviation of roughly 0.7 absolute points in hate-
F1 across datasets and augmentation levels. Thus,
the variance is negligibly small compared with the
large improvements in hate-F1. Overall, we have
shown large gains in hate speech detection across
multiple models, datasets and augmentation levels.

6 Conclusion

We evaluated several large transformer-based lan-
guage models, which yield state-of-the-art hate de-
tection results when finetuned using existing la-
beled datasets, and boosted their performance by
augmenting those datasets with large amounts of
generated data. We demonstrated strong positive
impact of data augmentation across models and
datasets, improving hate detection generalization
on unseen examples. While large amounts of au-
thentic task-related data may be available for fine-
tuning in some domains or tasks, this is not the
case for hate speech. Our main finding is that large
LMs can be used for synthetic data enrichment,
and yield even better results than related human-
labeled datasets. These results hold promise for
overcoming sparsity and biases of labeled data.

Ethical statement Hate speech generation is sen-
sitive and must not be maliciously misused.
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A Appendices
A.1 Text pre-processing

We applied a similar pre-processing procedure to
the experimental datasets (Table 1) and the syn-
thetic data generated by the adapted GPT-2 models.
We converted all text sequences to lower-case. We
further removed some tokens and characters, in-
cluding URLs, emoji symbols, and the characters
.’ and ’;’. In processing the generated text sam-
ples, we fixed the length of the text sequences to 30
tokens, truncating longer sequences, and padding
shorter sequences.

A.2 Implementation details

The experiments described in Section 4 were con-
ducted using the Huggingface transformers library,
utilizing the the following pre-trained models ver-
sions: BERT base-uncased, RoBERTa base and
ALBERT large-v2. The Input sequences were to-
kenized using the default pre-trained tokenizer of
each model as provided by the transformer library.
The models were finetuned for 3 epochs with a
mini-batch size of 32, using Adam optimizer with
an initial learning rate of 2e-5 and 200 warm up
steps. These parameter choices were set in pre-
liminary experiments, in which we randomly re-
served 10% of the samples from the training sets
for validation, while maintaining the original class
proportions. We then trained the models using the
all of the train examples. An attention mask was
applied to avoid including padded tokens in the
self-attention calculations. All experiments were
conducted using an NVIDIA K-80 GPU and 12GB
RAM. The experiments using the original labeled
data required runtimes of about one hour. Our ex-
periments with data augmentation of up to 240K
synthetic examples required processing times of up
to four hours per experiment.
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