Simple or Complex? Complexity-Controllable Question Generation with
Soft Templates and Deep Mixture of Experts Model

Sheng Bi!, Xiya Cheng', Yuan-Fang Li?, Lizhen Qu?, Shirong Shen'
Guilin Qi'*, Lu Pan?, Yinlin Jiang'
'School of Computer Science and Engineering, Southeast University, China
2Faculty of Information Technology, Monash University, Melbourne, Australia
3Baidu Inc., China
{bisheng, chengxiya}@seu.edu.cn, {yuanfang.li, lizhen.qu}@monash.edu
{ssr,ggi}@seu.edu.cn,panlull@baidu.com,yljiangd@seu.edu.cn

Abstract

The ability to generate natural-language ques-
tions with controlled complexity levels is
highly desirable as it further expands the appli-
cability of question generation. In this paper,
we propose an end-to-end neural complexity-
controllable question generation model, which
incorporates a mixture of experts (MoE) as the
selector of soft templates to improve the accu-
racy of complexity control and the quality of
generated questions. The soft templates cap-
ture question similarity while avoiding the ex-
pensive construction of actual templates. Our
method introduces a novel, cross-domain com-
plexity estimator to assess the complexity of
a question, taking into account the passage,
the question, the answer and their interactions.
The experimental results on two benchmark
QA datasets demonstrate that our QG model
is superior to state-of-the-art methods in both
automatic and manual evaluation. Moreover,
our complexity estimator is significantly more
accurate than the baselines in both in-domain
and out-domain settings.

1 Introduction

The task of Question Generation (QG) aims at gen-
erating natural-language questions from different
data sources, including passages of text, knowledge
bases, images and videos. For a variety of applica-
tions, it is highly desirable to be able to control the
complexity of generated questions. For instance, in
the field of education, a well-balanced test needs
questions of varying complexity levels in suitable
proportions for students of different levels (Alsub-
ait et al., 2014). That is to say, the teacher can tailor
the questions to the competence of the learner. In
addition, it has recently been shown (Sultan et al.,
2020) that Question Answering (QA) models can
benefit from training datasets enriched by applying
QG models. However, despite the growing inter-
ests of answering complex questions (Cao et al.,
2019) as well as questions with varying complex-

ity levels (Seyler et al., 2017), most existing work
focus on generating simple questions (Zhou et al.,
2017). Although Pan et al. (2020) explored the
generation of complex questions, they do not con-
sider controlling the complexity of generated ques-
tions. Complexity-controllable question generation
(CCQQG) faces a number of challenges.

High diversity. Compared to simple questions,
complex questions contain significantly more infor-
mation and exhibit more complex syntactic struc-
tures. The complexity of questions is caused by
compositional complexity because complex ques-
tions can be decomposed to a sequence of simple
questions (Perez et al., 2020). Generation of both
simple and complex questions imposes even higher
challenges because simple and complex questions
demonstrate different semantic and syntactic pat-
terns. To this end, the resulted distributions are ex-
pected to be multimodal, i.e., with different modes
for different patterns of questions.

Existing works (Gao et al., 2019; Kumar et al.,
2019) fail to capture the diverse nature of CCQG.
They model complexity as discrete labels, such as
easy and hard, and introduce a learnable embed-
ding as the representation of the complexity labels
in the initial hidden state at the decoding stage.
However, the information contained in such an em-
bedding plays a limited role in modelling multiple
modes of the underlying distribution. Similarly, it
is observed that latent variables are ignored such
that the posterior is always equal to the prior in
variational autoencoders (Bowman et al., 2016).

Limited training data. The training of CCQG
models requires questions annotated with complex-
ity levels. However, although there are a large num-
ber of QA datasets in various domains, few of them
is annotated with complexity levels. Therefore,
in-domain training of high quality CCQG models
becomes infeasible in most domains.

In this paper, we propose a novel question gener-
ation model, CCQG, capable of controlling ques-

4645

Findings of the Association for Computational Linguistics: EMNLP 2021, pages 4645-4654
November 7-11, 2021. ©2021 Association for Computational Linguistics

tion complexity. We incorporate soft templates

and deep mixture of experts (MoE) (Shen et al.,

2019) to address the high diversity problem. In-

spired by a recent work (Cao et al., 2018), we posit

that similar questions have similar templates, and
that different modes of the underlying distributions
should capture different question templates. In-
stead of manually constructing templates, which
is labor-intensive and time-consuming, we employ
soft templates, each of which is a sequence of la-
tent embeddings. Inspired by Cho et al (2019), we
apply MoE to select templates, whereby we intro-
duce a discrete latent variable to indicate the choice

of an expert. Taking as input a complexity level, a

passage and an answer, our model selects an expert,

which chooses a template of that complexity level
to guide the question generation process.

To address the challenge of limited training data,
we design a simple and effective cross-domain com-
plexity estimator based on five domain-independent
features to classify questions w.r.t. their complexity
levels. The predicted labels are incorporated into
the training of CCQG. The main contributions of
this work are three-folds:

* An end-to-end neural complexity-controllable
QG model, which incorporates mixture of experts
(MoE) and soft templates to model highly diverse
questions of different complexity levels.

* A simple and effective cross-domain complexity
estimator to assess the complexity of a question.

* We evaluate our CCQG model and complex-
ity estimator on two benchmark QA datasets,
SQuAD (Rajpurkar et al., 2018) and Hot-
potQA (Yang et al., 2018). The experimental
results demonstrate that our QG model is supe-
rior to baselines in both automatic and human
evaluation. The complexity estimator signifi-
cantly outperforms the strong baselines with pre-
trained language models in both in-domain and
out-domain settings. The source code will be
released to encourage reproducibility.

2 Related Work

Our work is mainly relevant to question complexity
estimation and question generation.

2.1 Question Complexity Estimation

Several methods have been proposed to determine
the complexity of questions. (Alsubait et al.,
2014) presented a similarity-based theory to con-
trol the complexity of multiple-choice questions

and showed its consistency and efficiency with edu-
cational theories. (Seyler et al., 2017; Kumar et al.,
2019) estimated the complexity of questions with
similar manner. In general, they made statistical
analysis on some features of the entities in the ques-
tion, such as popularity, selectivity, and coherence,
so as to evaluate the complexity. These estimation
methods only focus on the questions themselves
while ignoring the effect of the associated input
context. Intuitively, a question has distinct com-
plexities with different contexts.

Gao et al. (2019) evaluated the difficulty levels
of questions in datasets based on whether reading
comprehension systems can answer or not. This
method relies heavily on the quality of QA systems
and is not accurate enough. For a learner (human
or machine), there are typically three iterative steps
involved in answering a question, reading the pas-
sage, understanding the question, and finding the
answer, which means that the complexity of a ques-
tion should consider these three parts.

2.2 Question Generation

The existing work of question generation (QG) can
be roughly divided into two directions, rule-based
and neural-based. The former (Heilman, 2011) usu-
ally relies on manually designing lexical rules to
generate questions, which is labor-intensive and
has poor scalability. With the success of deep learn-
ing, many sequence-to-sequence (Seq2seq) models
have been proposed for QG tasks. (Zhou et al.,
2017) used enriched semantic and lexical features
in QG with attention and copy mechanism (See
et al., 2017). (Bi et al., 2020) designed a new re-
ward with grammatical similarity to improve the
syntactic correctness of generated question through
reinforcement learning.

Due to the demand for different complexity-level
questions in real scenarios, researchers began to ex-
plore generating complexity-controllable questions.
(Kumar et al., 2019) used named entity popular-
ity to estimate difficulty and generated difficulty-
controllable questions. Besides, (Gao et al., 2019)
evaluated the difficulty levels of questions based
on QA systems and generated questions under the
control of specified difficulty labels. These two
models are similar in that they encode the com-
plexity labels and use the encoded vectors as the
complexity-controllable constraint. Due to the lack
of parallel corpus in real scenes, which means there
is only one question with “simple” or “complex”

4646

level for a pair of passage and answer. Only relying
on one vector as a condition for controlling com-
plexity, it is difficult to make the generated question
conform to the given complexity constraint.

Therefore, in this paper, we propose an adaptive,
generalizable complexity evaluator that considers
both the question and the context while evaluating
the question complexity independent of any QA
system. In addition, we propose a novel model
of CCQG. Compared to traditional methods that
encoding complexity with only single vector as
complexity constraint, we introduce mixture of ex-
perts (Cho et al., 2019) to ensure the diversity of
questions with different complexity levels. We also
introduce the soft template to improve the fluency
of the generated questions.

3 Methodology

Given a passage, an expected answer, and a com-
plexity level, the task of CCQG is to generate ques-
tions with the specified complexity. According
to (Kunichika et al., 2002), the complexity of a
question depends on two factors: i) individual ca-
pability of answering a question, and ii) the com-
mon process required to answer a question (e.g. un-
derstanding content of a question and background
knowledge, steps of reasoning to infer an answer).
The former varies between individual learners so
that it is infeasible to find a generally applicable
criterion. Despite that, we can determine the shared
factors involved in the answering process and use
them to quantify complexity of a question. The
resulted score is then used to categorize complexity
of a question. More details can be found in Sec. 4.
Formally, given a passage denoted as a word
sequence X = (x1,- - ,ZTn,) With z; in a vocabu-
lary V, a complexity level d € {simple, complex},
an answer A = (z1,--- ,xy,), our goal is to gener-
ate the most probable question Y = (Y1, s YUny)
with y; € V, which has A as its answer and the
complexity level d. The estimation of complexity
level d will be described in Sec. 4.
Y = argmax p(Y|X, A, d). (1)
Given the same pas);age, there are different ways
of asking questions, which can be summarized into
different question templates that model their seman-
tic similarities (Cao et al., 2018) and complexity
similarities. Templates provide a reference point
as guidance for more nuanced question generation.
Cao et al. (2018) also suggested that questions gen-
erated from templates tend to be fluent and natural.

V-1

(- g o

I
|BiLST™M| [BiLST™M| | 6() | H
f | N
A

passage
Figure 1: The overall framework of our CCQG model.
CCQG consists of four main modules: (1) BiLSTM-
based encoders of passage and answer (gray); (2) MoE-
based template element selector for inputting experts
and complexity and outputting probability distributions
for different templates (green); (3) template element
representation blocks initialized by the centroids of the
question clusters at the corresponding complexity (light
blue); (4) conditioned question generator (yellow).

answer z d

Therefore, we argue that question generation would
be more effective if the model chooses the appro-
priate templates at each decoding step.

Despite the usefulness of templates for question
generation, template construction is labor-intensive
and requires substantial domain knowledge. There-
fore, template-based QG approaches typically suf-
fer from low coverage. To alleviate this problem,
we employ soft templates and avoid explicitly de-
signing string-based templates. A soft template is
modeled as a sequence of elements, each of which
provides a reference point at a decoding step ¢. This
modeling allows sharing of elements across tem-
plates at the same complexity level. The selection
of soft templates is conducted through a mixture
of experts. Each expert distinguishes from each
other in terms of its preference of templates. For
a given input, an expert from them is chosen to
determine a probable template. Both soft templates
and experts are latent. As a template is a sequence
of template elements, we introduce a latent variable
nd € {1,--- ,n.} for the selection of template ele-
ments at the complexity level d at time ¢. The value
of 7§ indicates the choice of a particular template
element. In the same manner, we introduce another
latent variable z € {1,--- ,n,} to represent the
choice of an expert for a given input. Each ex-
pert has its own dense vector representation e,. At
each decoding step ¢, we obtain the probability of
estimating y; by marginalizing over all template el-

4647

ements. We also marginalize over all latent experts
for the same input.

p(Y]X, A, d)
ny Ny nNg

= ZH Z [p(yelyr, -

z=11t=1 ngzl

p(rf X, A, 2)p(2|X, A, d), (2)
where p(z|X, A,d) = 1/n, is the uniform prior
probability of the experts, because it has been ob-
served (Shen et al., 2019) that the uniform prior
encourages the model to make use of all the com-
ponents for each input context. The control of
complexity is achieved by choosing the set of pos-
sible template elements through d and an expert z
is chosen to select a probable soft template based
on a given input.

7yt713X7A77Tz(fi)

3.1 Model Details

As shown in Figure 1, our model consists of a
passage encoder, an answer encoder and a question
decoder. Each encoder employs a Bidirectional
LSTM (BiLSTM) (Hochreiter and Schmidhuber,
1997) with different parameterizations, respectively.
The question decoder is modeled by using a single
layer LSTM with soft attention (Bahdanau et al.,
2015) and a softmax layer.

The LSTM decoder utilizes soft templates
and mixture of experts to generate complexity-
controllable questions. As input, it takes the previ-
ous generated word y;_1, the current context vector
c?, the aggregated representation of the soft tem-
plate elements c™, the embedding of an expert
e, € R%_ and the previous hidden state s;_1.

st = LSTM (fc(lyi—1,¢f,¢7,ez]),st-1), (3)
where fc denotes a full connected layer. The cur-
rent context vector cf is created by attending over
the hidden representations of the passage encoder,
following (Bahdanau et al., 2015). We initialize the
first hidden state s as fc([hn,,€q, d, €;]), where
e, denotes the embedding of the input answer a.

The soft template representation cj at time ¢ is
aggregated over all template elements at the com-

plexity level d, which is calculated as
TLﬂ_d

cf =) p(rflcf, X, A d,2)es, (@)

=1
where e_a denotes the trainable embedding of an
element ¢. The module p(m;|c¥, X, A, d, 2) esti-
mates the relevance of a template element at time
t. We consider soft attention over hard attention

because it allows more than one elements to be
relevant to the current context and the input. We
take p(m|X, A, d, z) as a learned prior distribution
and model it with a gating network G(-). More-
over, to encourage sparse selection of elements,
we model G(-) with choosing only the top-k most
relevant ones by applying the noisy TopK gating
network (Shazeer et al., 2017). This network also
helps load balancing by introducing a noise term.
More details can be found in (Shazeer et al., 2017).
As aresult, we obtain cf by:

K

cf = Z softmax(TopK([cf, eq, d, ez]))eﬁg.

i=1

The parameters of each expert embedding e, are
initialized randomly and fine-tuned during training.
During decoding, we iterate through all experts to
generate n, question candidates. Among them, the
question with the highest p(Y'| X, A, d, z) is chosen
as the final prediction.

Each state s; in Eq.(3) is fed to the pointer-
generator network (See et al., 2017) for generation
of each word. This module is chosen to overcome
out-of-vocabulary (OOV) words by coping them
from input passages on demand.

3.2 Training

During training, we initialize the template elements
by using questions at the respective complexity
level and train the whole model with hard EM.

Template Element Initialization We initialize
the embeddings of template elements by using the
centroids of the question clusters at the respective
complexity level. Compared to random initializa-
tion, it encourages embeddings to capture the intrin-
sic properties of distinct question templates. More
specifically, we encode each question in the train
set by using BERT (Devlin et al., 2019). Then we
cluster the outcomes at each complexity level by
using the improved k-means algorithm (Shi et al.,
2010). The resulted cluster centroids are taken as
the initial embeddings.

Training with Hard-EM We train the model
with hard-EM (Lee et al., 2016) by taking the fol-
lowing two steps iteratively until convergence, be-
cause hard-EM can learn more diverse experts than
soft-EM in NLG tasks (Shen et al., 2019).

E-step (hard). We calculate the loss for each ex-
pert and choose the expert with the minimal loss as

4648

the best one z*.
z* = argmin —logp(Y|X, A,d, z).
z

M-step. We optimize the model parameters 6 with
the best expert z*.
mein —logp(Y|X, A, d, 2% 6).

4 Cross-Domain Complexity Estimator

It is desirable to build a cross-domain estimator
to predict the complexity levels of questions be-
cause few domains have questions annotated with
complexity levels for training CCQG models. As
measuring complexity should be independent of
domain-specific content, we use a simple classifica-
tion rule without any training, which relies on the
following five domain-independent features d .

Number of clauses in a question (df,): The
number of events/facts is a strong indicator of
question complexity. We observe that the num-
ber of clauses are often proportional to the num-
ber of events/facts mentioned in a question. We
use NLTK! to seek the question’s syntactic tree to
count the number of clauses.

Number of certain dependency relations in a
question (dy,): Certain dependency relations
across words influences the understanding of the
content of a question (Kunichika et al., 2002). The
more of them, the more difficult it is to understand.
Thus, we count the number of advmod, amod, noun-
mod, npmod, and possessive modifiers after run-
ning the Spacy dependency parser > on questions.

Topic coherence of sentences in a passage (dz,):
Kunichika et al (2002) observed that a passage is
easy to understand if the topic coherence of its
sentences is high. In light of this, we measure
the topic coherence between sentences by calculat-
ing the Jensen—Shannon Divergence JS (Menén-
dez et al., 1997) between their topic distributions.
d7s = ﬁzi# JS(t;,t;), where n is the
number of sentences in a passage, and t; and t;
denote the topic distributions of the i-th and j-th
sentences in a passage respectively. As we expect
the feature value is high if a question is complex,
we let this feature dy, = 1/d 7.

Frequency of question entities in a passage
(dg,): We observe that a question asking about
an entity frequently appearing in a passage is often

"http://www.nltk.org/
Zhttps://spacy.io/

easier to answer than the one about an infrequent
entity. Thus, we recognize entities in questions and
passages, compute the average frequency of enti-
ties mentioned both in a question and a passage by
avg(Q) = ﬁ Yo pe %, where E¥ denotes
the entity set in the question, E¥" denotes the entity
set in the passage and ., is the number of mentions
of e; in the passage. Then the feature is the inverse
of the averaged frequency d(fy) = 1/avg(Q).

Distance between entities in a question and an
answer span in a passage (ds;): The answer to
a question is often easy to find, if an entity men-
tioned in the question is located close to the an-
swer in the same passage. Therefore, dy; is such
a distance by taking the average number of tokens
between the entities in a question and an answer
span in a passage.

Classification rule The scoring function based
on the above features is the average of all
feature values after normalization cpz(Q) =
éZ?:l Norm(dy,(Q)), where Norm(dy,(Q)) =
df, (Q)—min(dy, (Q))
max(dy, (Q))—min(dy, (Q)) "
Q as complex, if cpz(Q) is above a threshold A,
otherwise the question is classified as simple. The
threshold can be easily tuned on a small sample of
data annotated with complexity levels.

We consider a question

5 Experiments

In this section, we evaluate the effectiveness of the
CCQG model and the complexity estimator.

5.1 Datasets and Complexity Annotation

We conduct experiments on two benchmark
datasets SQuUAD (Rajpurkar et al., 2016) and Hot-
potQA (Yang et al., 2018). We remove the ques-
tions that are unanswerable or whose answers are
not contiguous fragments in the passage. For each
dataset, we randomly select 80% of samples for
training, 10% for validation, and 10% for testing.

We use only predicted complexity levels for
training CCQG models on both datasets. In partic-
ular, we apply the cross-domain estimator to label
each question with complexity levels. We calibrate
the threshold A on the questions labeled by easy
and hard in the train set of HotpotQA, because only
the questions in HotpotQA contain manually anno-
tated complexity levels. The resulted A = 0.682
is used in both HotpotQA and SQuAD. Table 1
summarizes the data statistics.

4649

http://www.nltk.org/
https://spacy.io/

Table 1: The statistics of HotpotQA and SQuAD.
HotpotQA SQuAD

train dev test train dev test
simple 45,585 5,698 5,426 41,604 5,201 5,235

complex 26,772 3,346 3,617 27,852 3,386 3,446

Table 2: Results of automatic evaluations on SQuAD
and HotpotQA for varying complexity levels, the best
performance is in bold.

SQuAD-simple SQuAD-complex
Metrics B-4 R-L F1 B-4 R-L F1

Datasets

NQG++ 1219 4539 69.26 11.16 4370 65.39
DLPH 12.65 46.01 70.15 1091 4543 67.01
DeepQG 1550 54.05 7022 1425 5213 71.53
MoE 12.55 46.52 71.85 1238 45.58 69.11
CCQG 17.14 54.28 78.60 16.01 53.19 74.81
w/oz 16.02 52.13 7525 1495 51.08 7240
wlo T 13.05 4621 7281 12.57 44.19 69.37
Datasets HotpotQA-simple HotpotQA-complex

Metrics B-4 R-L F1 B-4 R-L F1

NQG++ 1235 4451 6337 1076 41.26 64.05
DLPH 12.01 4328 6898 11.50 43.58 66.71
DeepQG 14.25 50.18 67.25 13.66 49.17 68.86
MoE 1295 4431 7283 11.68 4320 68.19
CCQG 17.85 55.36 80.57 1541 53.73 76.19
w/o z 16.73 53.07 77.12 1426 51.85 74.70
w/o m 13.87 4698 7391 13.01 46.50 70.05

5.2 Settings for CCQG

Baselines. We compare our models with the fol-
lowing baselines on the two datasets.

NQG++: an encoder-decoder model with attention
and copy mechanisms for QG tasks. It introduces
lexical features and the answer position to enhance
semantic representation (Zhou et al., 2017).
DLPH: an end-to-end difficulty-controllable QG
model, which estimates the complexity level of a
question based on whether the QA systems can
answer it correctly or not (Gao et al., 2019).
DeepQG: an attention-based gated graph neural
network that fuses the semantic representations of
document-level and graph-level to select content
and generate complex questions (Pan et al., 2020).
MOoE: a method for diverse generation that uses a
mixture of experts to identify diverse contents for
generating multiple target text (Cho et al., 2019).
w/o z: our model without using mixture of experts.
w/o 7r: our model without using soft templates.

Implementation Details We set the number of
experts n, to 3 and the number of soft templates
n, to 12, for more values of n, and n,. The em-
bedding dimensions for the complexity level d, the

Table 3: Results of human evaluations on SQuAD and
HotpotQA with different complexity levels, the best
performance is in bold.

Datasets SQuAD- SQuAD- All HotpotQA- HotpotQA- All
simple complex simple complex
Metrics Nat. Cpx. Nat. Cpx. Div. Nat. Cpx. Nat. Cpx. Div.

NQG++ 26 26 25 24 21 26 29 23 24 19
DLPH 27 25 27 27 27 26 27 25 27 24
DeepQG 3.1 22 3.0 29 23 29 25 3.0 29 21

MoE 29 19 29 29 29 3.1 23 28 27 28
CCQG 36 15 35 33 36 37 13 36 34 3.6
w/oz 35 1.7 33 3.1 30 36 16 33 32 34

w/o T 3.0 19 28 29 29 3.0 22 28 26 29

expert d, and soft template 7, are set to 30, 50 and
50 respectively. We set hidden vector sizes to 256.
Models are optimized with the Adam (Kingma and
Ba, 2015) and we initially set the learning rate to
0.001. Other standard parameters follow the default
settings of the Pytorch!. We stop the training itera-
tions until the performance difference between two
consecutive iterations is smaller than le-6. For QG
models that cannot be complexity-controllable, we
concatenate the complexity vector with the hidden
state from the encoder to initialize the decoder.

Metrics Automatic and human evaluation met-
rics are used to analyze the model’s performance.
Automatic Metrics: Following prior works (Zhou
et al., 2017; Pan et al., 2020), we use the metrics
BLEU-4 (B-4) and ROUGE-L (R-L) (Celikyilmaz
et al., 2020) to evaluate the quality of generated
questions against references. The generated ques-
tions might have different complexity levels than
the input ones. Thus we also report F1-score (F1)
based on the discrepancy between the complex-
ity levels of generated questions labeled by our
complexity estimator and the input ones. Human
Metrics: We randomly select 200 pairs of passage
and answer from the test datasets in HotpotQA
and SQuAD respectively (400 cases in all), and
manually evaluate the questions generated by all
methods. Three annotators are asked to judge each
question independently according to the following
four criteria on the Likert scale of 1-5, with 1 being
the worst and 5 being the best. Naturalness (Nat.)
rates the fluency and comprehensibility of the gen-
erated question. Complexity (Cpx.) is used to
measure the complexity of correctly answering a
generated question in a given passage. The higher
the complexity, the more difficult it is to find the
answer. Given the same passage and answer, we
expect questions generated by two different com-

"https://pytorch.org

4650

https://pytorch.org

plexity levels to be distinct. Therefore, We employ
Diversity (Div.) to measure the differences be-
tween the two questions with different complexity
levels based on the same passage and answer.

5.3 Results and Analysis for CCQG

Automatic Evaluation. Table 2 indicates the re-
sults of automatic evaluation, we can observe that:
1. For overall performance, our model achieves
the best performance across all metrics. Specif-
ically, our model improves the BLEU-4 and
ROUGE-L by at least 1.16 and 1.31, respectively,
over the best baseline DeepQG, which is specifi-
cally designed for generating complex questions.

2. Our model achieves also superior consis-
tency between input and output complexity levels
in terms of F1 than all baselines, which use a single
vector for each complexity label, attesting to our
model’s effectiveness in complexity modeling with
mixture of experts and soft templates.

3. It is no surprise that generation of complex
questions is more challenging. Our model and
all baselines perform slightly better in terms of
BLEU-4 and ROUGE-L on simple question gener-
ation than complex question generation. In contrast,
complexity control is not always more difficult for
some baselines on generating complex questions.
Human Evaluation. We conduct human evalua-
tion to inspect if our findings of automatic evalua-
tion are consistent with human perception. Apart
from using the above mentioned metrics, we also
provide sample questions generated by different
models with varying complexity levels in Table 4.

1. Naturalness measures semantic and linguis-
tic quality of generated questions. From Table 3
we can see that our model is superior in this metric
in comparison to the SOTA models. Due to the
task complexity, all models perform still better on
simple questions than complex ones. As we can see
from the sample questions in Table 4, the length of
complex questions is relatively longer than that of
the simple ones. Our close inspection also shows
that our model generated more questions with com-
plex syntactic structures than the baselines.

2. On simple question subsets, our model ob-
tains the lowest Complexity, and conversely, on
complex question subsets, we obtain the highest,
which shows that our model is more capable of
generating questions at the target complexity level.

3. Diversity is measured between two questions
of different complexity levels, given the same pas-

sage and answer. The results show that CCQG
yields the highest diversity, which leads to the con-
clusion that MoE and soft templates make the gen-
erated questions with varying complexities more
distinct from each other. In contrast, a single vec-
tor for each complexity level makes the baselines
difficult to generate substantially diverse questions.
Ablation Analysis. To further investigate the effec-
tiveness of the MoE and soft templates, we perform
the experiments by removing them respectively.

Effect of Expert z. From Tables 2 and 3, we can
observe that the model (w/o z) performance drops
obviously on complexity controlling (F1 avd Cpx.)
and diversity (Div.). We believe the main reason is
that different experts z captures different modes of
the underlying distributions, thus effectively play
the vital role for selecting template elements at the
target complexity level.

Effect of Soft Templates 7. Without the soft
templates, our model (w/o 7) degenerates into the
baseline MoE. It is evident from Tables 2 and 3 that
the result of the model w/o 7 is very close to that of
MokE. Concretely, all the metric values drop signifi-
cantly, especially those related to the quality of the
question, such as B-4 and R-L. This shows that soft
templates 7 play an important role in the full model.
We believe that, on the one hand, 7 guarantees the
quality of the generated questions by providing ad-
ditional constraints (cluster centroids for similar
questions). On the other hand, since the constraint
information is different with different inputs (dif-
ferent cluster centroids are selected), it guides the
model to generate more diverse questions.

5.4 Evaluation of Complexity Estimator

We evaluate the efficiency of the proposed com-
plexity estimator on HotpotQA (in-domain) and
SQuAD (out-domain). The threshold is tuned on
the training set of HotpotQA. We compare our
model with two baselines. The first one is QA-
sys (Gao et al., 2019), which evaluates the com-
plexity level of a question based on whether QA
models can answer it or not. The second one is the
BERT-based classifier utilizing unsupervised do-
main adaptation (UDA) (Nishida et al., 2020). In-
Domain Evaluation: Only HotpotQA has ground
truth complexity levels. In-domain evaluation is
conducted on the questions labeled as easy or
hard in the corresponding train, validation, and
test datasets. Out-Domain Evaluation: The out-
domain evaluation is conducted on SQuAD, whose

4651

Table 4: Examples generated by our model and baselines, given the same passage and answer from HotpotQA.

The 2013 Liqui Moly Bathurst 12 Hour was an endurance race for a variety of GT and touring car classes, including: GT3 cars, GT4 cars, Group 3E Series Production Cars and Dubai 24 Hour cars.

Passage

The event, which was staged at the Mount Panorama Circuit, near Bathurst, in New South Wales, Australia on 10 February 2013, was the eleventh running of the Bathurst 12 Hour.
Mount Panorama Circuit is a motor racing track located in Bathurst, New South Wales, Australia. The 6.213 km long track is technically a street circuit, and is a public road, with normal speed

restrictions, when no racing events are being run, and there are many residences which can only be accessed from the circuit.

NQG++ ‘ How long is the track? (simple) How long is the long track? (complex)

DLPH ‘ What is the length of the track? (simple) What is the length of Mount Panorama Circuit? (complex)

DeepQG ‘ What is the length of Mount Panorama Circuit, located in Bathurst, New South Wales? (simple) What is the length of the track, located in Bathurst, New South Wales, Australia? (complex)

MOoE ‘ How long is the track? (simple) What is the length of the track? (complex)

CCQG ‘ How long is the track? (simple) What is the length of the track at which the 2013 Liqui Moly Bathurst 12 Hour was staged? (complex)
w/o z ‘ What is the length of the track? (simple) What is the length of the track which is located in Bathurst, New South Wales? (complex)

wlo T ‘ How long is the track? (simple) What is the length of the track? (complex)

Gold ‘ What is the length of the track where the 2013 Liqui Moly Bathurst 12 Hour was staged? (complex)

questions are not labelled with complexity levels.
We randomly sample 200 questions and employ
three annotators to give feedback individually on
the complexity level of each question on a scale
of 1-3, with 1 being simple, 2 being uncertain and
3 being complex. Only when the results of two
or more annotators are consistent, the label is re-
garded as the final complexity level of a question.
We exclude the questions annotated with uncertain
and use the remaining 187 questions for testing.
Furthermore, to verify the reliability of annotators,
we conduct a Fleiss’ kappa test for each annotator’s
result. To this end, the kappa coefficients are 0.796,
0.794 and 0.776, respectively.

Table 5: In-domain and Out-domain evaluations of
complexity estimator on SQuAD and HotpotQA, p.s.,
p.c., t.s. and t.c. refer to predicted as simple/complex,
and true simple/complex, respectively.

HotpotQA (In-domain) SQuAD (Out-domain)
Method QA-sys UDA Ours QA-sys UDA Ours

Dataset

p-s. p.c. ‘ p-s. p.c. ‘ p.s. p.c. ‘p.s‘p.c.‘p.s.p.c.‘p.s‘p.c.
ts. 4369 1,057/4,628 798 5,271 155 |87 22|76 34|93 15
te 12192398 961 2,656] 210 3,407|24 54|30 47|12 67
Fl 0.736 0.795 0958 0.753 0.658 0.856

Results: Table 5 reports F1-score and the confu-
sion matrix for each method on the two datasets.
(1) In the in-domain setting, our cross-domain es-
timator outperforms QA-sys and UDA in terms of
F1 scores with a wide margin. QA-sys falls short
of UDA by 5%, which shows that it is not reliable
to use the correctness of answering questions as
a way of assessing complexity levels. (2) In the
out-domain setting, QA-sys surprisingly achieves
comparable performance in both settings, but is
still more than 10% behind our model. We conjec-
ture that the relatively poor performance of both
learning-based deep models may attribute to the do-
main specific spurious features that are irrelevant
to complexity levels of questions.

6 Discussion on MoE-based Architecture

We provide justifications of the MoE-based archi-
tecture from the perspective of high-level cognition.
Humans can easily ask questions that are simple
and complex questions (Rothe et al., 2017), mainly
because we can identify patterns through a certain
mechanism and then combine these patterns for
generalizing to various scenarios. That is, humans
possess the capability for compositional general-
ization, which is critical for learning in real-world
situations (Atzmon et al., 2020). Some studies
have shown the importance of modularity for this
capability (Sternberg, 2011; Clune et al., 2012).
They suggest that modularity is conducive to the
specialization of different modules, which are re-
sponsible for different functions. In other words,
specialization improves generalization. Similarly,
a modular neural network enables compositional
generalization like human intelligence. MoE-based
architecture can be regarded as an implementation
of this concept. MoE is a tightly coupled modular
structure designed so that similar inputs are mapped
to similar expert modules, effectively making each
module specialize in a different selection.

7 Conclusion and Future Work

We propose a novel encoder-decoder model incor-
porating soft templates and MoE to address the
problem of complexity-controllable question gen-
eration. As most domains do not have training data
for CCQG models, we propose a simple and effec-
tive cross-domain estimator to predict the missing
complexity levels of questions. In the extensive
experiments of both CCQG and complexity assess-
ment tasks, our models achieve superior perfor-
mance over the competitive baselines across all
experimental settings. In the future, we will con-
sider anaphora resolution and numerical reasoning
in complexity estimator, and explore the perfor-
mance of our model in different applications, such
as examination and assisting QA systems.

4652

Acknowledgments

This work was supported by the National Key Re-
search and Development Program of China un-
der grants [2017YFB1002801, 2018 YFC0830200];
the Natural Science Foundation of China grants
[U1736204]; the Fundamental Research Funds for
the Central Universities [2242021k10011].

References

Tahani Alsubait, Bijan Parsia, and Uli Sattler. 2014.
Generating multiple choice questions from ontolo-
gies: Lessons learnt. In ISWC, pages 73—84.

Yuval Atzmon, Felix Kreuk, Uri Shalit, and Gal
Chechik. 2020. A causal view of compositional
zero-shot recognition. In NeurIPS.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In /CLR.

Sheng Bi, Xiya Cheng, Yuan-Fang Li, Yongzhen Wang,
and Guilin Qi. 2020. Knowledge-enriched, type-
constrained and grammar-guided question genera-
tion over knowledge bases. In COLING, pages
2776-2786.

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Jézefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In SIGNLL, pages 10-21.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2019.
Question answering by reasoning across documents
with graph convolutional networks. In NAACL,
pages 2306-2317.

Zigiang Cao, Wenjie Li, Sujian Li, and Furu Wei.
2018. Retrieve, rerank and rewrite: Soft template
based neural summarization. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 152-161, Melbourne, Australia. Association
for Computational Linguistics.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2020. Evaluation of text generation: A survey.
CoRR, abs/2006.14799.

Jaemin Cho, Min Joon Seo, and Hannaneh Hajishirzi.
2019. Mixture content selection for diverse se-
quence generation. In EMNLP, pages 3119-3129.

Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson.
2012. The evolutionary origins of modularity.
CoRR, abs/1207.2743.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yifan Gao, Lidong Bing, Wang Chen, Michael R Lyu,
and Irwin King. 2019. Difficulty controllable gener-
ation of reading comprehension questions. In IJCAI,
pages 4968-4974.

Michael Heilman. 2011. Automatic factual question
generation from text. Ph.D. thesis, Ph. D. thesis,
Carnegie Mellon University.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Comput, 9(8):1735-
1780.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. /CLR.

Vishwajeet Kumar, Yuncheng Hua, Ganesh Ramakr-
ishnan, Guilin Qi, Lianli Gao, and Yuan-Fang Li.
2019. Difficulty-controllable multi-hop question
generation from knowledge graphs. In ISWC, pages
382-398.

Hidenobu Kunichika, Minoru Urushima, Tsukasa Hi-
rashima, and Akira Takeuchi. 2002. A computa-
tional method of complexity of questions on con-
tents of english sentences and its evaluation. In
ICCE, pages 97-101.

Stefan Lee, Senthil Purushwalkam, Michael Cogswell,
Viresh Ranjan, David J. Crandall, and Dhruv Ba-
tra. 2016. Stochastic multiple choice learning for
training diverse deep ensembles. In NeurIPS, pages
2119-2127.

M.L. Menéndez, J.A. Pardo, L. Pardo, and M.C. Pardo.
1997. The jensen-shannon divergence. J Franklin
Inst, 334(2):307 — 318.

Kosuke Nishida, Kyosuke Nishida, Itsumi Saito,
Hisako Asano, and Junji Tomita. 2020. Unsuper-
vised domain adaptation of language models for
reading comprehension. In LREC, pages 5392—
5399.

Liangming Pan, Yuxi Xie, Yansong Feng, Tat-Seng
Chua, and Min-Yen Kan. 2020. Semantic graphs
for generating deep questions. In ACL, pages 1463—
1475.

Ethan Perez, Patrick S. H. Lewis, Wen-tau Yih,
Kyunghyun Cho, and Douwe Kiela. 2020. Unsuper-
vised question decomposition for question answer-
ing. In EMNLP, pages 8864—8880.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. In ACL, pages 784—789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of

4653

https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/P18-1015
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264

the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Anselm Rothe, Brenden M. Lake, and Todd M.
Gureckis. 2017. Question asking as program gen-
eration. In NeurIPS, pages 1046—1055.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL, pages 1073-1083.

Dominic Seyler, Mohamed Yahya, and Klaus
Berberich. 2017. Knowledge questions from
knowledge graphs. In SIGIR, pages 11-18.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
In ICLR.

Tianxiao Shen, Myle Ott, Michael Auli, and
Marc’ Aurelio Ranzato. 2019. Mixture models for
diverse machine translation: Tricks of the trade. In
ICML, volume 97, pages 5719-5728.

Na Shi, Xumin Liu, and Yong Guan. 2010. Research
on k-means clustering algorithm: An improved k-
means clustering algorithm. In IITSI, pages 63—67.

Saul Sternberg. 2011. Modular processes in mind
and brain. Cognitive neuropsychology, 28(3-4):156—
208.

Md. Arafat Sultan, Shubham Chandel, Ramo6n Fernan-
dez Astudillo, and Vittorio Castelli. 2020. On the
importance of diversity in question generation for
QA. In ACL, pages 5651-5656.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. In EMNLP, pages 2369-2380.

Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan,
Hangbo Bao, and Ming Zhou. 2017. Neural ques-
tion generation from text: A preliminary study. In
NLPCC, volume 10619, pages 662—-671.

4654

A Analysis on Complexity Factors

We have proposed a novel complexity computa-
tional method, which consists of five factors. In
this section, we present questions of different com-
plexity levels of the same passage, as shown in
Figure 2, to illustrate the detailed calculation of
each factor. Furthermore, we analyze the influence
of each factor in detail. We randomly select 1000
samples from each complexity-level questions in
HotpotQA whose original label is easy, medium
or hard. As is shown in Figure 3, 4,5, 6 and 7, we
can observe that the values of these proposed fac-
tors have apparent relationship with the complexity
of the questions, which demonstrates the efficiency
of our complexity estimator. Specifically,

dg,) Number of clauses in a question: We
leverage the off-the-shelf toolkit NLTK! to seek
the question’s syntactic tree to count the number
of clauses. The larger dy, is, the more complex
the question is. In Figure 2, both @); and Q2
have no clauses and ()3 has one clause, hence
dfl (Ql) = dfl (QQ) = 0, and dfl(Qg) = 1. From
Figure 3, we can see that the number of clauses in
stmple questions is less than 2. Although some
questions with medium and hard level contain
fewer clauses or even no clauses, most of them
have more clauses than simple questions on the
whole. This is also in line with our intuition, a
question with complex construction is often not
simple.

dg,) Number of certain dependency rela-
tions in a question: We use spaCy” to make de-
pendency parsing for a question and count the
number of modifiers, which are labeled “mod” in
the dependency parsing tree. In Figure 2, () and
and ()2 have no modifiers and ()3 has four mod-
ifiers, including “American”, “black”, “comedy”,
and “thriller”, hence dy,(Q1) = dy,(Q2) = 0, and
d¢,(Q3) = 4. Figure 4 shows the number of modi-
fiers in questions with different complexity levels.
We can see that there is an obvious difference in
this factor between easy and hard questions. The
effect of the number of modifiers on a question’s
complexity is essentially similar to the number of
clauses.

dy,) Topic coherence of sentences in a pas-
sage: We train a topic model by Gensim® to com-
pute the topic distribution of each sentence in the

"http://www.nltk.org/
Zhttps://spacy.io/
3https://radimrehurek.com/gensim/

passage. Then we leverage the Jensen—Shannon Di-
vergence JS (Menéndez et al., 1997) to measure
the similarities between these topic distributions.
Figure 5 demonstrates the relevance between sen-
tences in a passage. We use the divergence of topic
distribution between sentences to quantify this com-
plexity factor. It is a seemingly unrelated factor,
because even if the topic of a passage is scattered, it
is random for the questioner to ask complex or sim-
ple questions. However, our statistical results show
that this factor has a significant correlation with
complexity. In addition to being inspired by pre-
vious work, we also have a look inside HotpotQA.
We find that most hard level questions are multi-
hop, and the more sentences involved in answering
these questions, the more likely the topic distribu-
tion between them is scattered, and the lower the
relevance.

dg,) Frequency of question entities in the
passage: As can be seen from Figure 2, Passages
has six entities, including “Irma Pamela Hall”,
“A Family Thing”, “Soul Food”, “The La-
dykillers”,“Joel” and “Ethan Coen”. ()2 has one
entity “The Ladykillers”, which appears twice
in the passage. And ()3 has three entities
“Irma Pamela Hall”, “Joel” and “Ethan Coen”,

and each appears once in the passage. There-
fore, MimapamelaHat = 1, na Family Thing — 1,
NSoul Food = 1, NThe Ladykillers = 2, Njoel = 1,
NEthan Coen = 1. As a result, dy,(Q2) = 7/2,

d¢,(Q3) = 7, and Q3 is more complex than Q.
Figure 6 shows that the more frequently the en-
tity in question appears in the passage, the more
complex the question becomes.

dy,) Distance between entities in a question
and an answer span in a passage: For Passages
in Figure 2, for ()2, there are 10 tokens between
“The Ladykillers” and “Joel and Ethan Coen”; and
for (Y3, there are 10 tokens between “The La-
dykillers” and “Joel”, 12 tokens between “The La-
dykillers” and “Ethan Coen”, and 37 tokens be-
tween “The Ladykillers” and “Irma Pamela Hall”,
so dr;(Q2) = 10, and dy, (Q3) = 59/3. Hence,
Q@3 is more complex than (J2. Figure 7 shows,
intuitively, that as the complexity of the question
increases, the distance between the answer and the
entities in question increases.

On the whole, a single factor cannot completely
distinguish questions with different complexities,
but statistics show that easy and hard can be
clearly distinguished.

http://www.nltk.org/
https://spacy.io/
https://radimrehurek.com/gensim/

Passage,: Chavano Rainier Buddy Hield is a Bahamian professional basketball player for the Sacramento Kings of the NBA...

: Which team does Bu ield play for? ns: Sacramento Kings.
1: Which does Buddy Hield play for? Ans: S King

Passage,: Irma Pamela Hall (born June 3, 1935) is an American actress who has appeared in numerous films and television
shows since the 1970s. She is best known for playing matriarchal figures in the films "A Family Thing", "Soul Food", and "The
Ladykillers". ... The Ladykillers is a 2004 American black comedy thriller film directed by Joel and Ethan Coen.

Q,: Who directed "The Ladykillers” ? Ans: Joel and Ethan Coe.

Q3: Which American black comedy thriller film directed by Joel and Ethan Coen includes Irma Pamela Hall, an American actress
who has appeared in numerous films and television shows since the 1970s? Ans: The Ladykillers.
Figure 2: Question-answer pairs for two sample passages. We use different colors to mark different entities in

passages and questions.

120
' ' Feeasy
Soon
[>hard 100
é H é 80
g) 1 é 60
| ~ \] 20
— N\]
—~— 0
0 2 0 2 4 6 8 10 12
The number of clauses The frequency that the entities in question appear in the passage
Figure 3: The distribution of the number of clauses Figure 6: The distribution of the frequency that the en-

tities in question appear in the passage among different

among different complexity-level questions.
complexity-level questions.

500 T T T T T T T

200

180

&
: s

8

3001/

3

The number of samples.

200/
/

2

The number of samples

8

100

- \ 0 5 - 10 15 70 Zw 30
s : ; 3 T * . : : H The average distance between the question entities and the answer span
The number of mifier Figure 7: The distribution of the average distance be-

Figure 4: The distribution of the number of modifier (yeep the question entities and the answer span in the
among different complexity-level questions. passage among different complexity-level questions.

180
09 _—

160

140

‘The number of samples

] L . L L
0.1 02 03 04 05 06 07 08 09 1 0 . |
0.4 0426 05 06 0.6820.7 08 09
A t

Figure 5: The distribution of the relevance of sentences — Do
in the passage among different complexity-level ques- Figure 8: The performance of the estimator with differ-
tions. ent thresholds on HotpotQA.

The relevance of sentences in the passage 03

B Parameter Selection

Selection of the Complexity Threshold A

For HotpotQA, it has three original complexity lev-
els, easy, medium and hard. For simplicity, we
reclassify HotpotQA into two complexity levels for
our complexity estimator, simple and complex.
Concretely, we compute complexity score for each
question. Among them, A ;1 refers to the maxi-
mum complexity of all easy-level questions, and
Acomples Tefers to the minimum complexity of all
hard-level questions.

We select different threshold values to label the
dataset and evaluate our estimator. As is shown in
Figure 8, when the threshold A=0.682, our estima-
tor has the highest F1 value. Hence, we leverage
Asimple as our standard complexity threshold.

In this work, we apply the complexity threshold
learned from HotpotQA to SQuAD, that is, if a
question’s complexity score is higher than A, the
question is labeled as complex, otherwise, labeled
as simple.

(a) BLEU-4. (b) ROUGE-L.

Figure 9: The performance of our model with different
number of z and m on SQuUAD.

(a) BLEU-4. (b) ROUGE-L.

Figure 10: The performance of our model with differ-
ent number of z and m on HotpotQA.

(b) ROUGE-L.
Figure 11: The performance of our model with differ-
ent number of z and 7 on HotpotQA.

(a) BLEU-4.

Selection of z and 7

For better performance, we investigate how the
number of expert z and soft template 7 influence
our model performance with GridSearch in scikit-
learn !. We set the number of z to 2, 3, 4, 5 and
the number of 7 to 6, 8, 10, 12, 14 and make ex-
periments on SQUAD and HotpotQA datasets. We
use BLEU-4 and ROUGE-L to evaluate the perfor-
mance. The results are shown in figure 9 and figure
11, and we find our model has the best performance
when z=3 and f=12. Although the distributions of
the two datasets are different, the trends in z and 7
are similar, that is too high or too low z and 7 will
make the results worse. Hence, we set the number
of experts n, to 3 and the number of soft templates
n, to 12 in our experiments.

C Fleiss’ kappa

We conduct a Fleiss’ kappa test for three annotators.
Specifically, we sample another 100 examples and
ask 3 human annotators to give complexity level
of each question on a scale of 1-3, with 1 being
simple, 2 being uncertain and 3 being complex. We
remove the questions whose complexity is labels
as uncertain and utilize the remaining 187 ques-
tions for Fleiss’ kappa text. Finally, we calculate
the kappa coefficients are 0.796, 0.794 and 0.776,
respectively, using a Python module statsmodels.
The confusion matrix is shown in Table 6.

Table 6: Confusion matrix of different annotation re-
sults.

Annotator 1 Annotator 2 Annotator 3

simple complex simple complex simple complex
simple 49 4 50 3 47 6
complex 5 33 6 32 4 34

"https://scikit-learn.org
Zhttps://www.statsmodels.org/

https://scikit-learn.org
https://www.statsmodels.org/

