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Abstract

Generative conversation systems tend to pro-
duce meaningless and generic responses,
which significantly reduce the user experience.
In order to generate informative and diverse re-
sponses, recent studies proposed to fuse knowl-
edge to improve informativeness and adopt la-
tent variables to enhance the diversity. How-
ever, utilizing latent variables will lead to the
inaccuracy of knowledge in the responses, and
the dissemination of wrong knowledge will
mislead the communicators. To address this
problem, we propose a Syntactically Diverse
Adversarial Network (SDAN) for knowledge-
grounded conversation model. SDAN contains
an adversarial hierarchical semantic network
to keep the semantic coherence, a knowledge-
aware network to attend more related knowl-
edge for improving the informativeness and
a syntactic latent variable network to gener-
ate syntactically diverse responses. Addition-
ally, in order to increase the controllability of
syntax, we adopt adversarial learning to de-
couple semantic and syntactic representations.
Experimental results show that our model can
not only generate syntactically diverse and
knowledge-accurate responses but also signif-
icantly achieve the balance between improv-
ing the syntactic diversity and maintaining the
knowledge accuracy.

1 Introduction

Nowadays, conversation generation has become a
research hotspot because of its wide application,
such as voice assistant, customer service assistant
and chat robot (Cui et al., 2021). The goal of con-
versation model is to generate diverse and informa-
tive responses like human. Although the existing
models have achieved promising performance, they
still suffer from generating general and meaning-
less responses (Wu et al., 2020), which significantly
disrupt the user experience. Consequently, it is

∗Jinan Xu is the corresponding author.

very crucial and urgent to generate high-quality
responses.

To generate high-quality responses, many re-
searches have been proposed to improve informa-
tiveness or diversity of responses. For informative
responses, some early studies utilize context in-
formation to the decoding process (Sordoni et al.,
2015; Yao et al., 2015). After that, researchers ex-
tract topic information from context (Hedayatnia
et al., 2020) or add external topic to the decoder
(Xing et al., 2016, 2017). Lately, researchers fo-
cus on fusing knowledge into conversation model
(Ghazvininejad et al., 2018; Zhou et al., 2018; Lian
et al., 2019; Wu et al., 2020; Lin et al., 2020). Al-
though the knowledge-grounded model can gen-
erate informative responses with accurate knowl-
edge, which may generate responses that lack diver-
sity. For diverse responses, previous studies gener-
ally adopt beam search algorithm (Li et al., 2016b)
and its variants to improve diversity (Vijayakumar
et al., 2016). In recent year, latent variables are
widely used in conversation model, and can signif-
icantly enhance the diversity (Serban et al., 2017;
Zhao et al., 2017; Park et al., 2018; Shen et al.,
2019; Ruan et al., 2019; Cui et al., 2021), and
generative adversarial networks (GAN) (Xu et al.,
2018) and reinforcement learning (RL) (Sankar and
Ravi, 2019) are also adopted to generate diverse
responses. Although the introduction of hidden
variables can increase diversity while maintaining
semantic consistency, it may lead to inaccuracy
in decoding specific knowledge, because the la-
tent variables may generate semantically similar
responses with a certain probability. For example,
as shown in Table 1, there is a song name (Be Your
Girl All Your Life) in query, where the response R1
will be generated by the variational latent model.
In R1, the song name may be decoded as Be Your
Woman in The Next Life, which is another song
name. Then, the wrong responses will be gener-
ated. How to improve diversity of responses and
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Example Knowledge Triple
Head Entity Relation Tail Entity

Query: Who is singer of Be Your Girl All Your Life?

《一辈子做

你的女孩》
Be Your Girl
All Your Life

演唱者
singer

萧亚轩
Elva Hsiao

《一辈子做你的女孩》的演唱者是谁？
Golden Response: The singer of Be Your Girl All Your Life is Elva Hsiao.
《一辈子做你的女孩》的演唱者是萧亚轩。

√

Response1: The singer of Be Your Woman in The Next Life is Meizi Long.
《下辈子做你的女人》的演唱者是龙梅子。 ×
Response2: Elva Hsiao sang Be Your Girl All Your Life.
萧亚轩演唱了《一辈子做你的女孩》。

√

Table 1: An illustrative example. Response1 shows the response generated with semantic latent variable, Re-
sponse2 shows the response generated with syntactic latent variable.

√
and × denote that the responses are right

and wrong, respectively.

preserve the accuracy of knowledge simultaneously
is a huge challenge in knowledge-grounded conver-
sation generation.

To tackle this challenge, we propose a Syn-
tactically Diverse Adversarial Network (SDAN)
for knowledge-grounded conversation generation.
First, we utilize a hierarchical network to model the
semantic information of context and an adversar-
ial network to prevent semantic information from
affecting syntactic information. Next, we adopt a
knowledge-aware network to represent the knowl-
edge related to the query, which takes attention
mechanism to capture more important knowledge.
Then, we design a syntax encoder to model syntax
information and use a latent variable to keep the
syntactic diversity. Finally, the encoded knowledge,
syntax and context are concatenated together to ini-
tialize the decoder. Additionally, we employ adver-
sarial network to keep the separation of syntax and
semantics to prevent their mutual influence. The
results of experiments on KdConv datasets show
that our model can achieve better trade-off between
improving diversity and maintaining knowledge
accuracy than baselines.

Our main contributions are as follows:

• To best of our knowledge, we are the first
to adopt syntactic latent variable to simul-
taneously improve the diversity and main-
tain the accuracy of knowledge in knowledge-
grounded conversation generation, and pro-
pose a novel Syntactically Diverse Adversar-
ial Network.

• Our model gains competitive diversity scores
and the best knowledge-accurate scores than
baselines.

• We further conduct extensive ablation studies
on the proposed several components. These

analyses explore intuitive interpretability of
why do the adversarial network, knowledge
and syntactic latent variable have an effect on
our model, and provide a reference for future
model design.

2 Background

2.1 Variational Autoencoder
Since our model adopts latent variables, we briefly
review the architecture of Variational Autoencoder
(VAE) (Kingma and Welling, 2014), a generative
model which utilizes a latent variable z to encode
the information of the utterance x, and then de-
codes the original x from z. The probability of x
can be computed as follows:

p(x) =

∫
p(x, z)dz =

∫
p(z)p(x|z)dz (1)

where p(z) is the prior distribution, p(x|z) is given
by the decoder. Since the integral is unavailable in
closed form (Blei et al., 2017), the VAE is trained
by maximizing the evidence lower bound (ELBO),
which is defined as follows:

logp(x) ≥ ELBO

= E
q(z|x)

[logp(x|z)]−DKL(q(z|x)||p(x)) (2)

where q(z|x) is posterior distribution obtained
by the encoder, E is mathematical expectation,
DKL(·||·) indicates the Kullback-Leibler(KL) Di-
vergence which is utilized to represent the similar-
ity of two distributions.

2.2 Generated Adversarial Learning
Generated Adversarial Learning (GAN) (Goodfel-
low et al., 2014) is widely used in the generation of
image and text, which consists of a Generator (G)
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Figure 1: Overview of SDAN, combining a adversarial hierarchical semantic network to model the semantics,
a knowledge-aware network to represent knowledge and a syntactically latent variable network to control the
diversity of syntax. ui denotes the i-th utterance. hctxi represents the context information. Ki is the relevant
knowledge. si is the syntax of ui obtained by the Parser Toolkit. zsi denotes the syntactic latent variable. The more
details of SDAN are shown in Section 3.

and a Discriminator (D). The training objective of
GAN is defined as follows:

min
G

max
D

V (D,G) = (3)

Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(z))]

where G is utilized to obtain the generated distri-
bution pg(x) from noisy distribution pz(z) to ap-
proximate the true distribution pdata(x), and D is
used to distinguish the distribution of pg(x) and
pdata(x). G attends to reduce the value of V to
make the generated distribution unrecognized, but
D intends to enlarge the value of V to effectively
identify the true and false classes of data. In the
process of training, G and D are optimized alter-
nately, and the optimal solution can be achieved by
iterating for many times.

3 Methodology

3.1 Task Formulation and Model Overview

Formally, we assume the training data D con-
sists of N samples of conversations{c1, c2, ..., cN}
where each ci is a sequence of utterances
{u1, u2, ..., un}which is expressed as {ut}nt=1. We
consider the {ut}n−1t=1 as query, the {ut}nt=2 as re-
sponse. Each query has m related knowledge
(k1, . . . , km)，where each knowledge ki is a triplet

(hi, ri, ti), and hi, ri and ti are the head entity, the
relation and the tail entity, respectively. Each utter-
ance has the syntax si. The goal of our method is to
generate informative and diverse responses, so we
will fuse knowledge and syntax to the generative
model.

The overview of SDAN is shown in Figure
1. The Adversarial Hierarchical Semantic Net-
work consists of encoder layer and context layer,
which is utilized to model the semantic informa-
tion. The Knowledge-Aware Network adopts at-
tention mechanism to focus the more important
knowledge. The Syntactically Latent Variable
Network adopts a latent variable to generate re-
sponses with diverse syntax. Finally, the semantic
information, knowledge and syntax from above
three networks are concatenated together to the
Decoder.

3.2 Adversarial Hierarchical Semantic
Network

The Hierarchical Semantic Network consists of two
layer neural networks. Each input utterance ui is
encoded into a vector henct by the encoder RNN,
which is shown as follows:

henct = fencθ (ut) t = 1, . . . , n (4)
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where fencθ (·) is a bidirectional gated recurrent unit
(BiGRU).

The context vector hctxt represents the historical
information, which updates its hidden states by
using the encoder vector henct and is calculated by:

hctxt = f ctxθ (hctxt−1, h
enc
t ) (5)

where the initial value of hctxt is 0.
The semantic information from the hierarchical

semantic network may contain the syntactic infor-
mation, which can lead to poor syntactic controlla-
bility. In order to solve this problem, we introduce
adversarial network to prevent semantic informa-
tion from containing syntactic information. Specif-
ically, we introduce a discriminator to predict the
syntax tree sequence st according to the semantic
information of the context hctxt . The context layer
and encoder layer can be regarded as the generator.
The generator is trained to learn the semantic infor-
mation to prevent the discriminator predicting the
syntax from the semantic information and to cheat
the discriminator by maximizing the adversarial
loss, that is, minimizing the following formula：

lossadvsyn =
t=n∑
t=1

logpadv(st|hctxt ) (6)

3.3 Knowledge-Aware Network
The knowledge can be retrieved from the knowl-
edge base to select the related knowledge. The
knowledge used in this paper is given in the dataset
and one query may have multiple knowledge, so
we employ attention mechanism to pay more atten-
tion to the important knowledge, which is similar
to (Zhou et al., 2020).

We assume that there is m related knowledge
(k1, . . . , km) given for a query ut, and each knowl-
edge ki is a triplet (hi, ri, ti). First, we treat the
average word embeddings of hi and ri as the key
vector kvi(i = 1, . . . ,m). Then, we use the word
embedding of the query u to attend to kvi:

αi = softmaxi(emb(ut)
Tkvi) (7)

where emb(·) is the embedding vector, softmax(·)
is a generalization of the logistic function which
normalizes all values between 0 and 1. After that,
we obtain the knowledge kt by summing all the
weighted tail entity ti:

kt =
i=m∑
i=1

αiti (8)

Finally, we utilize a BiGRU to encode the knowl-
edge to model the knowledge vector hknot , which
is computed as follows:

hknot = fknoθ (kt) (9)

where fknoθ (·) is a BiGRU.

3.4 Syntactically Latent Variable Network
Each utterance contains syntactic information,
which is usually represented by syntactic tree. The
syntactic tree can be modeled by a neural network
or obtained by the parser toolkit. In this paper, we
first utilize the Stanford Parser toolkit 1 to process
all the utterances in the dataset to get their syntactic
tree sequences, which contain the syntactic tokens
and the brackets (the brackets represent the syntac-
tic structures). Then, a SynEncoder is employed to
represent the syntactic vector hsynt , which is shown
as follows:

hsynt = fsynθ (st) (10)

where fsynθ (·) is a BiGRU, st is the syntactic tree
sequence.

Finally, in order to generate syntactically diverse
responses, we adopt a syntactic latent variable zst
to control the syntactic information. We define the
prior distribution of zst as:

pθ(z
s
t |st) = N (z|µs, σs2I) (11)

where N (·) is a Gaussian distribution, µs and σs

are the means and the diagonal variances of the
prior distributions, respectively, which are calcu-
lated as:

µs = MLPθ(h
syn
t ) (12)

σs = Softplus(µs) (13)

where MLPθ(·) is a feed-forward neural network
and Softplus(·) is an activation function which can
keep the result positive.

For the posterior distribution of zst , we use hst
and hst+1 to calculate it in training set (hst in test
set):

qφ(z
s
t |st, st+1) = N (z|µs

′
, σs

′2
I) (14)

where

µs
′
= MLPφ(h

syn
t , hsynt+1) (15)

σs
′
= Softplus(µs

′
) (16)

1https://nlp.stanford.edu/software/lex-parser.shtml
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3.5 Decoder
From the three networks mentioned above, we ob-
tain the representation of semantics, knowledge
and syntax, We concatenate them together to be
the initial state of the decoder,which is shown as
follows:

hdecini = [hctxt , hknot , zst ] (17)

Finally, we output the response ut+1, which is
shown as follows:

ut+1 = fdecθ (hdecini ) (18)

where fdecθ (·) is a GRU.

3.6 Training Objective
Because of the existence of latent variables in our
model, the training objective of latent variables is
to maximize the following ELBO:

ELBO = lossrec + lossKL

− Eqφ [logpθ(un|{ut}
n−1
t=1 , {kt}

n−1
t=1 , {st}

n−1
t=1 )]

+DKL(qφ(z
s|{st}nt=1)||pθ(zs|{st}n−1t=1 )) (19)

where lossrec is the reconstruction loss, lossKL is
the KL divergence to represent the similarity of the
posterior distribution and the prior distribution of
the latent variable zst .

Then, the final objective is to minimize the fol-
lowing formula:

min[lossadvsyn] +min[−ELBO] (20)

where the two losses are optimized iteratively.

4 Experiments

4.1 Experiment Setting
Datasets: We conduct our experiments on Kd-
Conv (Zhou et al., 2020) dataset, which is a Chi-
nese multi-domain knowledge-driven conversation
dataset. This dataset contains 4.5K conversations
from three domains (film, music, and travel), and
86K utterances with an average turn number of
19.0. In KdConv, each utterance has 0 to m pieces
of knowledge, and the value of m is different for
each utterance.
Hyper-parameters: In our model, we employ
GRU as our base cell. The dimension of embed-
ding, hidden layer and latent variable layer are set
to 500, 1000 and 100, respectively. We use Adam
(Kingma and Ba, 2015) as our optimizer. The max

length of sentences is set to 20. The learning rates
of generator and discriminator are 1e-4 and 1e-5,
respectively. The mini-batch size is set to 32. In
order to avoid the notorious degeneration problem
(Bowman et al., 2016; Chen et al., 2017), we em-
ploy KL annealing, and the step of which is set to
25000.
Baseline Models: We compare our model with two
baselines. They all focus on knowledge-grounded
multi-turn conversation: 1) Hierarchical Recurrent
Encoder-Decoder (HRED) (Serban et al., 2016) +
knowledge (Zhou et al., 2020); 2) Variational Hi-
erarchical Recurrent Encoder-Decoder (VHRED)
(Serban et al., 2017) with KL annealing + knowl-
edge.

4.2 Evaluation Design

We evaluate the generated responses from two as-
pects: automatic evaluation metrics and manual
evaluation metrics.

For automatic evaluation metrics, we utilize
four classes of evaluation metrics: Token-level
Metrics: Perplexity (PPL) is used to evaluate
whether the generated response is grammatical and
fluent. Overlapping-based Metrics: We adopt
the BLEU-2/3 (Papineni et al., 2002) to evalu-
ate the reconstruction performance, which can re-
flect how well the model could preserve informa-
tion from knowledge and ground truth response.
Embedding-based Metrics: Average, Greedy and
Extrema are adopted to measure the semantic sim-
ilarity between words in generated response and
the ground truth. Diversity: We employ Dist-1/2
(Li et al., 2016a) to measure the diversity of the
responses, which are defined as the ratio of distinct
uni/bi-grams. Knowledge Utilization: Ematch is
the averaged number of the entities matched with
the related knowledge triplets in the responses
(Zhou et al., 2020; Wu et al., 2020).

For manual evaluation metrics, three evaluation
metrics are adopted, which range from 1 to 5:

Coherence (Cohe) denotes the semantic similar-
ity of response and query:① score 1: The response
and query are completely different and semanti-
cally different. ② score 2: The response and query
are completely different, but a little semantically
similar. ③ score 3: The response and query are
partly the same, but semantically similar. ④ score
4: The response and query are mostly the same, but
semantically very similar.⑤ score 5: The response
and query are exactly the same.
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Model Average Extrema Greedy BLEU-2/3 Dist-1/2 PPL Ematch

Film
HRED+know 0.842 0.638 0.681 9.454 / 5.503 0.238 / 0.488 27.950 0.95
VHRED+know 0.840 0.634 0.690 7.276 / 3.575 0.319 / 0.717 14.258 0.86
SDAN(Ours) 0.838 0.637 0.683 9.614 / 5.795 0.243 / 0.551 18.714 1.02

Music
HRED+know 0.840 0.645 0.714 14.653 / 9.799 0.274 / 0.567 25.359 0.98
VHRED+know 0.846 0.646 0.713 12.837 / 8.534 0.310 / 0.682 11.672 0.90
SDAN(Ours) 0.843 0.648 0.718 14.882 / 10.150 0.288 / 0.595 15.006 1.21

Travel
HRED+know 0.858 0.684 0.761 22.499 / 18.001 0.268 / 0.547 10.604 1.21
VHRED+know 0.854 0.681 0.751 20.463 / 15.969 0.301 / 0.652 6.528 0.97
SDAN(Ours) 0.852 0.689 0.761 22.451 / 18.030 0.276 / 0.571 8.069 1.25

Table 2: Automatic evaluation results on KdConv Corpus. The best results are in bold. The "+know" means
the models are enhanced by the knowledge base. The VHRED+know and SDAN have the semantic and syntactic
latent variables, respectively.

Fluency (Flu) represents the grammatical prob-
lem: ① score1: The response can not understand.
② score2: The response has more than four gram-
matical errors and is difficult to understand. ③
score3: The response has three or four grammati-
cal errors and is not fluent.④ score4: The response
has one or two grammatical errors and is fluent. ⑤
score5: The response has no grammatical errors
and is fluent.

Informativeness (Info) is designed to measure
whether the response is relevant to the knowledge
information: ① score 1: The response does not
contain the relevant knowledge and relevant to the
context. ② score 2: The response does not contain
the relevant knowledge, but relevant to the context.
③ score 3: The response only contains one relevant
knowledge. ④ score 4: The response contains
part of the relevant knowledge. ⑤ score 5: The
response contains all the relevant knowledge.

4.3 Results of Automatic Evaluation

The results of automatic evaluation metrics are
shown in Table 2. We analyze the results from
the following perspective:
The influence of semantic and syntactic latent
variables:

1) Although our improvement on some domains
is limited, but we achieve balance between syntac-
tic diversity and knowledge accuracy.

2) In terms of embedding-based metrics (Aver-
age, Extrema and Greedy), there is little difference
among the three models. So we can conclude that
adopting the semantic and syntactic latent variables

Model Cohe Flu Info
Film \ κ 0.62 0.53 0.75
HRED+know 2.12 2.65 2.24
VHRED+know 2.20 3.03 1.97
SDAN(Ours) 2.25 2.86 2.27
Music \ κ 0.6 0.43 0.71
HRED+know 2.32 2.91 2.35
VHRED+know 2.27 3.25 2.06
SDAN(Ours) 2.30 3.03 2.41
Travel \ κ 0.78 0.58 0.83
HRED+know 2.48 3.24 2.43
VHRED+know 2.51 3.51 2.11
SDAN(Ours) 2.55 3.42 2.47

Table 3: Manual evaluation results on Kdconv Corpus.
κ is the Fleiss’ kappa value.

have little effect on the semantics of responses.
3) Compared with HRED+know, VHRED

+know obtains lower BLEU-k scores and higher
Dist-k scores, and SDAN performs better in these
two aspects. We can find that although seman-
tic hidden variables can significantly improve the
diversity, but also greatly reduce the accuracy of
responses. But the syntactic latent variables can
not only improve the diversity but also enhance the
accuracy of responses. The reason is that semantic
latent variables may utilize other words with simi-
lar semantics, which will lead to the inaccuracy of
the knowledge, while the syntactic latent variables
only change the syntax of responses, which has no
influence on the accuracy of knowledge.
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Model Average Extrema Greedy BLEU-2/3 Dist-1/2 PPL Ematch

Film
SDAN(Ours) 0.838 0.637 0.683 9.614 / 5.795 0.243 / 0.551 18.714 1.02

-adv 0.828 0.615 0.658 9.106 / 5.491 0.240 / 0.529 17.848 0.97
-adv-know 0.774 0.546 0.575 4.145 / 2.275 0.109 / 0.231 20.551 0.51
-adv-syn 0.842 0.638 0.681 9.454 / 5.503 0.238 / 0.488 27.950 0.99
-adv-know-syn 0.814 0.587 0.635 4.491 / 2.315 0.031 / 0.044 22.615 0.56

Music
SDAN(Ours) 0.843 0.648 0.718 14.882 / 10.150 0.288 / 0.595 15.006 1.21

-adv 0.838 0.635 0.704 14.082 / 9.150 0.276 / 0.575 15.161 0.16
-adv-know 0.811 0.577 0.611 4.623 / 2.440 0.126 / 0.234 19.632 0.53
-adv-syn 0.840 0.645 0.714 14.653 / 9.799 0.274 / 0.567 25.359 1.19
-adv-know-syn 0.794 0.548 0.591 4.754 / 2.472 0.026 / 0.034 19.818 0.59

Travel
SDAN(Ours) 0.852 0.689 0.761 22.451 / 18.030 0.276 / 0.571 8.069 1.25

-adv 0.832 0.639 0.711 21.987 / 17.993 0.256 / 0.531 8.148 1.21
-adv-know 0.766 0.547 0.575 3.772 / 1.935 0.148 / 0.262 11.320 0.54
-adv-syn 0.858 0.684 0.761 22.499 / 18.001 0.268 / 0.547 10.604 1.25
-adv-know-syn 0.747 0.500 0.595 3.561 / 1.935 0.053 / 0.061 11.176 0.58

Table 4: Ablation study on KdConv Corpus. The "-adv", "-know" and "-syn" mean that we eliminate the adversar-
ial network (discriminator), knowledge-aware network and syntactically latent variable network, respectively.

4) It can be seen that the Dist-k scores of
VHRED+know is higher than SDAN, which in-
dicates that semantic latent variables are more ef-
fective than syntactic latent variables in improving
diversity. The reason may be that the vocabularies
of semantics are much larger than syntactic vocab-
ularies.

5) For PPL, VHRED+know obtains the best re-
sults and SDAN performs better than HRED+know,
which denotes that both of the semantic and syntac-
tic latent variables have the positive influence on
generating fluent responses and the former works
better.
Comparison between domains:

The performance on BLEU-k improves from
film domain to travel domain, because there are
1,837 entities and 318 relations in the film domain
and 699 entities and 7 relations in the travel do-
mains. The more diverse knowledge increases the
difficulty of knowledge selection for knowledge-
aware network.

4.4 Results of Manual Evaluation

The results of manual evaluation metrics are shown
in Table 3. The scores of three evaluation metrics
range from 1 to 5. Additionally, we choose 3 an-
notators to evaluate the responses generated by the
above models, and randomly select 50 conversa-

tions from the test set.
For Coherence, the three models are simi-

lar in maintaining semantic consistency, which
agrees with the results of automatic evaluation.
VHRED+know achieves the best Fluency scores
and the worst Informativeness scores, which proves
that the semantic latent variable can lead to the inac-
curacy of knowledge, but can improve the fluency
of responses again. Our model obtains the compet-
itive Coherence, Fluency scores and the best Infor-
mativeness scores, which indicate that our model
can not only generate informative responses but
also keep the semantic coherence.

4.5 Ablation Study

To analyze which components are driving the im-
provements, we present an ablation study in Table
4. We eliminate the adversarial network (discrimi-
nator), knowledge-aware network and syntactically
latent variable network one by one, which result in
four models. The four models are represented as
"-adv", "-adv-know", "-adv-syn" and "-adv-know-
syn" respectively. By comparing the four models
with our SDAN, we can make some conclusions as
follows:

1) After eliminating the adversarial network
(comparing SDAN with "-adv"), "-adv" has worse
performance than SDAN, which indicates that the
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Conversation (Film) Knowledge Triple
Head Entity Relation Tail Entity

User1: 看过《完美的世界》吗？

《完美

世界》
A Perfect
World

类型
Type

惊悚片
Thriller

Have you seen A Perfect World?
User2: 看过，这是一部很好看的惊悚片。
Yes, it’s a good thriller.
User1: 嗯，我也喜欢看这类的电影，138分钟的片长有点受折磨
啊，哈哈。
Well, I also like watching this kind of movies. The 138 minute film
is a bit tortured. Ha ha.
User2: 哈哈，克林特·伊斯特伍德执导的电影可是很细致的哦。

电影时长
Film length

138分钟 /
125分钟（德
国电视版）
138 minutes /
125 minutes
(German TV
Version)

Ha ha, the film directed by Clint Eastwood is very detailed.
HRED:是的，他是一名演员，导演和编剧。你知道他是哪年出生
的吗？
Yes, he is an actor, director and screenwriter. Do you know when he
was born?
HRED+know: 是的，这部电影还是由克林特·伊斯特伍德制作的
呢，知道编剧是谁吗？
Yes, the film is still made by Clint Eastwood. Do you know who the
screenwriter is?

导演
Director

克林特·伊
斯特伍德
Clint
Eastwood

VHRED+know: 还是一部由美国制片的呢，你知道主演都有谁吗？
It’s a movie made in America. Do you know who the stars are?
SDAN(Ours): 我知道，是美国的克林特·伊斯特伍德制片的。你
知道这部电影的票房怎么样吗？
I know, it’s made by Clint Eastwood in the United States. Do you know
what the box office of the film is like?

Table 5: Examples generated by HERD, all baselines and our SDAN from film domain.

adversarial network is effective to enhance the se-
mantics, knowledge accuracy, distinct and fluency,
and it is necessary to decouple semantics from syn-
tax.

2) When further removing the knowledge-aware
network (comparing "-adv" with "-adv-know"), all
the results are worse again, especially the decline
of BLEU-k scores is obvious, which denotes that
introducing knowledge is essential for conversation
generation.

3) While eliminating the syntactically latent vari-
able (comparing "-adv" with "-adv-syn" or com-
paring "-adv-know" with "-adv-know-syn"), it can
be seen that there is a slight improvement in the
scores of Average, Extrema, Greedy and BLEU-k,
and a bit of lower in the scores of Dist-k, which
prove that adopting syntactically latent variable can
slightly reduce the semantic consistency and knowl-
edge accuracy, but improve the diversity. Moreover,
when the syntactic information and semantic repre-
sentation exist simultaneously, it certainly need to
decouple them by utilizing adversarial network to
prevent the influence between them.

4.6 Case Study

The generated responses of HRED, all baselines
and our model sampled from test set in film domain
are shown in Table 5. As it can be seen, HRED

tends to generate generic or irrelevant responses.
After introducing knowledge, HRED+konw can
generate coherent and informative responses re-
lated to the given knowledge. When adopting se-
mantic latent variable, VHRED+know prefer gen-
erating responses relevant to the context. while
utilizing knowledge and syntactically latent vari-
able, our model can generate knowledge-coherent
and diverse responses.

5 Related Work

Sequence-to-sequence (Seq2Seq) model (Sutskever
et al., 2014; Shang et al., 2015) with attention
(Bahdanau et al., 2015; Cho et al., 2015) has been
widely used in the conversation generation. How-
ever, models tend to generate meaningless and
generic responses (Serban et al., 2017). To alle-
viate this issue, researchers have utilized context
(Sordoni et al., 2015; Yao et al., 2015), topic infor-
mation (Xing et al., 2016, 2017; Wu et al., 2019)
or knowledge (Lian et al., 2019; Wu et al., 2020;
Lin et al., 2020) to enhance response quality. The
studies of knowledge-grounded conversation gen-
eration mainly focus on the method of knowledge
retrieval (Lian et al., 2019) or knowledge fusion
(Wu et al., 2020; Lin et al., 2020; Ye et al., 2020;
Liang et al., 2021) with copy mechanism. The
knowledge-grounded models can improve the ac-
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curacy of knowledge, but the responses generated
by some of them may lack the diversity, which
is also a significant reason for generating generic
responses.

Recently, to tackle the lack of diversity, re-
searchers have begun to introduce the beam search
algorithm (Li et al., 2016b; Vijayakumar et al.,
2016) to decoder or latent variables (Serban et al.,
2017; Park et al., 2018; Shen et al., 2019). Adopt-
ing latent variables can significantly improve the
diversity of responses, but it will lead to the inaccu-
racy of knowledge. To the best of our knowledge,
this problem has not been investigated in conversa-
tion generation so far.

Different from all the models mentioned above,
our approach introduces syntax to conversation gen-
eration. We propose a syntactically diverse adver-
sarial network, which utilizes latent variables to
control the syntactic diversity. Additionally, we
utilize adversarial learning to preserve the disen-
tanglement of syntax and semantics for preventing
them from influencing each other. Our model can
not only generate sentences with diverse syntax but
also keep the accuracy of knowledge.

6 Conclusion

In this paper, we propose a Syntactically Diverse
Adversarial Network for knowledge-grounded con-
versation model, which utilizes adversarial hier-
archical semantic network, knowledge-aware net-
work and syntactical latent variable network to
model the semantics, knowledge and diverse syn-
tax information. Moreover, our model adopts ad-
versarial learning to enhance the controllability of
syntax. According to automatic and manual evalua-
tion, our model competitively improves the quality
of generated responses, and obtains better trade-off
between improving the diversity and preserving the
knowledge accuracy.
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