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Abstract

Punctuation restoration is a fundamental re-
quirement for the readability of text derived
from Automatic Speech Recognition (ASR)
systems. Most contemporary solutions are
limited to predicting only a few of the most
frequently occurring marks, such as periods,
commas, and question marks — and only one
per word. However, in written language, we
deal with a much larger number of punctua-
tion characters (such as parentheses, hyphens,
etc.), and their combinations (like parenthe-
sis followed by a dot). Such comprehensive
punctuation cannot always be unambiguously
reduced to a basic set of the most frequently
occurring marks. In this work, we evaluate
several methods in the comprehensive punctu-
ation reconstruction task. We conduct experi-
ments on parallel corpora of two different lan-
guages, English and Polish — languages with
a relatively simple and complex morphology,
respectively. We also investigate the influence
of building a model on comprehensive punc-
tuation on the quality of the basic punctuation
restoration task.

1 Introduction

The task of restoring punctuation can be crucial
for the readability of text derived from ASR sys-
tems. As Tündik et al. (2018) has shown, a lack
of punctuation in transcription can have a greater
negative impact on readability than a large number
of word transcription errors. In recent years, punc-
tuation prediction was most often approached as a
token classification task (Tilk and Alumäe (2016),
Kim (2019), Alam et al. (2020)). In this context,
the target labels are often reduced to only a few
most frequently occurring marks, such as periods,
commas, and question marks. However, in writ-
ten language, we deal with a much larger number
of characters (such as parentheses, hyphens, etc.).
The usual approach is to try to reduce those punc-
tuation marks into the basic set via role similarity

(e.g., semicolon and exclamation marks are often
reduced to periods) or discard them entirely (Tilk
and Alumäe (2016), Żelasko et al. (2018)). How-
ever, such a process always comes with a loss of
information. Furthermore, a word can end with
more than one punctuation mark — for example,
the end of parenthesis can coincide with the end of
a sentence, resulting in the combination of these
marks into ’). ’. Predicting only a period in such a
place would quite strongly violate the structure of
the original statement (see Table 1). We propose a
new approach to the punctuation restoration task —
Comprehensive Punctuation Restoration — where
the task will be to restore all the original punctu-
ation in the text (i.e., without any reduction) in a
token classification manner.

In the following work, we explore the possibility
of generating a manageable-sized set of labels di-
rectly from the dataset, based on the percentile of
punctuation cases present in the set. We measure
increased recall by using broader class sets and a
potential cost in terms of precision. In addition,
we test whether models trained on more narrowly
defined classes will suffer (or gain) on a reduced,
conventionally defined 4-class task.

We conducted our research on a parallel corpus
of Polish and English — two languages with very
different levels of morphological complexity (Łock-
iewicz and Jaskulska, 2017). With this approach,
we can directly compare a set of semantically iden-
tical and volumetrically very similar datasets and
see how well our results generalize. We would
be able to catch if a trend in our results was very
specific to a single language.

In summary, in this paper we made the following
contributions:

• We propose an approach to generate a compre-
hensive punctuation label set directly from the
dataset rather than some predefined marks.

• We evaluate how increasing the size of gen-
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Type of restoration Text
4 classes our way is to honor every religion and every nation according to their paths, as

it is written in the book of prophets because every nation will go in the name of
its lord.

4 classes + mapping our way is to honor every religion and every nation according to their paths, as
it is written in the book of prophets, because every nation will go in the name
of its lord.

full restoration our way is to honor every religion and every nation according to their paths, as
it is written in the book of prophets: ’because every nation will go in the name
of its lord.’

Table 1: Comparison of the same quote with different approaches to punctuation reduction. Depending on what
characters the system can restore, you can get punctuation capable of representing different structures of an ex-
pression. Converting to a set of basic characters (in this case a colon to a comma), while helpful, cannot always
preserve the entire meaning of the original punctuation.

erated label set affects the ability to restore
complete punctuation.

• We investigate whether using a large,
narrowly-defined set of labels affects the per-
formance of the model on a frequently used,
basic set of 4 classes: PERIOD, COMMA,
QUESTION, and OTHER.

Also, to the best of our knowledge, our proposal
is the first publicly described research for restoring
punctuation for the Polish language. 1

2 Related Work

The first approach to punctuation restoration (in
the sense of restoring punctuation marks) has been
proposed by Beeferman et al. (1998). They in-
troduced a model based on the Markov chain, de-
signed for restoring commas in the output of ASR
systems. In the field of deep learning, the punc-
tuation restoration task is often approached with
bidirectional recurrent neural networks. Most often
LSTM and GRU architectures are used. Although
LSTM networks are often — computational per-
formance aside — considered better than GRUs in
the general case (Yang et al. (2020), Weiss et al.
(2018)), it is reported in several papers that GRUs
outperformed LSTMs in the punctuation restora-
tion task (Tilk and Alumäe (2016), Hládek et al.
(2019)).

In Tilk and Alumäe (2016) authors explored
the possibility of using bidirectional recurrent net-
works with attention for the punctuation restoration

1There is the Polish language mentioned as a part of a
multilingual model in Li and Lin (2020), however, the authors
did not publish per-language results.

on the Estonian language. They provided their
code2 with the publication and we will be using it
in our research as an example of a recurrent net-
work model.

Lately, an interesting approach based on LSTMs
was proposed by Li and Lin (2020), where they
tried to create a single model for restoring punctua-
tion for 43 languages using language-independent
BPE tokenization. They also included Polish in
the training set, however, authors did not publish
per-language results.

In recent years, large, pre-trained models based
on transformer architecture (Vaswani et al., 2017)
seem to perform best on a number of NLP tasks, in-
cluding punctuation restoration. Perhaps the most
comprehensive comparison of various transformer
encoder models in the task of punctuation restora-
tion is done by Alam et al. (2020), where the au-
thors compared a number of models based on dif-
ferent variants of pre-trained BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019) and AlBERT
(Lan et al., 2020) encoders as a base of their model.
They’ve shown that generally larger pre-trained
models were better than the smaller ones in punc-
tuation restoration and that between models of the
same size, generally, RoBERTa was better than
both AlBERT and BERT. They also showed that
XLM (cross-lingual models) variants of RoBERTa
were slightly worse than English-only ones. The
authors of the paper published their code and we
also used it in our research.

In Yi et al. (2020) authors show that punctuation
restoration can also benefit from multitask learn-
ing (POS tagging being the secondary task in their

2https://github.com/ottokart/punctuator2

https://github.com/ottokart/punctuator2
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work). They trained a single BERT-based model
with 2 token classification heads — one for Punc-
tuation restoration and one for POS tagging. While
the weights in the heads were separate in the task,
the BERT core was shared. They have shown that
such a form of regularization can help in the punc-
tuation restoration of unseen data.

Our take on the punctuation restoration task is
inspired by the work of Omelianchuk et al. (2020),
where the authors used an approach with automatic
generation of a set of labels from the data to ap-
proximate the capabilities of sequence to sequence
models token classification. They did it in the con-
text of the grammatical error correction task.

3 Dataset

Lang Total Train Dev Test
En 15.27M 12.23M 1.53M 1.52M
Pl 12.69M 10.15M 1.27M 1.27M

Table 2: Number of words in the data set with decom-
position into training, test and validation sets.

To be able to research comparable corpora for
different languages, similarly to Vandeghinste et al.
(2018), we used a parallel corpus from the Europarl
v7 dataset3. The corpus is extracted from the pro-
ceedings of the European Parliament and translated
into multiple languages. Specifically, we use the
parallel corpus of Polish and English taken from
proceedings from 01/2007 to 11/2011. The corpus
is made up of 15.27M words (English) and 12.82M
words (polish) divided into sentences, with each
sentence on a separate line. As some of the lines are
very short and contain e.g. only a single number,
we removed all of the lines that had fewer than 4
words as a preprocessing step. Then we divided the
corpus randomly into training, validation, and test
collection in the ratio 8/1/1 (line-wise). See Table
2 for information on the size of each collection.

The text preprocessing step consisted only of
normalization of all whitespace characters (includ-
ing newline) into a single space. The decision was
motivated by the fact that whitespace is mostly con-
nected with formatting rather than punctuation. In
the specific case of the dataset we used, new lines
were used to separate sentences. However, if the
dataset was annotated in a way that whitespace
formatting was meaningful (ie., using newlines or
tabulations for paragraph splitting), this step could

3https://www.statmt.org/europarl/

Lang Percentile Classes Lowest support

En

90th 7 + 1 22,767
95th 12 + 1 14,115
99th 23 + 1 2,007
100th 513 + 1 1

Pl

90th 6 + 1 21,678
95th 11 + 1 14,332
99th 28 + 1 1,308
100th 716 + 1 1

Table 3: The number of punctuation classes based on
the percentile of punctuation retained. The +1 stands
for the additional class representing ’no punctuation’ —
single whitespace only.

be skipped and attempts could be made to also
reproduce subtle differences in whitespace.

After preprocessing, the text was broken into
tokens based on the occurrence of any non-
alphanumeric character (including whitespace).
Each alphanumeric sequence was considered a sin-
gle token, and each non-alphanumeric sequence
following it was considered a label of that token.
The set of all unique non-alphanumeric sequences
was considered the largest possible set of punctua-
tion labels for this specific dataset.

The classes from the label set were then sorted
by their frequency of occurrence in the text. Obvi-
ously, in most cases, by far the most represented
class was single whitespace (that made up 88.36%
of all labels in the English dataset and 85.14% in
Polish). Overall, we got 513 unique classes for
the English version and 716 classes for Polish one.
In both cases, there was a long tail of underrep-
resented classes. Such classes consisted mainly
of combinations of rare marks (eg. “”=.”) or very
long strings of punctuation characters (e.g., “ [.../...]
[”). In the case of the English dataset, there were
330 classes with fewer than 5 occurrences and 186
classes with only one occurrence. In the case of
Polish, such a long tail was even longer, with 486
classes with less than 5 occurrences and as many
as 287 with only one occurrence.

As stated in the introduction, the goal of this
work is to reproduce as much of the original punc-
tuation as possible. Because of that, in the test set
no class reduction was done and all the original
labels were put there in unchanged form (even if
the class had only one occurrence in the test set
and no occurrence in the training set). However,
training a model on classes that had only a few
samples would be impractical. Because of that, the

https://www.statmt.org/europarl/
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training and validation sets were reduced in such
a way that we maximize class coverage. To do
that, we created a set of label subsets according to
a minimum number of classes to achieve a given
percentile (not counting single whitespace). The
percentiles with a corresponding number of classes
are presented in Table 3.

As the last step, we created another version of
the label set with the number of classes reduced to a
commonly used quadruple of labels: COMMA, PE-
RIOD, QUESTION, OTHER. We used this version
of the dataset to test whether training models on a
larger, more narrowly defined set of labels would
have negative effects relative to models trained on
a small label set. To map the comprehensive label
set into a simple label set we used inclusion criteria.
I.e., if the character “.“ was present in the compre-
hensive label (e.g. “". ”), it would be mapped into
PERIOD class. If more than one base class were
found in the comprehensive label, then the more
frequently represented one would be chosen (the
precedence order was a comma, period, question).
If no base label was found, OTHER class was as-
signed. This variation of label set will be referred
to as “Reduced”

4 Experimental Setup

4.1 Overview

For our experiments, the first architecture we used
was bidirectional GRU with an attention model,
described in Tilk and Alumäe (2016). Originally,
the authors of this paper also tested their solution
on a corpus derived from Europarl v7 (though not
a parallel one). In their case, they used a total of
8 classes (consisting of 7 punctuation marks plus
class representing no punctuation). This set of
labels will be further marked as “BaseTilk”. As for
hyperparameters, we used the ones suggested by
the authors (learning rate of 0.02 and hidden layer
size of 256).

The next set of architectures we examined were
base-sized transformer models derived from Alam
et al. (2020). We used BERT and RoBERTa for
our study of the English dataset and Bert for Pol-
ish. In Alam et al. (2020), the authors provide a
standard set of 4 classes — period, comma, ques-
tion mark, and the ’other’ class (which also con-
tains no punctuation). This set of 4 classes will be
marked as “BaseAlam”. For the pre-trained Polish
Bert models, we used the one trained by Kłeczek

(2020), hosted on huggingface model repository4.
We used the cased version because the author rec-
ommends using it over the uncased version. The
only changes we made to the original code from
Alam et al. (2020) are those allowing us to change
the scope of the predicted classes and to incorpo-
rate more pre-trained models (Polish ones). For
the hyperparameters, we used a learning rate of
10−5, batch size of 8, augmentation rate of 0.15
with alpha-sub and alpha-del set to 0.4. We trained
each model for 10 epochs.

We first trained the described models on the
dataset with labels mapped to the original set of
labels (i.e., the sets that were used in the original
implementations and marked as “Base”). Base sets
were mapped to comprehensive labels by matching
the most frequently represented label containing
a character from the base set. For example, the
base label “!” would be mapped to the compre-
hensive label “! ”. Labels that were not mapped
were replaced with a single whitespace label (“ ”),
representing no punctuation.

We then incrementally increased the number of
labels in the training and validation sets such that
they covered the 90th, 95th, and 99th percentiles
of all the original punctuation (see Table 9 and 10).
On those models, we examined how increasing
the size of a training label set would affect the
precision and recall of punctuation in the original
texts, on the test set. In each experiment, the test
set contained all original labels (i.e., 513 for the
English set and 716 for the Polish set).

At last, we trained the models on the reduced
dataset. Those models will be mainly used as a
baseline to check whether training the models on
comprehensive label sets would have a positive
or negative effect on the quality of model perfor-
mance for the core classes. It is worth noting that
the models trained on this set will attempt to pre-
dict the labels greedily (i.e., the models are trained
to predict the label “. ” even when the label “".
” was originally present). For this reason, these
models will achieve lower average precision on the
comprehensive punctuation restoration task.

All the experiments were performed on follow-
ing hardware: RTX 2080 Ti, Intel(R) Xeon(R) CPU
E5-2650, 503Gb of RAM. The longest single fine-
tuning process took 5 hours 43 minutes (BERT on
English dataset).

4https://huggingface.co/dkleczek/bert-base-polish-cased-
v1

https://huggingface.co/dkleczek/bert-base-polish-cased-v1
https://huggingface.co/dkleczek/bert-base-polish-cased-v1
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4.2 Metrics
4.2.1 Token classification metrics
For the comprehensive punctuation restoration task,
we used precision (P), recall (R), and f1 computed
as micro-averages of all classes excluding a single
whitespace class (i.e., the dominant class corre-
sponding to the absence of punctuation). Predic-
tions are marked as correct only if the model pre-
dicted the exact class (i.e., predicting ’. ’ for a to-
ken with ground truth label ’). ’ would be counted
as an error). For a task with reduced labels, we
used precision, recall, and f1 for classes COMMA,
PERIOD, and QUESTION. We also computed the
macro average of those metrics under the TOTAL
section.

4.2.2 mRS
Token classifications metrics are very strict (i.e., if
the true test label was ’). ’ and the model predicted
’. ’ it would still count as a full error). Intuitively,
if the model predicted a label that had some com-
mon part with a true label, it should be counted as
a better score than predicting a completely wrong
one. To address this issue, we used a third metric —
mean Ruzicka similarity (mRS). Ruzicka similarity
(Deza and Deza, 2009) is a weighted version of Jac-
card similarity that allows us to work on a multiset
(e.g. labels like ’...’). It has values in the range (0,1)
where 1 is achieved for a perfect match, higher val-
ues mean better results. In our application, this
metric is defined as follows:

RS(P,T) =

c∑
k=1

min (pk, tk)

c∑
k=1

max (pk, tk)

Where
P = [p1, p2, ..., pc]

T = [t1, t2, ..., tc]

are predicted and ground-truth labels of the same
token, represented by a vector consisting of the
count of all single-character punctuation marks in
that label (excluding whitespace).

To compute mean RS we just average RS met-
ric over all labels, skipping the tokens where the
ground-truth label is whitespace only (i.e., no punc-
tuation).

mRS =

N∑
i=1

RS(Pi,Ti)[Ti 6= 0]∑N
i=1[Ti 6= 0]

where Pi is predicted label for ith token, Ti is
ground-truth label for ith token and N is a total
number of tokens.

5 Results for English

Example predictions (on an excerpt from the test
set) from the best model for English (RoBERTa)
trained on a different number of training labels
is shown in Table 4, whereas the metrics for all
experiments are presented in Table 5.

As expected, increasing the number of classes on
which the model was trained increases the average
recall (R). Depending on the method, the increase
over the method’s native class list was between 12
and 14 percentage points. As for averaged preci-
sion (P), its clear decrease was observed only in
the case of the BiGRU model. In models based
on pre-trained Berts, the highest precision was ob-
tained with an increased number of classes. Since
the fluctuation of precision with increasing label
set was relatively small compared to the gain on
recall, the f1 metric in each case increased with
the increasing number of classes. Also, the less
rigid mRS metric showed an average gain of about
14 points when using models trained on 99th per-
centile. This number shows how much we would
be losing when we would reduce the punctuation
to the base set.

Table 6, on the other hand, presents a comparison
of the performance of the models on the reduced
set of labels. It can be observed that the num-
ber of labels (L column) on which the model was
trained did not have a major impact on the quality
of the task in the basic formulation of the problem.
The only clear decrease can be seen in the model
learned at 90% label coverage. This model was
unable to restore question marks because its train-
ing set, whose labels were formed from the first
labels sorted by the frequency of occurrence, did
not include any class containing a question mark.
The lack of decrease in performance on this task
shows that the current deep models are capacious
enough that increasing the range of labels (and thus
both the resolution and the range of predicted punc-
tuation marks) does not carry a cost in terms of a
decrease in a model quality on the prediction of the
more salient marks.

6 Results for Polish

The results for the Polish language are presented
in Table 7. In general, Polish turned out to be
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Training labels Text punctuated by model

BaseAlam
(4 classes)

as a result of many inspections, payments of own resources and interest were
demanded for agriculture as a whole 49 8 billion in 2006, the court found a
marked reduction in the estimated overall level of error.

90th percentile
(7 classes)

as a result of many inspections, payments of own resources and interest were
demanded for agriculture as a whole 49 8 billion in 2006, the court found a
marked reduction in the estimated overall level of error.

95th percentile
(13 classes)

as a result of many inspections, payments of own resources and interest were
demanded for agriculture as a whole (49 8 billion in 2006, the court found a
marked reduction in the estimated overall level of error.

99th percentile
(24 classes)

as a result of many inspections, payments of own resources and interest were
demanded for agriculture as a whole (49.8 billion in 2006), the court found a
marked reduction in the estimated overall level of error.

GOLD as a result of many inspections, payments of own resources and interest were
demanded. for agriculture as a whole - C49.8 billion in 2006 - the court found
a marked reduction in the estimated overall level of error.

Table 4: Example predictions (on an excerpt from test set) from the best model for English (RoBERTa) trained on
a different number of training labels.

Model Label Set P R f1 mRS

BiGRU
Tilk and Alumäe (2016)

BaseTilk 79.65 60.06 68.48 60.30
Reduced 76.17 56.28 64.73 57.23

90th 78.68 67.72 72.79 68.02
95th 77.51 70.07 73.60 70.37
99th 77.97 72.94 75.37 73.27

Bert-base + LSTM + Aug
Alam et al. (2020)

BaseAlam 84.58 68.28 75.57 68.50
Reduced 84.61 68.26 75.56 68.48

90th 85.35 77.45 81.21 77.70
95th 84.78 80.30 82.48 80.59
99th 85.52 82.18 83.82 82.53

RoBERTa-base + LSTM + Aug
Alam et al. (2020)

BaseAlam 85.57 68.63 76.16 68.85
Reduced 84.15 68.41 75.47 69.49

90th 86.70 77.48 81.83 77.74
95th 86.49 79.58 82.89 79.85
99th 85.87 82.77 84.29 83.14

Table 5: Performance of the models on comprehensive punctuation restoration task for the English language. Each
model was trained under multiple subsets of labels. The base label set corresponds to the label subset used in the
original model’s implementation. The reduced label set corresponds to models trained on the reduced dataset.
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COMMA PERIOD QUESTION TOTAL
Model L P R f1 P R f1 P R f1 P R f1

BiGRU

BaseTilk 76.3 62.5 68.7 83.9 78.0 80.9 76.8 63.3 69.4 83.6 75.6 79.3
Reduced 73.9 65.3 69.4 84.7 79.1 81.8 77.8 54.3 63.9 83.5 74.4 78.3
90th 73.8 67.8 70.7 82.5 80.4 81.4 0* 0* 0* 63.5 61.7 62.6
95th 71.2 70.8 71.0 83.6 78.6 81.0 75.0 63.5 68.8 81.9 77.8 79.7
99th 72.0 70.5 71.2 82.9 84.4 83.7 75.8 61.9 68.1 82.3 78.8 80.3

BERT-base
+ LSTM
+ Aug

BaseAlam 79.9 80.1 80.0 92.2 89.3 90.8 88.1 79.5 83.5 89.7 86.9 88.2
Reduced 80.0 80.0 80.0 92.2 89.3 90.8 87.9 79.7 83.6 89.7 87.0 88.3
90th 79.8 80.3 80.0 93.0 88.3 90.6 0* 0* 0* 67.8 66.8 67.3
95th 78.9 81.8 80.3 92.8 88.8 90.8 88.7 79.4 83.8 89.8 87.2 88.4
99th 80.5 79.7 80.1 92.3 93.6 93.0 87.3 80.0 83.5 89.7 88.0 88.8

RoBERTa
-base

+ LSTM
+ Aug

BaseAlam 81.0 80.3 80.7 93.0 90.0 91.5 90.8 78.3 84.1 90.9 86.9 88.8
Reduced 81.3 80.2 80.8 93.7 94.2 94.0 91.8 80.1 85.6 91.4 88.4 89.8
90th 82.2 79.0 80.6 93.2 90.2 91.7 0* 0* 0* 68.4 67.0 67.7
95th 81.8 79.2 80.5 93.4 89.8 91.6 89.4 80.7 84.8 90.8 87.2 88.9
99th 80.8 81.0 80.9 93.9 93.4 93.8 91.4 78.8 84.6 91.2 88.0 89.4

Table 6: Comparison of models under task with a reduced set of labels for the English dataset. We can see that
adding more labels did not negatively impact the model’s performance in the base formulation of the task. (*) The
zero values are caused by the fact that a question mark was not included in the 90th percentile of all punctuations.

a slightly easier punctuation restoration task as a
whole. The best f1 score obtained for Polish was
85.93 as compared to 84.29 obtained for English.
In the case of Polish, the effect of adding subse-
quent classes on increasing recall was smaller (al-
though still relatively large). In the BERT model,
adding more classes strictly decreased the average
prediction precision, but in the recursive model (Bi-
GRU), no clear trend was observed. This is some-
what opposite to the results obtained on the English
set. Similarly to English, we also tested whether
models trained on the larger label set would de-
crease in performance on the baseline task of 4
classes. The results of the models on this task
are presented in Table 8. There was no noticeable
effect of increasing the number of labels on the
quality of the model in predicting basic labels. For
Polish, we found that the task of restoring com-
mas was easier, while that of restoring question
marks was much more difficult. We suspect that
this might be rooted in the structure of language be-
cause, in the Polish language, one can often come
across question structures that differ from the in-
dicative sentence only by the question mark at the
end - e.g., it’s common to use structures like “jesteś
szczęśliwy?” (“you are happy?”) rather than “czy
jesteś szczęśliwy?” (that would resemble “are you
happy?”). However, to make a definite statement,
it would be necessary to conduct further research

in this area, especially since the basis of BERT’s
methods is a language model, which for obvious
reasons was pre-trained on different sets for each
of the two languages.

7 Conclusion and Future Work

In our work, we have shown that token classifier
models are able to restore a much larger range of
punctuation than it is done in most other reported
researches. Our experiments show that such an in-
crease in coverage can be achieved without a drop
in quality for key punctuation marks. We have also
shown that this effect is not limited to English, and
we have obtained very similar results in Polish —
a language with much more complex morphology.
Additionally, the advantage of the approach with
automatic generation of a set of labels from the data
is that we are also able to predict the composition
of punctuation marks. In further work, it would
be of great benefit to investigate what effect repro-
ducing a wide range of punctuation would have on
text readability for people compared to reproducing
only the basic characters. It would also be interest-
ing to perform a comparative study of how token
classifier models perform in the task of reproduc-
ing broad punctuation compared to sequence-to-
sequence models, such as Bart (Lewis et al., 2020)
or T5 (Raffel et al., 2020) for which such behavior
would be natural. We also plan to take part in the
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Model Training Task P R f1 mRS

BiGRU
Tilk and Alumäe (2016)

BaseTilk 84.52 69.73 76.42 70.09
Reduced 82.44 67.61 74.29 68.59
90th 84.00 68.43 75.42 68.78
95th 83.89 70.97 76.89 71.37
99th 84.11 73.98 78.72 74.57

Bert-base + LSTM + Aug
Alam et al. (2020)

Kłeczek (2020)

BaseAlam 89.64 75.32 81.86 75.60
Reduced 87.62 75.55 81.15 76.67
90th 88.49 78.83 83.38 79.18
95th 87.98 80.78 84.22 81.17
99th 87.71 84.22 85.93 84.82

Table 7: Performance of the models on comprehensive punctuation restoration task for the Polish language. Each
model was trained under multiple subsets of labels. The base label set corresponds to the label subset used in the
original model’s implementation. The reduced label set corresponds to models trained on the reduced dataset.

COMMA PERIOD QUESTION TOTAL
Model L P R f1 P R f1 P R f1 P R f1

BiGRU

BaseTilk 87.1 77.0 81.7 82.7 79.5 81.1 66.3 47.3 55.2 83.4 75.6 79.0
Reduced 86.2 78.8 82.4 82.8 82.8 82.8 68.5 47.1 55.8 83.8 76.8 79.8
90th 86.6 76.7 81.3 81.8 77.2 79.5 0* 0* 0* 66.4 63.2 64.7
95th 86.6 77.8 82.0 81.8 80.2 81.0 66.2 47.0 54.9 83.0 75.9 79.0
99th 87.1 77.2 81.8 81.8 83.1 82.4 61.7 49.4 54.8 82.1 77.1 79.3

BERT-base
+ LSTM
+ Aug

BaseAlam 89.2 86.1 87.6 92.1 89.8 91.0 83.5 77.8 80.5 90.8 88.2 89.5
Reduced 89.2 86.1 87.6 92.1 89.8 91.0 83.5 77.8 80.5 90.8 88.2 89.5
90th 88.0 87.4 87.7 92.0 89.3 90.7 0* 0* 0* 69.6 68.9 69.2
95th 87.9 87.6 87.8 91.4 90.3 90.9 80.5 79.1 79.8 89.6 89.0 89.3
99th 87.0 88.5 87.7 92.2 92.1 92.2 85.9 74.5 79.8 91.0 88.4 89.6

Table 8: Comparison of models under original task with a reduced set of labels for Polish dataset. (*) The zero
values, similarly to results for English, are caused by the fact that a question mark was not existing in the 90th

percentile of all punctuations.

PolEval 20215 shared task, concerning punctuation
restoration from read text in Polish. In contrast to
the problem analyzed here, the data sets will con-
tain acoustic information, e.g. one that could allow
determining the duration of gaps between words.

Acknowledgments

Financed by the European Regional Development
Fund as a part of the 2014-2020 Smart Growth
Operational Programme, CLARIN - Common Lan-
guage Resources and Technology Infrastructure,
project no. POIR.04.02.00-00C002/19.

References

Tanvirul Alam, Akib Khan, and Firoj Alam. 2020.
Punctuation restoration using transformer models

5http://poleval.pl/tasks/

for high-and low-resource languages. In Proceed-
ings of the Sixth Workshop on Noisy User-generated
Text (W-NUT 2020), pages 132–142, Online. Associ-
ation for Computational Linguistics.

Doug Beeferman, A. Berger, and J. Lafferty. 1998. Cy-
berpunc: a lightweight punctuation annotation sys-
tem for speech. Proceedings of the 1998 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP ’98 (Cat. No.98CH36181),
2:689–692 vol.2.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Michel Marie Deza and Elena Deza. 2009. Encyclo-

https://doi.org/10.18653/v1/2020.wnut-1.18
https://doi.org/10.18653/v1/2020.wnut-1.18
http://poleval.pl/tasks/
https://doi.org/10.18653/v1/2020.wnut-1.18
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-642-00234-2_1


4618

pedia of Distances. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Daniel Hládek, Ján Staš, and Stanislav Ondáš. 2019.
Comparison of recurrent neural networks for slovak
punctuation restoration. In 2019 10th IEEE Interna-
tional Conference on Cognitive Infocommunications
(CogInfoCom), pages 95–100.

Seokhwan Kim. 2019. Deep recurrent neural networks
with layer-wise multi-head attentions for punctua-
tion restoration. In ICASSP 2019 - 2019 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 7280–7284.

Dariusz Kłeczek. 2020. Polbert: Attacking polish nlp
tasks with transformers. In Proceedings of the PolE-
val 2020 Workshop, pages 79–88. Institute of Com-
puter Science, Polish Academy of Sciences.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Xinxing Li and Edward Lin. 2020. A 43 language
multilingual punctuation prediction neural network
model. In Interspeech 2020, 21st Annual Confer-
ence of the International Speech Communication As-
sociation, Virtual Event, Shanghai, China, 25-29 Oc-
tober 2020, pages 1067–1071. ISCA.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
GECToR – grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170, Seattle, WA, USA â†’
Online. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Ottokar Tilk and Tanel Alumäe. 2016. Bidirectional re-
current neural network with attention mechanism for
punctuation restoration. In Interspeech 2016, 17th
Annual Conference of the International Speech Com-
munication Association, San Francisco, CA, USA,
September 8-12, 2016, pages 3047–3051. ISCA.

Máté Ákos Tündik, György Szaszák, Gábor Gosztolya,
and András Beke. 2018. User-centric evaluation of
automatic punctuation in ASR closed captioning. In
Interspeech 2018, 19th Annual Conference of the In-
ternational Speech Communication Association, Hy-
derabad, India, 2-6 September 2018, pages 2628–
2632. ISCA.

Vincent Vandeghinste, Lyan Verwimp, Joris Pelemans,
and P. Wambacq. 2018. A comparison of different
punctuation prediction approaches in a translation
context. In Proceedings of the 21st Annual Confer-
ence of the European Association for Machine Trans-
lation, pages 269–278.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, volume 30 of NIPS’17, page 6000–6010, Red
Hook, NY, USA. Curran Associates Inc.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite pre-
cision RNNs for language recognition. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 740–745, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Shudong Yang, Xueying Yu, and Y. Zhou. 2020. Lstm
and gru neural network performance comparison
study: Taking yelp review dataset as an example.
2020 International Workshop on Electronic Commu-
nication and Artificial Intelligence (IWECAI), pages
98–101.

Jiangyan Yi, Jianhua Tao, Ye Bai, Zhengkun Tian, and
Cunhang Fan. 2020. Adversarial transfer learning
for punctuation restoration. CoRR, abs/2004.00248.

Marta Łockiewicz and Martyna Jaskulska. 2017. Pol-
ish as l1, english as l2: the linguistic transfer im-
pact on second language acquisition stemming from
the interlingual differences: implications for young
learners education. Problemy Wczesnej Edukacji,
37(2):68–76.
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Appendix A: List of generated labels for
English dataset

Label Occurrences (%) Percentile
1 ,[S] 44.97 44.97
2 .[S] 32.42 77.39
3 - 4.46 81.85
4 ’ 2.86 84.71
5 [S]-[S] 2.37 87.08
6 )[S] 2.26 89.34
7 :[S] 1.28 90.61
8 ( 1.22 91.84
9 ’[S] 0.93 92.76
10 ?[S] 0.90 93.66
11 [S]( 0.79 94.46
12 ;[S] 0.79 95.25
13 [S]’ 0.76 96.01
14 .[S]-[S]( 0.55 96.56
15 %[S] 0.54 97.10
16 .[S]-[S] 0.49 97.59
17 / 0.43 98.02
18 . 0.30 98.32
19 ’.[S] 0.23 98.55
20 ’,[S] 0.14 98.69
21 ),[S] 0.13 98.82
22 ).[S] 0.12 98.94
23 ![S] 0.11 99.05

Table 9: List of labels that together cover at least 99%
of punctuation cases for English version of the dataset.
Spaces were replaced with [S] for readability.

Appendix B: List of generated labels for
Polish dataset

Label Occurrences (%) Percentile
1 ,[S] 51.21 51.21
2 .[S] 31.42 82.62
3 [S]-[S] 3.00 85.63
4 ![S] 2.13 87.76
5 )[S] 1.94 89.70
6 :[S] 1.15 90.85
7 ( 0.96 91.80
8 - 0.83 92.64
9 ?[S] 0.82 93.46
10 [S]( 0.79 94.25
11 [S]" 0.76 95.01
12 ;[S] 0.69 95.69
13 .[S]-[S]( 0.42 96.12
14 / 0.40 96.51
15 .[S]-[S] 0.36 96.87
16 ”[S] 0.35 97.22
17 ”.[S] 0.29 97.51
18 %[S] 0.24 97.75
19 [S]%[S] 0.20 97.95
20 ”,[S] 0.18 98.14
21 , 0.17 98.30
22 ),[S] 0.13 98.44
23 ).[S] 0.13 98.56
24 . 0.10 98.67
25 ’ 0.10 98.77
26 :[S]" 0.10 98.87
27 .,[S] 0.09 98.96
28 [S]([S] 0.07 99.03

Table 10: List of labels that together cover at least 99%
of punctuation cases for Polish version of the dataset.
Spaces were replaced with [S] for readability.


