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Abstract
Natural language processing systems such as
dialogue agents should be able to reason about
other people’s beliefs, intentions and desires.
This capability, called theory of mind (ToM),
is crucial, as it allows a model to predict and
interpret the needs of users based on their men-
tal states. A recent line of research evalu-
ates the ToM capability of existing memory-
augmented neural models through question-
answering. These models perform poorly on
false belief tasks where beliefs differ from re-
ality, especially when the dataset contains dis-
tracting sentences. In this paper, we propose a
new temporally informed approach for improv-
ing the ToM capability of memory-augmented
neural models. Our model incorporates priors
about the entities’ minds and tracks their men-
tal states as they evolve over time through an
extended passage. It then responds to queries
through textual time travel—i.e., by access-
ing the stored memory of an earlier time step.
We evaluate our model on ToM datasets and
find that this approach improves performance,
particularly by correcting the predicted mental
states to match the false belief.

1 Introduction

Humans have evolved social intelligence to rein-
force cooperation in society (Brüne and Brüne-
Cohrs, 2006). In human interactions, understand-
ing another person’s mental states — for exam-
ple, their purpose, intention, knowledge, belief,
thoughts, doubts, likes and needs — is a critical
step in correctly interpreting or predicting their be-
havior (Yott and Poulin-Dubois, 2016; Premack
and Woodruff, 1978). This ability to attribute men-
tal states to oneself and to others, called theory
of mind (ToM), becomes increasingly necessary
for natural language processing (NLP) systems as
they integrate into modern society. Acquiring ToM
capabilities permits more accurate responses in sev-
eral situations. For example, it allows for disam-
biguating a difficult query by correctly deducing

Figure 1: Ella, Bella and the umbrella—an example
of how theory of mind matters for a virtual assistant
application.

the true needs of the user based on their mental
state, thereby providing the missing piece in solv-
ing inference and reasoning tasks. Figure 1 shows
a scenario with two people interacting with an in-
telligent virtual assistant. In this example, the as-
sistant (Bot) uses theory of mind to reason about
Ella’s belief about the location of the umbrella,
which differs from reality. Clearly, demonstrating
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social intelligence is a major barrier that needs to
be crossed in our march towards the applied end-
goal of creating NLP systems that blend seamlessly
into the human world (Weston et al., 2016; Bisk
et al., 2020).

A recent line of work evaluates the theory-of-
mind capability of memory-augmented neural mod-
els via a question answering task (Grant et al.,
2017; Nematzadeh et al., 2018; Le et al., 2019).
This task consists of stories with multiple entities
that interact with each other in a synthetic envi-
ronment, followed by a question about the entities’
beliefs. Memory augmented neural models like
EntNet (Henaff et al., 2017), that are successful at
solving reasoning tasks such as bAbi (Weston et al.,
2016) by tracking world states, perform poorly at
false belief tasks where the mental states of the
entities do not match the world states. Moreover,
these models are sensitive to distracting sentences,
which decrease their accuracy.

In this paper we propose a new model, that we
call Textual Time Travel, to correctly track the men-
tal states of the entities when they have a false be-
lief. Our key insight is to incorporate priors about
the entities’ minds in our model and add a tempo-
ral dimension to the neural model’s memory. This
allows us to track the changes in the mental states
with time as the story progresses.1 We also aim
to have an interpretable model of the world and
the mental states of the entities. Our temporally-
informed neural model allows us to visualize how
it tracks changes in these states. We find that our
model does indeed track the mental states of the
entities, and with additional supervision it can pro-
vide correct responses when the entities have false
beliefs, thus improving performance.

2 Related Work

Theory of mind has been extensively researched
by the psychology community over the last few
decades (Baron-Cohen, 1997; Flavell, 2004). Gen-
erally, false belief tasks are used to test the ToM
capabilities of children and animals (Premack and
Woodruff, 1978; Wimmer and Perner, 1983; Leslie
and Frith, 1988; Heyes, 1998; Wellman, 2014). In
developmental psychology, the famous Sally-Anne
test (Baron-Cohen et al., 1985) is widely adopted
to assess a child’s ability to attribute false beliefs
to others.

1Our code and dataset can be found at: Textual Time Travel.

2.1 False Belief Tests

The Sally-Anne test (Baron-Cohen et al., 1985)
evaluates the ability of children to reason about
others’ false beliefs. In this test, the child observes
two dolls, Sally and Anne. Sally first places a
marble into her basket and leaves the scene. The
marble is then transferred by Anne and hidden in
her box. When Sally returns, the child is asked,
“Where will Sally look for her marble?”. To pass
the test, the child has to understand that Sally does
not know that the marble is in the box, and thus has
a false belief about the location of the marble. The
child is also asked memory and reality questions:
“Where was the marble in the beginning?”, and
“Where is the marble really?”

The ice-cream-van test (Perner and Wimmer,
1985) aims to evaluate beliefs about beliefs, i.e.,
second-order beliefs in children. In this test, the
child observes John and Mary, who see an ice-
cream van in a park. The ice-cream man tells them
that he will be in the park all afternoon, and they
make plans to get ice cream later in the day. Mary
leaves the park alone, and the ice-cream man, after
a change of plans, tells John that he is going to the
church. On the way to the church, the ice-cream
man happens to run into Mary, and he fills her in
about his updated plans. The child is asked “Where
does John think Mary goes to get ice-cream?”.
The child has to recognise that John doesn’t know
that Mary knows the ice-cream van’s location, and
therefore has a false belief about Mary’s belief. The
child is also asked corresponding control questions
on memory, reality and first-order false belief to
verify the understanding of the environment.

2.2 ToM Through Question Answering

Based on the Sally-Anne test, Grant et al. (2017)
propose a question answering task to evaluate the
theory-of-mind capabilities of neural models. Ne-
matzadeh et al. (2018) extend this work and in-
clude a second-order false belief task based on the
ice-cream van experiments of Perner and Wimmer
(1985) and propose an artificial dataset called ToM.
This dataset is similar to bAbi (Weston et al., 2016)
in that it consists of stories with multiple entities
interacting with each other in a synthetic environ-
ment. Le et al. (2019) attempted to alleviate the
biases of the ToM dataset with ToMi, an improved
dataset and evaluation method.

Previous work showed that memory-augmented
neural models such as the End-to-End Memory Net-

https://github.com/akshathaarodi/textual_timetravel_TOM


4164

work (Sukhbaatar et al., 2015), the Recurrent Entity
Network (EntNet) (Henaff et al., 2017), and the Re-
lation Network (Santoro et al., 2017) perform well
on bAbi tasks and poorly on the ToM and ToMi
datasets, especially with distracting sentences. Of
all of these memory-augmented neural networks,
EntNet showed the most promising results on ToMi
and performed best on false belief tasks.

In this paper, we extend this body of work on the-
ory of mind with a temporally-informed memory-
augmented neural model. We build heuristics into
the ToMi dataset to enable our textual time travel,
and evaluate our model on this dataset.

3 Theory of Mind Datasets

The ToM and ToMi datasets contain multiple sto-
ries with a structure similar to the Sally-Anne and
ice-cream van tests, but with a variety of entities
and objects. The ToM dataset (Nematzadeh et al.,
2018) follows a strict template to generate the sto-
ries and has a simple random sentence as a dis-
tractor. The ToMi dataset (Le et al., 2019) aims to
addresses the dataset biases of ToM by breaking the
strict event sequence. It adds actions involving un-
related entities and randomizes the order of events
in the story. Each story has two main entities, an
object of interest, a main location where the events
take place, and two containers for the object. The
story begins with the introduction of the two enti-
ties, the object and their locations. ToMi consists
of 1000 stories of 3 story types:

1. True belief: After the introductions, entity
A moves the object from container1 to con-
tainer2 in the presence of entity B. In this type
of story, both entity A’s and entity B’s mental
states match the world state, so they both have
a true belief.

2. First-order false belief: After the introduc-
tions, entity A leaves the main location. Entity
B moves the object from container1 to con-
tainer2. In this type of story, entity A has false
belief about the location of the object.

3. Second-order false belief: After the intro-
ductions, entity A leaves the main location.
Entity B moves the object from container1 to
container2 and leaves the location. Entity A
reenters the main location and is now aware
of the final location of the object. In this type
of story, entity B has a false belief about entity
A’s belief.

1. William entered the bedroom.
2. Jackson loves the strawberry.
3. Jackson entered the bedroom.
4. Logan entered the living-room.
5. Logan exited the living-room.
6. The apple is in the red-envelope.
7. Jackson exited the bedroom.
8. William moved the apple to

the green-basket.
Q1. Where was the apple at the beginning?
Q2. Where will William look for the apple?
Q3. Where does William think that Jackson

searches for the apple?
Q4. Where is the apple really?
Q5. Where will Jackson look for the apple?
Q6. Where does Jackson think that William

searches for the apple?

Table 1: ToMi example of a first-order false be-
lief story. Here lines 2, 4, and 5 contain distracting
sentences. The questions are, Q1: Memory, From
William’s perspective - Q2: First-order, Q3: Second-
order, Q4: Reality, From Jackson’s perspective - Q5:
First-order, Q6: Second-order.

Each story is followed by a question. The model
must provide an answer based on the mental states
of the entities. In this task, the mental states refer
to the beliefs of an entity about the locations of en-
tities and objects in the artificial environment. Each
story is included in the dataset six times, once for
each question that is associated with it, distributed
by type as follows:

• Two first-order questions about an entity’s
belief about the environment.

• Two second-order questions about an entity’s
belief about the belief of the other entity.

• One memory and one reality question.

Table 1 presents an example of a ToMi story.
While inspecting the failure cases of our model, we
observed an inconsistency in the gold standard an-
swers (true labels) to second-order belief questions
in the ToMi dataset (i.e., the true labels were incor-
rect for some particular types of second-order false-
belief tasks). We corrected this inconsistency and
re-generated the ToMi dataset with 1000 stories.2

We evaluate our model on the corrected dataset.
2Section A in the appendix provides more details about

the errors and our process for generating the fixed dataset.
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4 Modelling ToM

4.1 The ToMi Task
Each story S consists of T sentences. For each
time step t ∈ T , let st be the sentence embedding
of the story at t. Given a query q, the answer y(q)
is a distribution over all vocabulary words V in the
corpus; i.e., the set of all stories.

4.2 The Textual Time Travel Model
Our model has two stages, as illustrated by Fig-
ure 2. The first stage is a memory updater that
stores a snapshot of the memory contents at each
time step, from which we can derive the mental
states of entities (LHS of Figure 2, Section 4.2.1).
In the second stage, we use what we call the tex-
tual time travel mechanism: the model predicts a
timestep of interest and retrieves the contents of the
memory cells at that time step in order to predict
an answer to a query (RHS of Figure 2).

We will present a heuristic rule-based (Sec-
tion 4.2.2) and a learning-based (Section 4.2.3)
version of the textual time travel mechanism. Both
are derived from the following basic assumptions
about the entities’ minds:

• Local entity perception An entity is aware of
the objects and other entities in their current
location only, and not elsewhere.

• Recency assumption An entity assumes that
the most recently available information that it
has access to about an object or another entity
is correct.

• Reciprocity assumption Entities assume that
other entities also behave according to the
local perception and recency assumptions
above.

Whereas the heuristic method directly hard-
codes a time travel mechanism based on these as-
sumptions, the learned method learns to select an
appropriate time step through training in order to
implement these assumptions.

4.2.1 Memory Updater
The starting point of our model is the memory-
augmented neural architecture of Henaff et al.
(2017) (EntNet). Our model contains a fixed num-
ber of dynamic memory cells. At any time step t,
each cell j has a key wj , a value h(t)j and a gate g(t)j .

The gate g(t)j controls the memory value updates

using the key wj and the previous value h(t−1)
j . We

let M (t) denote the memory contents at time step t.
The memory updater has three main components.

The input encoder generates the sentence embed-
ding s(t) at time t as a weighted sum of the word
embeddings ek of the sentence. Here, ek represents
the embedding of the kth word in a sentence. The
weights fk are shared across time steps and are
learned jointly with the other parameters.

s(t) =
∑
i

fi � ei

The dynamic memory module implements a gat-
ing mechanism for the memory cells. The gate
g
(t)
j is activated if s(t) matches the value h(t−1)

j or

the key wj of cell j. The new value h̃j
(t)

of the
gate is a weighted sum of h(t−1)

j , wj , and st. The
value is updated if the gate is activated. Then, the
new value is normalized. At each time step t we
store the mental states, represented by the memory
contents m(t)

j .

g
(t)
j ← σ(sTt h

(t−1)
j + sTt wj)

h̃j
(t) ← φ(Uh

(t−1)
j + V wj +Wst)

h
(t)
j ← h

(t−1)
j + gj � h̃j

(t)

h
(t)
j ←

h
(t)
j

||h(t)j ||

m
(t)
j ← h

(t)
j

Here U , V , andW are the parameters of the model,
σ is a sigmoid, and φ is a ReLU activation function.

The output module generates a distribution y
over all the vocabulary words in the corpus. Given
a question q, it computes an initial distribution p[1]j

over all memory cells. Additionally, our model
computes a second distribution p[2]j over all keys.
These are then passed through a non-linearity to
generate y.

p
[1]
j = Softmax(qThj)

p
[2]
j = Softmax(qTwj)

u[1] =
∑
j

p
[1]
j hj

u[2] =
∑
j

p
[2]
j hj

y = Rφ(q +H [1]u[1] +H [2]u[2])



4166

Figure 2: Textual Time Travel example. M (t) contains the mental states of the entities at time t.

Here, H [1], H [2] and R are the parameters. By
default, the memory cells hj are drawn from the
memory contents at the last time step. In the textual
time travel models below, they will actually be
drawn from the time step that is predicted by the
time travel mechanism.

4.2.2 Heuristic Textual Time Travel

This mechanism implements the assumptions in
Section 4.2 and allows the model to go back in
(textual) time to the correct time step and access
the stored memory cells at that time step to answer
a query. For a given question q, we define an at-
tention aq over all time steps T , that allows us to
choose the correct time step t and fetch the relevant
memory contents m(t)

j at that time step.
Specifically, for each entity, the model computes

a final exit time. If the entity exits the location and
does not reenter, this value is equal to the time step
at which the exit takes place. If the entity never
exits, or exits and reenters, this value is equal to
the final time step in the story. Then, for first-order
queries, the heuristic chooses the final exit time of
the entity in the query. For second-order queries, it
chooses the earlier of the two exit times between
the two entities. The final response is generated by
retrieving the values h(t)j from the stored memory

m
(t)
j at the selected time step.
Table 2 shows an example for second-order false

belief story. In this case, the model returns time
step 6, since that is the last time Noah and Logan
are in the main location, and Logan is unaware of
Noah’s mental states after he leaves the scene.

4.2.3 Learned Textual Time Travel

With this method, we train the model to obtain a
distribution aq over the time steps. Based on the
local entity perception assumption, we first train the
model to predict the locations of the entities in the
world, then use that information to predict the time
step for time travel (Figure 3). We introduce the
following three labels for entity location prediction:

1. Noah entered the lounge.
2. Olivia entered the lounge.
3. Logan entered the lounge.
4. Olivia exited the lounge.
5. The spinach is in the blue-crate.
6. Logan exited the lounge.
7. Noah moved the spinach to

the blue-suitcase
8. Where does Logan think that

Noah searches for the spinach?

Table 2: Heuristic Textual Time Travel example of a
second-order false belief story. Time step 6 is the last
time step in which Logan and Noah were at the lounge.

1. UNKNOWN: The location of the entity is not
known at this time. This indicates that either
the entity has not yet been introduced or the
entity has exited their last known location.

2. MAINLOCATION: The entity is introduced
and is present at the main location at this time.

3. ALTERNATELOCATION: The entity has left
the main location and is at a new location.

We augment the ToMi dataset to include ques-
tions about the location of the entities as shown in
Table 3. Specifically, we add “What is the location
of <entity>?” questions and answers to random
time steps at random positions in the training data.

Given a question q about the mental state of
entity A, we generate an auxiliary question, q̃, that
asks “What is the location of A?” at each time step.
Based on the prediction to q̃, we assign a location
label to the entity. Table 4 shows an example of
this process, tracking the location label of the entity
Abigail from UNKNOWN to MAINLOCATION (i.e.,
the porch), then later to ALTERNATELOCATION

(i.e., the hall).
Then, we generate an attention distribution aq

based on the location label of the entity. Using
the attention aq, the model attempts to return to
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Figure 3: Learned Textual Time Travel model architecture

the time step t at which the entity exits the loca-
tion containing the object, and retrieves the stored
memory m(t)

j and the corresponding value h(t)j to
generate the final output using the output module.

1. Jacob entered the patio.
2. Jayden entered the patio.
3. Isabella entered the patio.
4. The pumpkin is in the red-box.
5. Jayden moved the pumpkin to the

red-container.
6. Jacob exited the patio.
7. What is the location of Jacob?

UNKNOWN

8. What is the location of Jayden?
MAINLOCATION(patio)

9. What is the location of Isabella?
MAINLOCATION(patio)

Table 3: The training data is updated with questions
about the locations of the entities. Here, after Jacob
exits the patio, we are not aware of his location, so we
label it as UNKNOWN.

5 Experiments

As described above, to train the Learned Textual
Time Travel model we add “What is the location
of <entity>?” questions at various timesteps of
several stories extracted from the training data. We
then randomly sample 1000 of these stories for the
training dataset. We initialize the PReLU slopes to
1, and initialize all the other weights with values
drawn from a gaussian distribution with mean zero
and standard deviation 0.1. We set the key wj to
the word embeddings of all the named entities in
the dataset, and the memory cell contents h(0)j are
initialised with wj . We remark that initializing wj

with GloVe (Pennington et al., 2014) pre-trained
word embeddings did not improve performance.
We use the Adam optimizer (Kingma and Ba, 2015)
with a batchsize of 32, and clip the gradients at 40.
We start with an initial learning rate of 0.01 and we
halve the learning rate after every 25 epochs. We
train the models on the corrected ToMi dataset for
200 epochs.

5.1 Evaluation measures and baseline
We evaluate our model using the accuracy score.
We report accuracy based on the belief of the enti-
ties in the question (either true belief or false belief)
and on each question category; namely, memory,
reality, first-order and second-order. We evaluated
the same set of models discussed in Nematzadeh
et al. (2018) and Le et al. (2019) on the corrected
ToMi dataset, namely the End-to-End Memory Net-
work (Sukhbaatar et al., 2015), the Multiple Ob-
server Model (Grant et al., 2017), the Recurrent
Entity Network (EntNet) (Henaff et al., 2017), and
the Relation Network (Santoro et al., 2017). We
found that all of these models performed poorly on
the false belief questions of the corrected dataset,
and EntNet performed the best out of these, both
overall and specifically on the false belief tasks.
We therefore chose to compare our results against
EntNet as our baseline.

6 Results

Table 5 shows the performance of (a) EntNet, (b)
the Heuristic Textual Time Travel model, and (c)
the Learned Textual Time Travel model. In terms
of overall accuracy, both Textual Time Travel mod-
els outperform the baseline, and this difference is
statistically significant in both cases (p < 10−7,
two-tailed Wilcoxon signed-rank). All three mod-
els achieve perfect accuracy on the memory and
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1. Oliver dislikes the kitchen. What is the location of Abigail? UNKNOWN

2. Carter entered the porch. What is the location of Abigail? UNKNOWN

3. Abigail entered the porch. What is the location of Abigail? MAINLOC(porch)
4. The potato is in the green-suitcase. What is the location of Abigail? MAINLOC(porch)
5. Abigail exited the porch. What is the location of Abigail? UNKNOWN

6. Abigail entered the hall. What is the location of Abigail? ALTLOC(hall)
7. Carter moved the potato to

the green-envelope. What is the location of Abigail? ALTLOC(hall)
8. Oliver entered the hall. What is the location of Abigail? ALTLOC(hall)
9. Where will Abigail look for the potato?

Table 4: Learned Textual time travel: We predict the location of the entity at each time step, ỹ, and visit the time
step where the entity was last at the main location based on the label. Here, the last time Abigail was at the porch
is at time step 5. So, the model predicts the response, y, by attending to M (5).

Model Belief type Row Avg. Memory Reality First-order Second-order

EntNet
Overall 90 100 100 87 84
True Belief 87 - - 92 79
False Belief 83 - - 68 89

Heuristic Textual
Time Travel

Overall 93 100 100 91 87
True Belief 86 - - 91 78
False Belief 94 - - 94 95

Learned Textual
Time Travel

Overall 92 100 100 92 85
True Belief 85 - - 91 75
False Belief 95 - - 98 94

Table 5: Model performance on the corrected ToMi dataset in terms of accuracy (%). The ‘Row Accuracy’ column
reports the row-wise average of the accuracy scores.

reality questions. In particular, the modest decline
in performance on true belief tasks is outweighed
by the pronounced increase on false-belief tasks,
from an average accuracy of 83% for the baseline
to 94% and 95% respectively for the Heuristic and
Learned models. The Learned Time Travel model
outperforms the baseline with a 30% increase in
the accuracy on first-order false belief task.

Note that there are about twice as many true-
belief questions as false-belief ones. This explains
the slight increase in the overall accuracy despite
the large increase in performance on false-belief
questions.

These results validate our hypothesis that build-
ing in assumptions about the evolution of entities’
mental states into a model improves performance
on theory-of-mind questions.

7 Discussion

In this section, we describe an ablation study and
analyze the model by considering its internal mem-
ory gate activations, and by examining its errors.

Model First Second
EntNet 87 84
Memory Updater 86 85

Table 6: Accuracy (%) of the memory updater with-
out textual time travel on first-order and second-order
questions.

7.1 Ablation

In order to demonstrate that the performance gains
of our models are due to the time travel mecha-
nisms and not other model changes, we perform an
ablation study by removing the time travel compo-
nent of our models. This corresponds to the default
model of the Memory Updater in Section 4.2.1. Ta-
ble 6 shows that the first-order and second-order
results of the Memory Updater is comparable to
the EntNet baseline. Both models get an overall
accuracy of 90%, and memory and reality accuracy
of 100%, on the corrected ToMi dataset. This in-
dicates that the textual time travel mechanism is
indeed responsible for the observed improvements
in performance.
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Figure 4: Visualizations of gate activations of various memory cells. Green boxes (dashed lines) indicate correct
activations; red boxes (dotted lines) indicate incorrect ones.

1. Evelyn entered the bathroom. What is the location of spinach? unknown
2. Ella entered the hallway. What is the location of spinach? hallway
3. Avery entered the hallway. What is the location of spinach? hallway
4. Avery hates the strawberry. What is the location of spinach? unknown
5. The spinach is in the red-bucket. What is the location of spinach? unknown
6. Ella exited the hallway. What is the location of spinach? unknown
7. Avery moved the spinach to the suitcase. What is the location of spinach? unknown
1. Evelyn entered the bathroom. Where is the spinach? bathtub
2. Ella entered the hallway. Where is the spinach? bathtub
3. Avery entered the hallway. Where is the spinach? bathtub
4. Avery hates the strawberry. Where is the spinach? bathtub
5. The spinach is in the red-bucket. Where is the spinach? red-bucket
6. Ella exited the hallway. Where is the spinach? red-bucket
7. Avery moved the spinach to the suitcase. Where is the spinach? suitcase

Table 7: Analysis of Learned Textual Time Travel model after replacing “Ella” with “spinach” in the ‘location’
questions.

7.2 Memory activations

Analyzing the gate activations of memory cells in
a story could give us insight as to how the model
is storing information from a story. We would for
example expect that the locations and entities be-
ing mentioned in a sentence would be activated
when processing that sentence. Figure 4 presents
a visualization of the gate activations of memory
cells of the memory updater at each timestep of a
selected story. The X-axis lists the sentences at ev-
ery timestep, and the Y-axis represents the memory
cells and their respective keys. The color intensity
of each shaded cell corresponds to its gate activa-
tion value (darker = higher weight). Observe that
the model correctly activates the gates of the enti-
ties in the sentence as expected (green boxes in Fig-
ure 4). However, the model also activates unrelated
entities (red boxes in Figure 4). We remark that
this provides a potential explanation for the neg-
ative effects observed on introducing distracting
sentences, and that this merits further exploration
in future work.

7.3 Incorrect predictions

Table 7 shows a case where the Learned Textual
Time Travel model makes different predictions
about the location of an object (“spinach”) depend-
ing on how the question is phrased. In particular
the model seems to be tracking the location of the
entity “Ella” rather than the spinach. It appears
that the model has learned a surface-level associ-
ation between the question type “What is the lo-
cation of <entity>?” and the target entity type
being tracked, which is likely a result of how we
train the model. While this issue does not impact
our model’s results on the ToMi dataset, it does
show that these neural models are easily affected
by dataset biases, and care must be taken to en-
sure that they learn associations that are useful for
answering ToM questions in a target test environ-
ment.

7.4 Convoluted examples

For some cases in the dataset, the model must have
additional knowledge to answer the question cor-
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1. Jacob entered the porch.
2. Lucas entered the porch.
3. Hunter entered the office.
4. The eggplant is in the red-suitcase.
5. Lucas exited the porch.
6. Lucas entered the office.
7. Jacob moved the eggplant to

the green-bottle.
8. Where will Lucas look for the eggplant?

Table 8: Some stories require the model to connect
several sentences in order to resolve the entity location
and identify the false belief.

rectly. For example, in Table 8, it is unclear at first
whether the red-suitcase containing the eggplant is
in the office or the porch. Resolving its location
requires the observation that if Jacob moved the
eggplant, then its original container, i.e. the red-
suitcase, should be at the same location as Jacob.
This example, and others like it, are not exclusively
testing the ToM capabilities of the model, as they re-
quire the model to understand spatial relationships,
perform pragmatic reasoning and show common
sense.

8 Conclusion

ToM is an important capability that NLP systems
need to acquire in order to have human-like rea-
soning abilities. Understanding and predicting the
mental states of others will help in comprehending
their intentions and needs, and thereby generate bet-
ter responses in interactive systems like dialogue
agents. In this paper, we attempt to improve the
ToM abilities of memory-augmented neural mod-
els by building priors about the entities’ minds and
performing textual time travel (i.e., retrieving the
metal states of entities from earlier timesteps). We
find that our Heuristic and Learned Textual Time
Travel approaches improve performance, particu-
larly on false belief tasks.

Starting from synthetic datasets like ToMi is nec-
essary because they allow the development and
testing of new techniques in controlled environ-
ments. These datasets act as prerequisites for new
models to pass, and models that fail on these are
unlikely to scale to real world data. In a naturalis-
tic setting like QA and dialogue, it is much harder
to find instances involving false beliefs automati-
cally. More importantly, identifying and control-
ling for confounding variables in naturalistic data

could be more difficult. For example, issues such
as recency or lexical overlap might result in Clever
Hans phenomena as shown for NLI (McCoy et al.,
2019). Demonstrating that our approach works for
ToMi is a first step towards building models with
complete ToM capabilities. Theory of Mind is a
complex problem and we believe that we can make
progress by gradually increasing the complexities
of the ToM tasks in a controlled setting. This work
is a part of a bottom-up process for solving ToM.
To this end, our approach adds the missing piece of
incorporating mental-state tracking along the time
axis. With this prerequisite met and barrier crossed,
we can move towards tackling other challenges in
ToM in the future.
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A The ToMi Dataset (and Fixed Dataset)

We found irregularities in some second-order ques-
tions in the ToMi dataset. Tables 9 and 10 show
examples of these cases.

1. Liam entered the master-bedroom.
2. Chloe entered the master-bedroom.
3. Hunter entered the master-bedroom.
4. Chloe exited the master-bedroom.
5. The pineapple is in the green-cupboard.
6. Liam exited the master-bedroom.
7. Hunter moved the pineapple to

the blue-pantry.
8. Where does Liam think that
Hunter searches for the pineapple?
Given Answer: blue-pantry
Correct Answer: green-cupboard

Table 9: Liam exits the master-bedroom before the
move. He is not aware of the final location of the
pineapple. So, the answer should be green-cupboard.

Several false belief questions were incorrectly
classified as true belief, leading to an unexpectedly
large count for the true belief questions. The code
to generate this dataset maintains an oracle and a
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1. Aria likes the melon.
2. Aria entered the pantry.
3. Oliver entered the pantry.
4. Noah entered the pantry.
5. The melon is in the blue-bathtub.
6. Noah exited the pantry.
7. Oliver exited the pantry.
8. Aria moved the melon to the red-drawer.
9. Noah entered the kitchen.
10. Where does Noah think that
Aria searches for the melon?
Given Answer: red-drawer
Correct Answer: blue-bathtub

Table 10: Noah exits the pantry before Aria moves the
melon. Noah reenters a different location, so, he is still
unaware of the final location of the melon. The answer
should be blue-bathtub.

map of direct and indirect beliefs. In two particular
scenarios, the oracle was not updated to reflect the
entity beliefs:

1. If the agent exits before the move.

2. If the agent enters a different location.

We corrected these instances and re-generated
the dataset with 1000 stories.

The dataset contains templates in English for
each of the “entry”, “exit”, “move” and “noise” ac-
tions. The train, validation and test sets contain
5994 questions each. Table 11 shows the distribu-
tion of the questions.

Belief First-order Second-order
True belief 1571 958
False belief 424 1036

Table 11: Distribution of questions in test dataset.

B Training details

We train our model using a GTX 1080Ti GPU.
Our hyperparameter search includes the following
ranges, which were chosen manually.

• nhop: {1, 3, 5}

• batchsize: {8, 16, 32}

• memslots: {10}

• sdt: {0.01, 0.001}

• runs: {1}

• embedding: {icmul, bow,GloV e}

The training time for EntNet, Heuristic Time
Travel and Learned Time Travel models was about
120 minutes each. The models were trained for 200
epochs each and has 87147 parameters.


