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Abstract

The relationships that exist between entities
can be a reliable indicator for classifying sen-
sitive information, such as commercially sen-
sitive information. For example, the rela-
tion person-IsDirectorOf-company can indi-
cate whether an individual’s salary should
be considered as sensitive personal informa-
tion. Representations of such relations are of-
ten learned using a knowledge graph to pro-
duce embeddings for relation types, gener-
alised across different entity-pairs. However,
a relation type may or may not correspond to a
sensitivity depending on the entities that partic-
ipate to the relation. Therefore, generalised re-
lation embeddings are typically insufficient for
classifying sensitive information. In this work,
we propose a novel method for representing en-
tities and relations within a single embedding
to better capture the relationship between the
entities. Moreover, we show that our proposed
entity-relation-entity embedding approach can
significantly improve (McNemar’s test, p <
0.05) the effectiveness of sensitivity classifi-
cation, compared to classification approaches
that leverage relation embedding approaches
from the literature (0.426 F1 vs 0.413 F1).

1 Introduction

More than a hundred countries have established
Freedom of Information (FOI) regulations that re-
quire public organisations, such as governments, to
release their official documents to the public (Mc-
Donald, 2019), for example the Freedom of Infor-
mation Act 2000 in the UK.1 Such regulations ex-
empt the release of documents that contain sensitive
information, for example personal or confidential
information. Therefore, all government documents
must be sensitivity reviewed to identify any poten-
tially sensitive information before the documents
can be considered for public release.

There is a growing need for automatic sensi-
tivity classification approaches to assist govern-

1https://www.legislation.gov.uk/ukpga/2000/36/contents

ment reviewers to sensitivity review large collec-
tions of digital documents, to comply with FOI
laws (Prime and Russomanno, 2018). However,
automatically classifying FOI sensitivities is a chal-
lenging task (McDonald et al., 2014), since sen-
sitivity is often context-dependent. For example,
information about an employee’s salary details may,
or may not, be sensitive depending on the role of
the employee (e.g., a company director’s salary
may be in the public domain, whereas a regular em-
ployee’s salary is usually considered to be personal
information). Therefore, entities and the relations
between entities can be an important indicator of
sensitive information (Chakaravarthy et al., 2008).

We hypothesise that representing entity-relations
in an embedding space can provide useful infor-
mation for sensitivity classification and, in-turn,
enable a sensitivity classifier to classify context-
dependent sensitivities more effectively.

Studies such as (Rossi et al., 2021) showed that
the relational information between entities in a
knowledge graph can be effectively utilised to
learn entity and relation embeddings. However,
learning separate entity and relation embeddings
may not be the most effective approach for sen-
sitivity classification, since an entity or a relation
alone is not a reliable indicator of sensitivity.
This is illustrated in the example above, where
the mention of a salary is potentially sensitive
depending on whose salary is being discussed.
Therefore, to capture the context of a potentially
sensitive entity-relation, we argue that there is a
need to capture the whole entity-relation-entity
relationship (e.g., person-isDirectorOf -company)
in a single embedding space.

In this work, we propose RelDiff : a novel ap-
proach for generating entity-relation-entity embed-
dings within a single embedding space. RelDiff
adopts two fundamental vector algebraic operators
to transform entity and relation embeddings from
knowledge graphs into entity-relation-entity embed-
dings. We show that the RelDiff embeddings can be
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leveraged to improve the effectiveness of sensitivity
classification. Moreover, we leverage six popular
knowledge graph embedding (KGE) methods from
the literature to compute RelDiff embeddings and
compare the effectiveness of RelDiff against each
of these KGE methods for sensitivity classification.

The contributions in this paper are three-folds:
(1) we evaluate the importance of entity-relation
embeddings for classifying sensitive information;
(2) we propose RelDiff, a novel method to compose
entity-relation-entity embeddings in a single embed-
ding space using simple vector algebraic operations;
and, (3) we show that our proposed RelDiff embed-
ding features are significantly more effective for
classifying sensitive information than knowledge
graph embedding approaches from the literature.

To the best of our knowledge, this is the first
work that effectively leverages entity-relation infor-
mation for sensitivity classification. On a collection
of government documents with real sensitivities
(hereafter denoted as GovSensitivity), we show that
integrating our RelDiff embeddings into sensitivity
classification significantly improves (McNemar’s
test, p < 0.05) classification effectiveness, com-
pared to several approaches from the literature that
learn separate embeddings for entities and relations
- e.g., RotatE (Sun et al., 2019) (F1 0.426 vs 0.413).

2 Related Work

We now discuss related work on sensitivity classifi-
cation and entity-relation representations.

Sensitivity Classification: The automatic clas-
sification of sensitive information, and protecting
against the leakage of sensitive information from
search systems, is an increasingly important topic
that has received a lot of attention recently (Mc-
Donald and Oard, 2021; Olteanu et al., 2019b,a).

The task of automatically classifying FOI sen-
sitivities2 was first addressed by McDonald et al.
(2014). The authors proposed to deploy separate
classifiers with handcrafted features for specific
FOI sensitivities (“Personal Information” and “In-
ternational relations”). Differently from the work
of McDonald et al. (2014), in this paper, we present
a more advanced classifier by leveraging entity-
relation information to classify sensitivities as a
composite class of specific sensitivity types.

AnotherworkbyMcDonaldetal.(2017)evaluated
various features for composite class sensitivity clas-
sification. McDonald et al. (2017) highlighted the
effectiveness of semantic word embedding features

2https://www.legislation.gov.uk/ukpga/2000/36/part/II

and the sequence of document terms for sensitivity
classification. Differently from the work of Mc-
Donald et al. (2017) we leverage entity-relation
embeddings to effectively encode indicators of sen-
sitivity and improve classification effectiveness.

Previous studies have proposed to identify sensi-
tive information using named entities. For example,
Chakaravarthy et al. (2008) used a fixed database
of public entities annotated to show which entities
are sensitive, along with their associated prede-
fined terms, to identify the context of sensitivities
for document sanitisation. In contrast, Abril et al.
(2011) considered all named entities as sensitive
and utilised Named Entity Recognition (NER) to
anonymise sensitive information. However, as de-
scribed in Section 1, to identify context-dependent
sensitivities where a majority of the entities are of-
ten not sensitive, we argue that entities themselves
cannot indicate sensitivities reliably. Therefore, in
this work, we propose an automatic approach to in-
dicate whether the entities in a document constitute
potential sensitive information by leveraging the
relationship information between entities.

Berardi et al. (2015) and McDonald et al. (2020)
have shown that sensitivity classification is indeed
an effective approach for increasing the human effi-
ciency of sensitivity review. Moreover, Sayed and
Oard (2019) showed that increasing the effective-
ness of sensitivity classification can also increase
the retrieval effectiveness of sensitivity-aware IR
systems. Differently from the work of Berardi et al.
(2015); McDonald et al. (2020) and Sayed and
Oard (2019), in this work, we further improve the
effectiveness of sensitivity classification to better
assist sensitivity reviewers.

Entity-Relation Representations: Various pre-
vious studies (Rossi et al., 2021; Ji et al., 2021)
showed that knowledge graphs could be utilised to
learn the representation of relationships between
entities in an embedding space. We now provide
a brief background of three popular categories of
such knowledge graph embedding (KGE) methods
as described by Rossi et al. (2021):

• Geometry-Based methods: they aim to model
relationships as vector geometric operations such
as translations (TransE - Bordes et al., 2013) or
rotations (RotatE - Sun et al., 2019; HAKE -
Zhang et al., 2020) in an embedding space. These
methods work on the principle that if a relation
r exists between the head and tail entities (h,t),
then the vector for t should be similar to a vector
obtained by operating h with r.
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(a) Computation of RelDiff vector ~vrht using KGE
relation vector ~vr and entity vectors ~vh & ~vt.

(b) RelDiff forms clusters of embeddings around the cor-
responding knowledge graph relation embedding.

Figure 1: Illustration of RelDiff Embeddings in 2d vector space.

• Tensor Factorisation-Based methods: these
methods including RESCAL (Nickel et al., 2011)
and TuckER (Balazevic et al., 2019) learn the
relation representation by transforming all the
h-r-t triples in a 3-dimensional binary tensor X ,
and then decompose the tensor X to compute the
vectors of entities and relations.
• Neural Network-Based: these methods are be-
coming increasingly popular to represent knowl-
edge graphs in a continuous neural features space.
A number of methods have been proposed for learn-
ing relation representations by leveraging neural ar-
chitectures such as methods based on Convolution
Neural Networks (CNN) (ConvE - Dettmers et al.,
2018; InteractE - Vashishth et al., 2020) and Graph
Neural Networks (GNN) (R-GCN - Schlichtkrull
et al., 2018; SACN - Shang et al., 2019) .

We evaluate recent state-of-the-art (SOTA)
KGE methods from each of the above categories
for sensitivity classification, namely: HAKE
(Geometric), TuckER (Factorisation), InteractE
(Neural CNN) and SACN (Neural GNN). In
addition, we also evaluate the widely used TransE
and RotatE methods. We provide further details
of these methods in Section 3.2.

3 Entity-Relation Embeddings

In this section, we first present our proposed RelD-
iff approach for generating entity-relation-entity
embeddings in Section 3.1. Second, in Section 3.2
we present knowledge graph embedding (KGE)
approaches that we use as baselines for the
evaluation of RelDiff.

3.1 Proposed Approach: RelDiff

Our proposed RelDiff approach generates entity-
relation-entity embeddings in a single embedding
space. Therefore, our approach can encode finer-

grained information about the relations than is cap-
tured when separate embeddings are learned for
the entities and the relations, as is the case for the
KGE approaches that we present in Section 3.2.

To construct our entity-relation-entity embed-
dings, we leverage two well-known vector alge-
braic operators for composing relational represen-
tations. First, we leverage the element-wise sub-
traction of a vector ~vb from another vector ~va in an
m-dimensional vector space Rm, defined as:

~vd = ~va − ~vb (1)

The resultant vector represents the direction from
the vector ~vb to the vector ~va. Second, we leverage
the element-wise multiplication (Hadamard prod-
uct) of two vectors. Hadamard product has the
effect of filtering and scaling shared features be-
tween two vectors and therefore can represent the
mutual semantic composition between linguistic
features such as words or sentences (Mitchell and
Lapata, 2008) The Hadamard product (�) between
two vectors is defined as:

~vp = ~va � ~vb (2)

Our RelDiff method integrates the Subtraction
and Multiplication operators using three vectors:
(1) Head entity vector (~vh), (2) Tail entity vector
(~vt) and (3) Relation vector (~vr). We use the rela-
tion and entity vectors from the KGE approaches,
presented in Section 3.2. In particular, we first
perform Hadamard product (Equation 2) on ~vh
& ~vt to obtain the semantic composition of the
entity-pair. Due to the scaling effect, Hadamard
product between the vectors of two entities can
amplify the features that represent the relationship
between the entities. For example, in the relation
UK-countryCaptial-London, the Hadamard
product of the embeddings for “UK” and “London”
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can amplify the embedding dimensions that encode
their geographical information. We then subtract
the Hadamard entity-pair vector ~vh � ~vt from the
relation vector ~vr using Equation 1 to compute the
direction from the entity-pair vector to ~vr.

Different KGE models can represent entities
and relations either in the same embedding space
(e.g. TransE) or in separate embedding spaces (e.g.
HAKE). However, to identify the direction from
the entity-pair vector to the relation vector ~vr, the
entity-pair vector and ~vr are required in the same
vector subspace. Therefore, before the subtraction
operation, we project the entity-pair vector onto the
relation embedding space S to effectively capture
the direction from the entity-pair to the relation
vector. To perform these projections, we prepare
a projection matrix PR for the relation embedding
space S in three steps: (1) Find the basis vectors
for S by performing Singular Value Decomposition
on the relation embedding vectors. (2) Construct
matrix A consisting of the basis vectors as columns.
(3) Construct PR using the following definition of
the orthogonal projection matrix:

PR = A.(At.A)−1.At (3)

where At is the transpose of A. To project the entity-
pair vector onto S we perform a dot product of PR

with the entity-pair vector. During evaluations, we
also found that it is beneficial to normalise the
projected entity-pair vector with its L2 norm. The
RelDiff operation to produce a vector ~vrht of a
relation r corresponding to the entities (h & t) is
illustrated in Figure 1(a), and is defined as follows:

~vrht = ~vr−~u/||~u||2, where ~u = PR.(~vh�~vt) (4)

Intuitively, the RelDiff operation can be explained
as obtaining a vector pointing in the direction of
the relation vector from another vector that is the
semantic composition of the pair of related entities.

Figure 1(b) illustrates the RelDiff embeddings
(denoted as5) along with the relation embeddings
that are produced by the KGE approaches (denoted
as ?) in a 2-dimensional vector space. As shown in
Figure 1(b), RelDiff clusters embeddings that share
the same relation, but that have different related
entities (the KGE relation embedding is the cluster
centroid). Moreover, the similarity of the RelDiff
embeddings for a particular type of relation is not
affected by the low lexical similarity of the indi-
vidual entities (Rogers et al., 2017) - i.e. “Stephen
Harper” may not be similar to “Tony Blair”.
We expect this finer-grained representation of

entity-relations to be beneficial for sensitivity clas-
sification, since the relation alone is not informative
enough to be a reliable indicator of sensitivity.

3.2 Knowledge Graph Embeddings

As discussed in Section 2, a range of methods ex-
ist in the literature to learn embeddings of entities
and relations that appear in a knowledge graph.
The general idea behind learning entity-relation
embeddings in such knowledge graph embedding
methods (KGE) is as follows: given a relation r
and its head-tail entities (h, t), optimise a scoring
function fr(h, t). This function fr can represent ei-
ther or both of the following: (1) Distance between
relational transformations of entities in a vector
space (e.g. in the Geometric-Based methods). (2)
Semantic similarity between entity-relation pairs
(e.g. in the Neural Network-Based methods). We
compare our proposed RelDiff approach against
the following six KGE methods from the literature:
• TransE (Bordes et al., 2013) models a relation r
as a translation in a vector space from head entity h
to tail entity t, and optimises the distance between
the translation vector (h+ r) and t.
• RotatE (Sun et al., 2019) extends TransE by
leveraging a complex-vector space to model the
relations as rotations from h to t.
• HAKE (Zhang et al., 2020) further extends
RotatE by capturing a semantic hierarchy between
the entities in a relation. For example, in the
relation UK-contains-Scotland, “UK” is at a higher
level of hierarchy than “Scotland”.
• TuckER (Balazevic et al., 2019), leverages
the tucker decomposition (Tucker, 1966) to
compute entity and relation embeddings from a 3-
dimensional tensor of the knowledge graph triples.
• InteractE (Vashishth et al., 2020) leverages a
Convolution Neural Network (CNN) to model
entity-relation embeddings by performing
depthwise circular convolutions on different
permutations of h and r.
• SACN (Shang et al., 2019) leverages both a CNN
and a weighted Graph Convolution Network in
learning relation embeddings by capturing struc-
tural information in a knowledge graph about the
entity nodes and the strengths of the relation edges.

We deploy our proposed RelDiff approach using
entity-relation embeddings from each of the afore-
mentioned KGE approaches. To ensure a robust
and fair comparison with the KGE approaches, we
evaluate the effectiveness of RelDiff by comparing
it to the following two methods:
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KGRE: First, we use only the relation embeddings
r from KGE as the features for sensitivity classifi-
cation in order to evaluate the impact of generalised
relation representations in identifying sensitivities.
CONCAT: Second, we concatenate the head-tail
entity embeddings with the corresponding relation
embedding, concat(h, r, t), to compare the
entity-relation-entity representations between KGE
and RelDiff.

4 Classification Pipeline

In this section, we present our architecture pipeline
for integrating entity-relation representations into
sensitivity classification. The pipeline, illustrated
in Figure 2, takes two inputs: a knowledge graph
with pre-trained embeddings and the GovSensitiv-
ity collection containing sensitive and non-sensitive
documents. The pipeline has five components: (1)
The Relation Extraction component extracts enti-
ties and relations from the document collection and
prepares a graph from the extracted relations. We
present details about this component in Section 4.1.
(2) The Knowledge Graph Embedding component
deploys the KGE approaches we presented in Sec-
tions 3.2. (3) The Relation Representation compo-
nent deploys the relation representation approaches
that we presented in Sections 3.1 and 3.2 (RelDiff,
KGRE and CONCAT). (4) The Term Features com-
ponent constructs a bag-of-words representation
of the GovSensitivity collection. (5) The Sensitiv-
ity Classification component trains the sensitivity
classifier. We present the details of the Sensitivity
Classification component in Section 4.2.

4.1 Relation Extraction

We leverage a relation extraction method from the
literature (HRL-RE) presented by Takanobu et al.
(2019) to jointly extract entities and relations in our
GovSensitivity collection. HRL-RE is a hierarchi-
cal reinforcement learning method that deploys a
tagging scheme to classify, firstly a relation men-
tion in a text-span and secondly whether a token in
the text-span participates to that relation.

To acquire the entity and relation embeddings for
the GovSensitivity collection, we transform the ex-
tracted entity-relations into a graph structure where
the nodes are the entities and the edges are the
relations between the entities. We use this entity-
relation graph of the GovSensitivity collection to
train the KGE methods described in Section 3.2.

4.2 Sensitivity Classification
We deploy an ensemble classifier for sensitivity
classification that combines two classifiers, i.e., a
classifier that is trained on the bag-of-words docu-
ment representations from the Term Features com-
ponent of our pipeline and a second classifier that
is trained on entity-relation embedding features
(KGRE, CONCAT or RelDiff).

We choose to deploy an ensemble classifier for
two reasons. First, the document features and the
relation features are disjoint, i.e., they are inde-
pendent without any direct correlation between the
elements of each set. Therefore, a single classifier
trained on both feature sets would likely miss spe-
cific statistical properties from each of the feature
sets (Xu et al., 2013). Second, the term distribution-
based document vectors are high dimensional and
sparse, whereas relation embedding-based vectors
are relatively low dimensional and dense. Hence,
training separate classifiers can more effectively
capture the specific characteristics of the individual
feature sets (Sun, 2013).

For our ensemble approach, as shown in Figure 2,
we deploy a stacking ensemble (Wolpert, 1992) with
two classifiers ETxt & ERel that are trained using
document term features and relation embedding
features, respectively. To combine the classifiers’
outputs, we normalise the confidence scores from
ETxt & ERel using L2 norm, and concatenate the
normalised scores STxt & SRel as two features to train
a meta-classifier EM for sensitivity classification.

In ERel, we construct the document representa-
tion for a given document d by aggregating the
entity-relation-entity embeddings (or relation em-
beddings in KGRE configuration) of all the rela-
tions in d. We utilise the element-wise mean opera-
tion for aggregating the embedding vectors x ∈ Rd

(where Rd is an m-dimensional embedding sub-
space), i.e., the document representation for the ith

dimension di is defined as:

di = mean
x∈Rd

(xi) ∀ i ∈ [0,m− 1] (5)

5 Experimental Setup

In this work, we address the following two research
questions:
• RQ1: Does integrating knowledge graph em-
beddings into sensitivity classification help to more
effectively classify context-dependent sensitivities?
• RQ2: Are RelDiff entity-relation-entity embed-
dings more effective for sensitivity classification
than learning separate entity & relation embeddings?
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Figure 2: Pipeline for integrating entity-relations into Sensitivity Classification.

Sensitivity Collection: We use a collection of
3801 government documents (GovSensitivity),
as our main dataset for sensitivity classification.
GovSensitivity contains 502 sensitive and 3299
non-sensitive documents that are reviewed by
government sensitivity reviewers to identify two
FOIA sensitivities, i.e., “Personal Information” and
information impacting “International Relations”.
We use stratified sampling to split this collection
into train, validation, and test datasets across
5-folds to perform Cross Validation.

Baselines: In addition to evaluating our pro-
posed RelDiff approach against the KGE ap-
proaches that we presented in Section 3.2 (KGRE &
CONCAT), we also report the effectiveness of two
baseline sensitivity classifiers. First, we report the
effectiveness of an SVM classifier with a linear ker-
nel and the regularisation parameter set as C = 10.
The parameters C represents the strength of L2 reg-
ularisation penalty. This approach, denoted as TC
in Section 6, is trained on TF-IDF n-grams term
features, where we set n <= 4 through grid search
on validation dataset in the range n ∈ [1, 4]. The
second baseline sensitivity classifier that we report
is identical to the TC baseline classifier, except that
this classifier, denoted as TC-Enrich in Section 6, is
trained on an enriched version of the GovSensitiv-
ity collection, where the documents have been en-
riched (Bryl et al., 2010; Pantel and Fuxman, 2011)
by adding a relation token, e.g., “place_of_birth”,
for each of the extracted entity-relations.

Relation Extraction: For relation extrac-
tion, we train the relation extraction model
HRL-RE3 (Takanobu et al., 2019) on NYT10
dataset (Riedel et al., 2010). Before extracting
relations from the GovSensitivity collection, we re-
move the header section of the documents and split
the documents into sentences using the spaCy (Hon-
nibal et al., 2020) language model en_core_web_lg.
HRL-RE extracted 46,610 entity-relation triples,
for 23,609 unique entities and 18 relation types in
the GovSensitivity collection. We transform the
extracted entity-relations into a graph structure
corresponding to each fold of the GovSensitivity

3We use the following implementation for HRL-RE:
https://github.com/truthless11/HRL-RE

Table 1: Number of entities, relations and observed
triples in GovSensitivity compared to Freebase.

Dataset #entities #relations #triples
GovSensitivity 10,495 18 21,632
FB15k-237 14,541 237 310,116

Table 2: Results for link prediction on GovSensitivity.

MRR H@10 MRR H@10
TransE 0.369 0.528 TuckER 0.468 0.535
RotatE 0.436 0.561 InteractE 0.198 0.251
HAKE 0.453 0.553 SACN 0.281 0.426

collection. Table 1 shows the average number of
entities, relations and entity-relation triples across
each fold of the GovSensitivity collection.

Knowledge Graph Embeddings: As shown in
Table 1, the GovSensitivity graph is relatively small
as compared to popular Knowledge Graphs such as
Freebase (Bollacker et al., 2008). Therefore, we de-
ploy a transfer-learning approach to train the KGE
methods TransE, RotatE, HAKE, TuckER, Inter-
actE and SACN. First, we pre-train the aforemen-
tioned KGE methods on the FB15K237 subgraph
of Freebase, each using their publicly available im-
plementations and the best hyperparameters speci-
fied in the respective papers. Second, we train the
pre-trained KGE models separately on each fold of
the GovSensitivity graph. Table 2 presents the link
prediction results on the GovSensitivity collection
graph in terms of Mean Reciprocal Rank (MRR)
and Hits@10 (H@10).

RelDiff Embeddings: For computing the RelD-
iff embeddings, we leverage the entity and relation
embeddings trained on the GovSensitivity Collec-
tion graph from the KGE approaches, TransE, Ro-
tatE, TuckER, InteractE and SACN.

Sensitivity Classification: As we previously
discussed in Section 4.2, we deploy an ensemble
classification approach to integrate entity-relation
embeddings into sensitivity classification. For the
ensemble classifier, as illustrated in Figure 2, we
deploy ETxt as the baseline text classifier (TC),
ERel as an SVM classifier with a linear kernel and
the meta-classifier EM as a Logistic Regression
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Table 3: The evaluated configurations for sensitivity
classification. (m ∈ {TransE, RotatE, HAKE, TuckER,
InteractE, SACN})

Identifier Description
TC Baseline SVM text classifier with

bag-of-words (BoW) term features.
TC-Enrich SVM text classifier comprising

BoW from enriched documents.
KGREm Ensemble classifier (EC) with BoW

& relation embeddings from m.
CONCATm EC with BoW & concatenated

entity-relation embeddings from m.
RelDiffm EC with BoW & RelDiff entity-

relation embeddings from m.

classifier. The regularisation parameter for both
ERel and EM is set using grid search on a validation
dataset in the range C ∈ {10x ∀ x ∈ [−5, 4]}.

To test for statistical significance, we use McNe-
mar’s non-parametric test (McNemar, 1947) with a
significance threshold p < 0.05.

6 Results

In this section, we present the results of our sensitiv-
ity classification experiments. Table 3 presents the
evaluated classifiers and the notations that we use
to refer to them hereafter. Table 4 presents the clas-
sification results in terms of precision (prec), recall,
F1 and balanced accuracy (BAC). In Table 4, the
evaluated classifiers under different KGE configu-
rations are shown, e.g., RelDiffTransE represents the
classifier with RelDiff embeddings computed using
the TransE entity-relation embeddings. Addition-
ally in Table 4, significant improvements compared
to the baseline text classifier (TC), the KGRE
and the CONCAT configurations of the ensemble
classifiers are denoted with ∗, † and ‡, respectively.

First, addressing RQ1, we observe from Table 4
that the entity-relation embeddings features in the
KGRE and RelDiff configurations of the ensemble
classifiers significantly improve the effectiveness
of sensitivity classification, compared to the
baseline text classifier TC (p < 0.05, denoted as ∗),
e.g. BAC 0.739 RelDiffRotatE & 0.730 KGRERotatE
vs 0.728 TC. The improvements are significant
consistently across all six configurations (TransE,
RotatE, HAKE, TuckER, InteractE, SACN) for
RelDiff and across four of the KGE configurations
(TransE, RotatE, InteractE, SACN) for KGRE.
Sensitivity classification on documents enriched

Table 4: Results for combinations of KG embeddings
(KGRE/CONCAT) and RelDiff embeddings compared
with a baseline text classification and document enrich-
ment.

Configuration prec recall F1 BAC
TC 0.282 0.745 0.409 0.728
TC-Enrich ∗ 0.280 0.755 0.409 0.730
KGRETransE ∗ 0.287 0.741 0.414 0.730
CONCATTransE 0.232 0.773 0.357 0.692
RelDiffTransE ∗ ‡ 0.287 0.745 0.415 0.732
KGRERotatE ∗ 0.287 0.741 0.413 0.730
CONCATRotatE 0.284 0.745 0.412 0.730
RelDiffRotatE ∗†‡ 0.298 0.745 0.426 0.739
KGREHAKE 0.285 0.743 0.412 0.730
CONCATHAKE 0.285 0.743 0.412 0.730
RelDiffHAKE ∗†‡ 0.290 0.747 0.418 0.735
KGRETuckER 0.285 0.743 0.412 0.730
CONCATTuckER 0.230 0.733 0.350 0.680
RelDiffTuckER ∗ ‡ 0.290 0.749 0.418 0.735
KGREInteractE ∗ 0.284 0.741 0.411 0.728
CONCATInteractE ∗ 0.284 0.741 0.411 0.728
RelDiffInteractE ∗ 0.286 0.745 0.413 0.731
KGRESACN ∗ 0.279 0.755 0.408 0.729
CONCATSACN ∗ 0.279 0.755 0.408 0.729
RelDiffSACN ∗ 0.282 0.763 0.412 0.734

with entity-relation tokens (TC-Enrich) shows a
similar performance (0.730 BAC) to KGRE. How-
ever, RelDiff outperforms TC-Enrich across all
six configurations. Therefore, in response to RQ1,
we conclude that representing entity-relations in
an embedding space does indeed significantly
improve the effectiveness of entity-relations for
sensitivity classification.

To address RQ2, we evaluate the effectiveness
of sensitivity classification when leveraging
the RelDiff entity-relation-entity embeddings
compared to leveraging the entity and relation
embeddings from the KGE approaches (KGRE
& CONCAT). First, we note that the ensemble
classifier with RelDiff embeddings achieves the
best overall sensitivity classification performance
in terms of F1 (0.426) , BAC (0.736) and precision
(0.298) (for the RotatE configuration) and recall
(0.763 for the SACN configuration). Moreover,
RelDiff results in significantly improved sensitivity
classification effectiveness (p < 0.05, denoted as
†) compared with KGRE for two configurations
(RotatE and HAKE) and compared with CONCAT
for four configurations (TransE, RotatE, HAKE
and TuckER) (p < 0.05, denoted as ‡).
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Figure 3: Effect of regularisation in the ensemble meta-classifier on BAC and F1.
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Figure 4: Improvements in F1 and BAC by RelDiffRotatE as compared to the TC baseline with respect to different
relation types.

We also note that, except for the RotatE config-
uration, both the KGRE and CONCAT ensemble
classifiers achieve either a lower precision or re-
call as compared to the TC baseline. Whereas, the
RelDiff ensemble classifiers often outperform TC
across all four metrics, and are still competitive
otherwise. Lastly, we note that the CONCAT en-
semble classifiers show similar performances to
KGRE in most configurations, and achieves lowest
performances for TransE and TuckER configura-
tions. Therefore, in response to RQ2, we conclude
that our proposed RelDiff approach for generating
entity-relation-entity embeddings does indeed lead
to significant improvements in sensitivity classifi-
cation effectiveness as compared to TC, KGRE and
CONCAT. We also conclude that a concatenation
of entity and relation embeddings (CONCAT) does
not provide effective entity-relation-entity embed-
dings for sensitivity classification.

7 Analysis

We now provide an analysis of the findings from
our experiments. We discuss the effect of regulari-
sation in the ensemble classifiers in Section 7.1. In
Section 7.2, we describe the contribution of individ-
ual relation types on the effectiveness of sensitivity
classification. In Section 7.3, we discuss the impor-
tance of the improvements by RelDiff in sensitivity
classification effectiveness for sensitivity review.

7.1 Effect of Regularisation

For ensemble learning classifiers, we provide a
short analysis of the effect of the regularisation
parameter C in the ensemble’s meta-classifier (EM
from Figure 2) on the sensitivity classification
performance. To do this, we keep the regularisation
parameters of the first-layer classifiers (ETxt &
ERel) fixed and plot the overall classification BAC
and F1 for different values of the meta-classifier’s
regularisation parameter C. Figure 3 illustrates
the variation in performances of the RelDiffRotatE
and CONCATRotatE ensemble classifiers as the
regularisation of the meta-classifier is varied.
As we can see from Figure 3, both RelDiff and
CONCAT ensemble classifiers usually perform
better at lower values of C, and the classifiers’
performance gradually degrades for higher values
of C. However, the CONCAT classifier never out-
performs the RelDiff classifier. This observation
provides further evidence to support our answer
to RQ2, namely that RelDiff provides significantly
more effective entity-relation representations than
the KGE approaches for sensitivity classification.

7.2 Contribution of Different Relation Types

It is also useful to analyse the contribution of the
individual relation types on the effectiveness of
sensitivity classification. Figure 4(a) illustrates
the F1/BAC improvements from the RelDiff
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ensemble classifier, compared to the TC baseline,
for documents containing each of the relation types.
Figure 4(b) shows the frequency of documents in
the GovSensitivity collection with respect to the
relations they contain. Overall, we note that not
all relations improve F1 and BAC. For example,
the person-entity-relations place_of_birth and
nationality improve F1 by 4.50% and 4.75%,
respectively in RelDiff as compared to the TC base-
line, whereas the relations us_county/county_seat
and founder/organisation degrade F1 in RelDiff by
2.60% and 3.53%, respectively. Out of a total of
18 relations types, RelDiff improves the F1 metric
for 8 relations (Figure 4(a) Set A), while it obtains
lower F1 scores for 7 relations (Figure 4(a) Set
B). However, from Figure 4(b), we note that the
document frequency for the relations in Set A is
notably higher as compared to the relations in Set
B (e.g. 49.3% for place_of_birth vs 9.85% for
founder/organisation). This comparison of clas-
sification improvements together with document
frequency clearly shows that RelDiff can improve
sensitivity classification for the relation types that
appears more frequently in the GovSensitivity
collection. We also observe that RelDiff improves
the F1 metric for 7 out of 10 person-entity
relations types. This further shows that RelDiff can
effectively identify personal sensitive information.
Overall, the above analysis indicates that various
entity-relation types, and the number of documents
that they appear in, can affect the effectiveness of
sensitivity classifiers that leverage entity-relations.
We will investigate this further as future work.

7.3 Importance to Sensitivity Review

When assisting sensitivity reviewers with sensitiv-
ity classification predictions, there can be a sub-
stantial difference in reviewing speeds for False
Positive (FP) (non-sensitive document predicted as
sensitive) and True Negative (TN) predictions (Mc-
Donald et al., 2020). Compared to the TC baseline,
RelDiffRotateE converts 77 FPs to TNs (8.03%) on
our collection (mean document length=1066.78).
McDonald et al. (2020) reports a 53% increase in
reviewing speeds for TN predictions compared to
FPs (288.13 wpm vs 188.38 wpm). Based on these
reviewing times, the converted documents would
take “4.75 hours” to review using RelDiffRotateE
compared to “7.27 hours” for the TC baseline.
Therefore, the improvements shown by RelDiff
can markedly reduce the amount of time required to

sensitivity review a collection of documents. This
is an important contribution that will assist the gov-
ernments in meeting their legal obligations to pub-
licly release their documents in a timely manner.
Moreover, going forward, as the sizes of the col-
lections that must be sensitivity reviewed increase,
the benefits to governments from these reduced
reviewing times will grow markedly larger.

8 Conclusions

We proposed a method, RelDiff, to represent entity-
relation-entity triples in an embedding space for
automatic sensitivity classification. We compared
the RelDiff embedding features with embeddings
from popular and SOTA knowledge graph meth-
ods (KGE) and term features from documents en-
riched with entity-relations. In general, all relation
representation methods we evaluated, consistently
improved the effectiveness of sensitivity classifi-
cation over baseline text classifiers. However, we
showed that the KGE methods are insufficient to
effectively represent entity-relation information for
sensitivity classification. On the other hand, our
proposed approach RelDiff can leverage these ex-
isting KGE methods to produce an effective entity-
relation representation for sensitivity classification.
From the different configurations of KGE methods,
we found that the RelDiff features can significantly
improve the performance of sensitivity classifica-
tion (0.739 BAC & 0.426 F1, RelDiffRotatE) in com-
parison to a baseline text classifier (0.728 BAC &
0.409 F1) and KGE baselines (0.730 BAC & 0.412
F1, CONCATRotatE), according to the McNemar’s
test, p < 0.05. Moreover, while the overall classifi-
cation performance varies according to the L2 regu-
larisation penalty in an ensemble classifier, the clas-
sifier with the KGE features never outperforms the
classifier with the RelDiff features. Furthermore,
since false positive (FP) predictions can affect the
speed of sensitivity reviewers (McDonald et al.,
2020), RelDiff classifiers can markedly increase
the sensitivity reviewers’ speed due to the notably
lower FPs compared to the text classification base-
line (up to 53% speed gain for 8.03% documents).
We also showed that various relation types, such
as person/place_of_birth and founder/organisation,
have different effects on the classification perfor-
mance. We will investigate this important and in-
teresting research as future work.
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