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Abstract

Visual dialog is a task of answering a sequence
of questions grounded in an image using the
previous dialog history as context. In this pa-
per, we study how to address two fundamen-
tal challenges for this task: (1) reasoning over
underlying semantic structures among dialog
rounds and (2) identifying several appropriate
answers to the given question. To address
these challenges, we propose a Sparse Graph
Learning (SGL) method to formulate visual di-
alog as a graph structure learning task. SGL
infers inherently sparse dialog structures by in-
corporating binary and score edges and lever-
aging a new structural loss function. Next, we
introduce a Knowledge Transfer (KT) method
that extracts the answer predictions from the
teacher model and uses them as pseudo la-
bels. We propose KT to remedy the short-
comings of single ground-truth labels, which
severely limit the ability of a model to ob-
tain multiple reasonable answers. As a result,
our proposed model significantly improves rea-
soning capability compared to baseline meth-
ods and outperforms the state-of-the-art ap-
proaches on the VisDial v1.0 dataset. The
source code is available at https://github.
com/gicheonkang/SGLKT-VisDial.

1 Introduction

Recently, visually-grounded dialogue (Das et al.,
2017; De Vries et al., 2017; Kottur et al., 2019; Kim
et al., 2019) has attracted increasing research inter-
est due to its potential impact on many real-world
applications (e.g., aiding visually impaired user).
Notably, Visual Dialog (VisDial) (Das et al., 2017),
which extends visual question answering (VQA)
(Antol et al., 2015; Kim et al., 2018; Seo et al.,

† corresponding authors.

2021) to multi-round dialog, has been introduced
to the research community, along with a large scale
dataset. Unlike VQA, VisDial is designed to an-
swer a sequence of questions grounded in an image
utilizing a dialog history as context. This task re-
quires a deep understanding of multi-modal inputs
and the temporal nature of a human conversation.
To infer an appropriate answer to the question, a
dialog agent should attend to meaningful context
from the dialog history as well as the given image.

There are two fundamental challenges in VisDial:
(1) reasoning over underlying semantic structures
among a series of utterances (i.e., dialog rounds)
and (2) identifying several appropriate answers to
the given question. Previous approaches have im-
plicitly addressed the first challenge by using the
soft-attention mechanism (Bahdanau et al., 2014).
Typically, the soft-attention mechanism is utilized
to discover semantic relationships between the
given question and previous utterances (i.e., dialog
history) while extracting rich contextual representa-
tions (Gan et al., 2019; Agarwal et al., 2020). Next,
most of the previous work has not explicitly tackled
the second challenge since there are no labels for
prediction of multiple possible answers. For this
reason, they have mostly focused on finding the
single ground-truth answer by leveraging standard
one-hot encoded labels.

We argue that existing approaches in VisDial show
limited reasoning capability due to the way they ap-
proach the task: soft-attention and one-hot encoded
labels. First, soft-attention restricts the ability to
represent various types of semantic relationships in
the dialog. As we illustrate in Figure 1, some ques-
tions in the dialog (Q1-Q4) are semantically de-
pendent on previous utterances, while others (Q6)

https://github.com/gicheonkang/SGLKT-VisDial
https://github.com/gicheonkang/SGLKT-VisDial
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Figure 1: An example from the VisDial dataset. (a): a given image. (b): dialogue regarding the image, including
image caption (C), and each round of dialog (D1-D6). (c) and (d): the semantic structures from our proposed model
and the soft attention-based model, respectively. The left and right column in each figure denote the dialog history
and the current question, respectively. The thicker and darker links indicate the higher semantic dependencies.

are independent, due to an abrupt change in topic.
Furthermore, previous topics could be readdressed
later in the dialog (Q5). However, soft-attention,
which is based on the softmax function, always as-
signs a non-zero weight to all previous utterances,
which results in dense (i.e., fully-connected) rela-
tionships. Moreover, the sum of attention weights
should be one due to the sum-to-1 constraint of the
softmax function. Herein lies the problem: even for
questions that are partly dependent (Q5 in Figure 1)
or independent (Q6 in Figure 1) from the dialog
history, all previous utterances are still considered
and integrated into the contextual representations.
As a consequence, the dialog agent could overly
rely on the dialog history, even when the dialog
history is irrelevant to the given question. Second,
the model that utilizes the one-hot encoded labels
learns to predict the single ground-truth answer
only. However, similar to VQA, the given question
is associated with one or several answers from a set
of candidate answers. Therefore, the one-hot labels
could suppress several plausible answers, assigning
unreasonably low prediction probabilities to them.

In this paper, we propose two methods to rem-
edy the conceptual shortcomings of the current
approaches discussed above. First, we introduce a
Sparse Graph Learning (SGL) method that predicts
sparse structures of the visually-grounded dialog.
In the graph structure, each node corresponds to
a round of the dialog, and edges represent the se-
mantic relationships between the rounds. SGL con-
structs the representations of each node by embed-
ding the given image and each round of dialog in

a joint fashion. SGL then infers two types of edge
weights: binary (i.e., 0 or 1) and score edges. It
ultimately discovers the sparse and weighted struc-
tures (e.g., (c) in Figure 1) by incorporating the
two edge weights. Furthermore, we design a new
structural loss function to encourage SGL to infer
explicit and reliable dialog structures by leveraging
a structural supervision. Next, to identify multiple
possible answers, we treat VisDial as a regression
task that predicts the correctness of each candidate
answer individually, instead of a traditional setting
that estimates the sum-to-1 scores over the candi-
date answers. To this end, we propose a Knowledge
Transfer (KT) method that extracts the soft scores
of each candidate answer from the teacher model
(Qi et al., 2020). The soft scores are used to op-
timize for multiple possible answers. We expect
this work to shed light on the above challenges that
have not been explicitly addressed in visual dialog.

The main contributions of our paper are as fol-
lows. First, we propose a Sparse Graph Learning
(SGL) approach that builds sparse structures of
the visually-grounded dialog. By leveraging a new
structural loss function, SGL learns the semantic re-
lationships among dialog rounds in an explicit way.
Second, we introduce a Knowledge Transfer (KT)
method to encourage the model to find multiple
possible answers to the given question. Third, the
model that utilizes SGL and KT achieves the new
state-of-the-art results on the VisDial v1.0 dataset.
We perform comprehensive analysis to validate the
effectiveness of SGL and KT. Finally, we conduct
a qualitative analysis of each proposed method.
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2 Related Work

Visual Dialog (Das et al., 2017) has been intro-
duced as a temporal extension of VQA (Antol et al.,
2015). In this task, a dialog agent should answer
a sequence of questions by using an image and
the dialog history as a clue. We carefully catego-
rize the previous studies on visual dialog into three
groups: (1) soft attention-based methods that com-
pute the interactions among entities, including an
input image, questions, and dialog history (Gan
et al., 2019; Schwartz et al., 2019; Agarwal et al.,
2020; Murahari et al., 2020; Wang et al., 2020), (2)
a visual coreference resolution method (Seo et al.,
2017; Kottur et al., 2018; Niu et al., 2019; Kang
et al., 2019) that clarifies ambiguous expressions
(e.g., it, them) in the question and links them to the
specific entities in the image, and (3) a structural
inference method (Zheng et al., 2019) that attempts
to discover dialog structures based on graph neural
networks. Our approach belongs to the third group.
Similar to the soft attention-based methods, Zheng
et al. (2019) infer the dense semantic structures
using a softmax function. Moreover, they attempt
to find the structures without any explicit optimiza-
tion for the structural inference. To tackle these
aspects, we propose SGL which explicitly infers
sparse structures with a structural loss function.

Graph Neural Networks (Scarselli et al., 2008)
have sparked a tremendous interest at the intersec-
tion of deep neural networks and structural learn-
ing approaches. Recently, graph learning networks
(GLNs) were proposed by (Pilco and Rivera, 2019;
On et al., 2020), with the goal of reasoning over
underlying structures of input data. GLNs consider
unstructured data and dynamic domains (e.g., time-
varying domain). Our method belongs to the group
of GLNs. CB-GLNs (On et al., 2020) attempt to
discover the compositional structure of long video
data with a graph-cut algorithm (Shi and Malik,
2000). However, SGL is different from previous
studies in that SGL learns to build sparse structures
adaptively, not relying on a predefined algorithm,
and the dataset we use is highly multimodal.

Knowledge Transfer technique has been mainly
explored to compress a large model into a small
model (Buciluǎ et al., 2006; Ba and Caruana, 2014)
without a significant drop in accuracy. The idea
of knowledge transfer was later popularized under
the name of knowledge distillation (KD) (Hinton
et al., 2014). In KD, the knowledge of the large

model (i.e., teacher model) is transferred to the
small model (i.e., student model) as a form of su-
pervision signal. Then, the student model learns to
mimic the behavior of the teacher model by using
the supervision signal and a pre-defined distilla-
tion loss function. Our Knowledge Transfer (KT)
approach shares this same spirit. However, we re-
purpose KT to cast VisDial as a regression of scores
for candidate answers. Accordingly, the soft targets
from the teacher model are utilized as supervision
for the correctness of each candidate answer which
was originally unlabeled.

3 Sparse Graph Learning

The visual dialog task (Das et al., 2017) is de-
fined as follows: given an image I, a caption
c describing the image, a dialog history H =
{ c︸︷︷︸
h0

, (q1, a
gt
1 )︸ ︷︷ ︸

h1

, · · · , (qt−1, agtt−1)︸ ︷︷ ︸
ht−1

}, and a question

qt at current round t, the goal is to find an appro-
priate answer to the question among the N answer
candidates, At =

{
a1t , · · · , aNt

}
.

In our approach, we consider the task as a graph
Gt = (Vt, Et) with t + 1 nodes (i.e., vertices),
where (v0, v1, ..., vt−1) and (vt) correspond to the
node for the previous dialog history and the cur-
rent question, respectively. Each node vi ∈ Vt is
associated with a feature vector xi. The seman-
tic dependencies among the nodes are represented
as weighted edges Et = {(vi, vj) : vi, vj ∈ Vt}.
The goal of our approach is to discover a sparse
and weighted adjacency matrix At ∈ R(t+1)×(t+1)

which represents the semantic dependencies among
dialog rounds.

To implement the pipeline above, we propose a
Sparse Graph Learning (SGL) method that consists
of two modules (see Figure 2): (1) a node em-
bedding module that embeds the visual-linguistic
representations for each round of the dialog and
(2) a sparse graph learning module that estimates a
sparse and weighted structures of the dialog.

3.1 Input Features

Visual Features. In the given image I, we extract
the dv-dimensional visual features of K objects
by employing a pre-trained Faster R-CNN model
(Ren et al., 2015; Anderson et al., 2018). Then, we
project the visual features into dimension dh using
a linear matrix Wf ∈ Rdv×dh , which results in
Mv ∈ RK×dh . We use Mv as visual features.
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Figure 2: An overview of Sparse Graph Learning (SGL) framework. Please see Section 3 for details.

Language Features. In the t-th dialog round, we
first encode the question qt which is a word se-
quence of length L, (w1, ..., wL), by using a LSTM
(Hochreiter and Schmidhuber, 1997). Specifically,
we use all hidden states of the LSTM as the ques-
tion features, which results in Mq

t ∈ RL×dh . Like-
wise, each round of the dialog history {hi}t−1i=0 is
encoded into

{
Mh

i

}t−1
i=0
∈ Rt×L×dh . To reduce

computational complexity, we embed all the an-
swer candidates

{
ait
}N
i=1

with sentence-level fea-
tures by extracting the last hidden states of the
LSTM, which results in Ma

t ∈ RN×dh .

3.2 Node Embedding Module

The node embedding module aims to embed
rich visual-linguistic joint representations for each
round of the dialog. To implement these pro-
cesses, we take inspiration from Modular Co-
Attention Networks (MCAN) (Yu et al., 2019)
which are based on the multi-head attention mecha-
nism (Vaswani et al., 2017). Given the object-level
visual features Mv ∈ RK×dh and the question fea-
tures Mq

t ∈ RL×dh , the node embedding module
fne computes the joint representations xt ∈ R1×dh .

xt = fne(M
v,Mq

t ) (1)

Each round of the dialog history
{
Mh

i

}t−1
i=0

is also
embedded by the module, which results in {xi}t−1i=0.
Consequently, as shown in Figure 2, we obtain
(t+ 1) joint representations including the question
features xt and the dialog features {xi}t−1i=0. We use
these features as the nodes of the graph which can

be represented in matrix-form as X ∈ R(t+1)×dh .
A detailed architecture of the node embedding mod-
ule can be found in the supplementary materials.

3.3 Sparse Graph Learning Module
The sparse graph learning module infers the under-
lying sparse and weighted graph structure among
nodes, where the edge weights are estimated based
on the node features. To make the graph structure
to be sparse, we propose two types of edges on the
graph Gt: binary edges Ebt and score edges Est ,
whose corresponding adjacency matrices are Ab

t

and As
t respectively. To simplify the notation, we

omit the subscript t in the following equations.

Binary Edges. We first define a binary edge be-
tween two nodes vi and vj as a binary random
variable zij ∈ {0, 1}, for all i, j ∈ [0, t] and i < j.
The sparse graph learning module estimates the
likelihood of the binary variables given the node
features, where the probability implies whether the
two nodes are semantically related or not. We re-
gard the binary variable as a two-class categorical
variable and define the probability distribution as:

Ab
ij = zij ∼ Categorical(pij) (2)

pij = softmax
(
Wc(xi ◦ xj)>/τ

)
(3)

where Wc ∈ R2×dh is a learnable parameter,
◦ denotes the hadamard product, and τ is the
softmax temperature. Since zij is discrete and
non-differentiable, we employ a Straight-Through
Gumbel-Softmax estimator (i.e., ST-Gumbel) (Jang
et al., 2017) to ensure end-to-end training. During
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forward propagation, ST-Gumbel makes a discrete
decision by using the Gumbel-Max trick:

zij =

1, if argmax
k∈{0,1}

(
log(pk) + gk

)
= 1

0, otherwise
(4)

where the random variable gk is drawn from a
Gumbel distribution. In the backward pass, ST-
Gumbel utilizes the derivative of the probabilities
by approximating ∇θz ≈ ∇θp, thus enabling the
backpropagation and end-to-end training.

Score Edges. We define score edges to measure
the extent to which two nodes are related, and the
relevance is computed as:

As
ij = (xix

>
j )

2 (5)

Following Yang et al. (2018), we also employ the
squared dot product for stabilized training.

Sparse Weighted Edges. The sparse graph learn-
ing module multiplies the binary edges and score
edges, finally yielding a sparse and weighted adja-
cency matrix as:

Âij = Ab
ijA

s
ij = zij(xix

>
j )

2 (6)

With the above edge weight estimations, this
module is able to model three types of relation-
ships on vi: (1) dense relationships similar to the
previous conventional softmax-based approaches
if
∑

j zij = t (i.e., all entries in zi are one), (2)
sparse relationships if 0 <

∑
j zij < t, and (3) no

relationships if
∑

j zij = 0 (i.e., isolated node).

Message-passing and Update. Based on the
sparse weighted adjacency matrix Â, the sparse
graph learner updates the hidden states of all nodes
through a message-passing framework (Gilmer
et al., 2017). Similar to graph convolutional net-
works (Kipf and Welling, 2017), we simply im-
plement the message-passing layer FM as the nor-
malized weighted sum according to the adjacent
weight, followed by a linear transformation.

M = FM (X, Â) = D̂−1ÂXWm (7)

where Wm ∈ Rdh×dh . Note that D̂ is the degree
matrix of Â. The hidden node features are calcu-
lated via the update layer FU which adds the input

feature and aggregated messages and subsequently
feeds them into a non-linear function fu.

H = FU (X,M) = fu(X+M) (8)

fu is two-layer feed-forward networks with a ReLU
in between. The model can perform multi-step rea-
soning by conducting a set of equations (i.e., Eq.
7 and Eq. 8) multiple times. Finally, SGL returns
the adjacency matrix Â and the hidden node fea-
tures H ∈ R(t+1)×dh . The features for the current
round, H[t, :] = ht, is used to decode answers.
Note that SGL as described above computes all
interactions among t + 1 nodes for every dialog
round, although the edge weights among {xi}t−1i=0

are estimated in the previous dialog round. For the
sake of computational efficiency, we can construct
Ât by combining the adjacency matrix of the pre-
vious round Ât−1 with the edge weights between
xt and {xi}t−1i=0 in the t-th round. This decreases
the computational complexity, from O(t2) to O(t).

3.4 Structural Learning
We introduce a structural loss function Lsgl to
encourage SGL to infer explicit, reliable dialog
structures. Inspired by Coref-NMN (Kottur et al.,
2018) that employs the off-the-shelf neural corefer-
ence resolution tool1 for visual coreference resolu-
tion, we repurpose this tool for structural learning.
Specifically, we automatically obtain the semantic
dependencies between rounds by using the corefer-
ence resolution tool and leverage this information
as structural supervision. The one-valued entries in
the structural supervision indicate that both dialog
rounds include at least one noun phrase or a pro-
noun referring to the same entity. Otherwise, the
entries are filled with a zero-value. SGL minimizes
the distance between the structural supervision CT

and the binary matrix Ab
T ∈ R(T+1)×(T+1) finally

predicted from SGL:

Lsgl = ‖ CT −Ab
T ‖

2

F (9)

where T and ‖ · ‖2F denote the total number of
rounds for each dialog and the squared Frobenius
norm (i.e., element-wise mean squared error), re-
spectively. Here, Lsgl encourages SGL to predict
a reliable dialog structure. Note that SGL uses
the structural supervision only while training, and
infers the dialog structures at test time.

1https://github.com/huggingface/neuralcoref based on the
work (Clark and Manning, 2016).

https://github.com/huggingface/neuralcoref
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4 Knowledge Transfer

The conventional assumption in VisDial is that
there is one correct answer for each question from
a set of candidate answers. Accordingly, the one-
hot encoded single ground-truth label is used as
standard supervision. However, the given question
can indeed be associated with one or several an-
swers. For this reason, a few works (Qi et al., 2020;
Murahari et al., 2020) have applied an additional
fine-tuning strategy on dense labels2 for the valida-
tion split to improve the model’s ability to predict
multiple correct answers. Instead of using the fine-
tuning approach, we propose a Knowledge Transfer
(KT) method to optimize several correct answers
simultaneously in a single training procedure. KT
extracts the soft scores of each candidate answer
from the fine-tuned teacher model, P1+P2 (Qi et al.,
2020), and uses these scores as pseudo labels. We
choose the P1+P2 for their strong performance on
retrieving several appropriate answers for the given
question. Specifically, we combine the dense score
vector ydenset ∈ RN from the teacher model with
the one-hot vector ysparset ∈ RN for the t-th ques-
tion as:

ŷtn = max
n∈{1,...,N}

(
ysparsetn , ydensetn

)
(10)

where N is the number of candidate answers. Note
that ydenset is a sigmoid output of the teacher model.
As a result, ŷtn contains a score of 1.0 for the
ground-truth answer and soft scores ranging from
0 to 1 for the other candidates. Based on the com-
bined labels ŷtn, we cast VisDial as a regression
task that predicts the correctness of each candidate
answer individually. The predicted score vector for
N candidates is computed as:

st = σ
(
Ma

th
>
t

)
(11)

where Ma
t ∈ RN×dh (in Sec. 3.1) and ht ∈ R1×dh

are feature vectors for candidate answers and the
hidden node feature for current round from SGL,
respectively. σ denotes a sigmoid function. Finally,
we design a loss function for KT as:

Lkt = −
T∑
t=1

N∑
n=1

ŷtn ln (stn)−(1− ŷtn) ln (1− stn)

(12)
which is similar to a binary cross-entropy loss ex-
cept that we use a soft target score ŷtn. Lkt and

2The densely annotated relevance scores for all candidate
answers are released in the VisDial v1.0 validation & test split.

the sigmoid activation function allow optimization
for multiple correct answers. We believe KT is an
efficient approach to distill the prior knowledge of
dense labels from the teacher model for the training
split, rather than directly fine-tuning the model on
those dense labels only for validation split.

5 Experiments

5.1 Experimental Setup

Dataset. We benchmark our proposed model on
the VisDial v1.0 dataset (Das et al., 2017). The
VisDial v1.0 dataset contains 1.2M, 20k, and 44k
question-answer pairs as train, validation, and test
splits, respectively. The 123,287 images from
COCO (Lin et al., 2014), 2,064, and 8k images
from Flickr are used to collect the dialog data for
each split, respectively. A list of N =100 answer
candidates accompanies each question-answer pair.

Evaluation. We follow the standard protocol (Das
et al., 2017) for evaluating visual dialog models:
mean reciprocal rank (MRR), recall@k (R@k),
mean rank (Mean), and normalized discounted cu-
mulative gain (NDCG). The first three measure
the performance of retrieving the single ground-
truth answer, while NDCG considers all relevant
answers from the 100-answers list by using the
densely annotated scores. There is a growing con-
sensus among recent works (Kim et al., 2020; Mu-
rahari et al., 2020) that MRR and NDCG are re-
garded as the primary metrics and a balance of the
two is important. For this reason, we additionally
report the average of MRR and NDCG as overall
performance. The overall performance is also used
as a selection criterion of VisDial challenge winner.

5.2 Quantitative Analysis

Compared Methods. We compare our methods
with the state-of-the-art approaches on VisDial
v1.0 dataset, including GNN (Zheng et al., 2019),
CorefNMN (Kottur et al., 2018), RvA (Niu et al.,
2019), Synergistic (Guo et al., 2019), ReDAN (Gan
et al., 2019), DAN (Kang et al., 2019), HACAN
(Yang et al., 2019), FGA (Schwartz et al., 2019),
MCA (Agarwal et al., 2020), P1+P2 (Qi et al.,
2020), VisDial-BERT (Murahari et al., 2020), VD-
BERT (Wang et al., 2020).

Comparison with State-of-the-art. We evaluate
our proposed methods with three different settings:
(1) single model that utilizes the one-hot encoded
labels (i.e., SGL), (2) single model with dense
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Model Overall↑ NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓

GNN 57.10 52.82 61.37 47.33 77.98 87.83 4.57
CorefNMN 58.10 54.70 61.50 47.55 78.10 88.80 4.40
RvA 59.31 55.59 63.03 49.03 80.40 89.83 4.18
Synergistic 59.76 57.32 62.20 47.90 80.43 89.95 4.17
Synergistic‡ 60.65 57.88 63.42 49.30 80.77 90.68 3.97
ReDAN 57.50 61.86 53.13 41.38 66.07 74.50 8.91
ReDAN+‡ 59.10 64.47 53.73 42.45 64.68 75.68 6.63
DAN 60.40 57.59 63.20 49.63 79.75 89.35 4.30
DAN‡ 62.14 59.36 64.92 51.28 81.60 90.88 3.92
HACAN 60.70 57.17 64.22 50.88 80.63 89.45 4.20
FGA 57.90 52.10 63.70 49.58 80.97 88.55 4.51
FGA‡ 60.90 54.50 67.30 53.40 85.28 92.70 3.54
MCA† 55.08 72.47 37.68 20.67 56.67 72.12 8.89
P1+P2† 60.09 71.60 48.58 35.98 62.08 77.23 7.48
P1+P2†‡ 63.32 74.02 52.62 40.03 68.85 79.15 6.76
VisDial-BERT† 62.60 74.47 50.74 37.95 64.13 80.00 6.28
VD-BERT 62.70 59.96 65.44 51.63 82.23 90.68 3.90
VD-BERT† 60.63 74.54 46.72 33.15 61.58 77.15 7.18
VD-BERT†‡ 63.26 75.35 51.17 38.90 62.82 77.98 6.69

SGL 62.13 61.97 62.28 48.15 79.65 89.10 4.34
SGL+KT† 65.31 72.60 58.01 46.20 71.01 83.20 5.85
SGL+KT†‡ 66.03 73.70 58.36 46.63 71.28 84.15 5.57

Table 1: Test-std performance of the discriminative
model on the VisDial v1.0 dataset. ↑ indicates higher is
better. ↓ indicates lower is better. † denotes the use of
dense labels. ‡ denotes ensemble model.

Figure 3: Ablation study
on VisDial v1.0 val split.

Model F1-Score

Edgeless 0.0
Dense 0.246
Sparse-hard 0.279

SGL 0.714
SGL+KT 0.748

Table 3: Graph inference
on VisDial v1.0 val split.

labels (i.e., SGL+KT), and (3) ensemble model
with dense labels (i.e., 5×(SGL+KT)). As shown
in Table 1, (2) and (3) outperform the existing
models on overall performance by 4.68% (65.31 vs.
60.63) and 2.71% (66.03 vs. 63.32), respectively.
The results indicate that our methods show higher
and more balanced performance than all other
methods on NDCG and MRR. The single model
also shows competitive performance compared
with VD-BERT that utilizes BERT (Devlin et al.,
2018) as a backbone. We observe that the use of
dense labels yields huge improvements on NDCG
and counter-effect on other metrics. Specifically,
VD-BERT shows nearly 14% improvements on
NDCG with dense labels (59.96→ 74.54) while
dramatically dropping MRR (65.44 → 46.72).
However, KT still boosts NDCG (61.97→ 72.60),
yet notably with limited MRR drop (62.28 →
58.01). We conjecture that optimizing the loss
on the combined labels (see Sec. 4) mitigates the
counter-effect.

Model Overall NDCG MRR

Edgeless 60.75 61.96 59.54
Dense 61.05 58.85 63.25
Sparse-hard 61.44 59.71 63.16
P1+P2† (teacher model) 61.65 73.42 49.88

SGL w/o RPN 61.56 61.25 61.86
SGL w/o SS 61.66 62.46 60.85
SGL w/o MR 62.11 62.42 61.79
SGL 63.38 63.41 63.34
SGL+KT† 66.82 74.54 59.10

Table 2: Comparison with the baseline models on the
VisDial v1.0 validation split. MR, SS, and RPN denote
the use of multi-step reasoning, structural supervision,
and region proposal network, respectively. † denotes
the use of dense labels.

Comparison with Baselines. We compare our
methods to the baseline models in Table 2. First, we
define three models as baselines for SGL: Edgeless,
Dense, and Sparse-hard. The Dense model utilizes
a soft-attention mechanism, which yields the fully-
connected graph. Contrary to the Dense model, the
Sparse-hard model picks exactly one edge weights
for each node by applying the Gumbel-Softmax
to all nodes in the graph. Note that the structural
supervision is provided in the Sparse-hard model.
Finally, the Edgeless model yields a graph consist-
ing only of isolated nodes. This indicates that the
Edgeless model does not utilize the dialog history
at all. As shown in Table 2, SGL achieves bet-
ter performance than the baseline models on all
metrics. Furthermore, we report the performance
of ablative models: SGL w/o RPN, SGL w/o SS,
and SGL w/o MR. SGL w/o RPN employs Ima-
geNet pre-trained with VGG-16 model (Simonyan
and Zisserman, 2015), and uses the spatial grids
of pool5 feature map as visual features. SGL w/o
SS is the model that does not use the structural
supervision (i.e., Lsgl). SGL w/o MR denotes the
model that uses single-step reasoning in the sparse
graph learning module. We identify that all three
components (i.e., RPN, SS, and MR) in SGL play
a crucial role in boosting the performance. Next,
comparing SGL with SGL+KT, we observe that
KT significantly improves NDCG score from 63.41
to 74.54. It demonstrates that the knowledge of
the teacher model – which helps to find multiple
correct or relevant answers – is successfully trans-
ferred to SGL. In Table 2, SGL+KT even surpasses
the NDCG score of the teacher model, P1+P2, by
1.12%. From this observation, we conjecture that
SGL enriches the distilled knowledge from the
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Figure 4: A visualization of the inferred semantic structures from the validation set. From the left, the given image
and caption, the dialog history, and the structures of ours and baseline. The darker the color, the higher the score.

Figure 5: A visualization of the top five predicted answers from SGL+KT, SGL, and Dense. Note that SGL+KT
utilizes the sigmoid activation function to compute the answer scores while the others use the softmax function.

teacher model, which results in better performance
than the teacher model. Although boosting NDCG
results in decreasing MRR score due to their trade-
off relationship (Murahari et al., 2020; Kim et al.,
2020), the MRR drop of KT is considerably smaller
than other methods.

Reasoning Steps & Attention Heads. Based on
SGL+KT model, we perform ablation experiments
with different number of reasoning steps (1, 2, and
3) in the sparse graph learning module and atten-
tion heads (1, 2, 4, and 8) in the node embedding
module. As shown in Figure 3, the model with
two-step reasoning with two attention heads per-
forms the best among all models in the experiments,
recording 66.82 on overall performance.

Is SGL inferring the right graph? We investi-
gate this question by measuring the agreement be-
tween the binary edges Ab inferred from our model
and the structural supervision C, assuming that
C is the ground-truth graph. We use F1-score as
an evaluation metric. Then, we employ Edgeless,
Dense, and Sparse-hard as baselines. Note that the
Dense model itself is not compatible with the eval-
uation metric since it does not predict the binary

edges. To make it compatible, we create the binary
edges by replacing the top edge weight for each
node with one. The rest are replaced with zero. In
Table 3, SGL and SGL+KT show significantly bet-
ter F1-scores than the baselines. It might indicate
that SGL infers more reliable semantic structures.
Furthermore, comparing SGL with SGL+KT in
Table 3, we observe that KT improves the perfor-
mance of graph inference. It indicates that KT con-
tributes to an accurate inference of sparse graphs.

5.3 Qualitative Results

In Figure 4, we visualize the images, the corre-
sponding dialogs in the validation split, and the
inferred adjacency matrices as well as the ones
from the Dense model as a counter. Compared to
the dense structure in the baseline, the proposed
SGL indeed learns the innate sparse structures, and
the question nodes receive the information from
the other nodes in a selective fashion. For instance,
the questions from Q3 to Q10 have non-zero binary
edges to all previous contexts except D1 and D2,
which do not contain relevant information about
‘the woman’. On the contrary, Q1 and Q2 are not
connected to any other nodes, because they can be
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answered solely without additional context. We
visualize additional examples regarding the graph
inference in the supplementary materials. Next, to
demonstrate the advantages of SGL and KT, we vi-
sualize the top five predicted answers for each ques-
tion from the Dense model, SGL, and SGL+KT in
Figure 5. In the first example, SGL retrieves the
ground-truth answer by not using the dialog his-
tory, while the Dense model provides the wrong
answer – containing the word bear – to the top.
We conjecture that relying on the dialog history –
even when the history is not required – leads to this
phenomenon. In the next example, the answers pre-
dicted by SGL+KT are semantically exchangeable
with each other, whereas the answers from SGL are
not. It shows that the teacher model’s knowledge
enforces the ability to find multiple correct answers
and resultant consistency of answer prediction.

6 Conclusions

We propose SGL and KT to remedy the shortcom-
ings of previous work: soft-attention and one-hot
labels. Experimental results illustrate the effective-
ness of our approach. SGL with KT achieves the
new state-of-the-art performance on the VisDial
v1.0 dataset. We believe that the idea of selectively
paying attention to desired information is widely
applicable to various research fields, and KT can
be generally adopted to improve answer prediction.
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Appendix Overview

The supplementary materials are organized as:

• Sec. A shows a detailed architecture of the
node embedding module.

• Sec. B presents our experiments with a gener-
ative model.

• Sec. C presents implementation details.

• Sec. D shows qualitative examples from SGL.

A Node Embedding Module

Subcomponents. A detailed architecture of the
node embedding module is presented in Figure 6.
The module consists of three subcomponents: self-
attention (i.e., SA), guided-attention (i.e., GA), and
attention flat (i.e., AF). First, SA and GA are based
on the multi-head attention mechanism (i.e., MHA)
(Vaswani et al., 2017). MHA computes h parallel
attention heads and aggregates them with a linear
matrix. Each head corresponds to the output of the
scaled dot-product attention. It is formulated as:

A(Q,K,V) = softmax(
QK>√

d
)V (13)

MHA(Q,K,V) = [head1, ..., headh]W
o (14)

headn = A(QWQ
n ,KWK

n ,VWV
n ) (15)

where WQ
n ,WK

n ,W
V
n are the projection matrices

for the n-th head. WO is the linear matrix. Then,
the residual connection (He et al., 2016), layer nor-
malization (Ba et al., 2016), and the two-layer feed-
forward networks (i.e., FFN) are applied in SA and
GA (see Figure 6). The inputs of SA are from the
same features, while GA takes two groups of input
features – the query and the key-value pairs. Next,
AF performs an attentional reduction to flatten the
inputs to the vector representation. Given the input
matrix X = [x1, · · · , xm] ∈ Rm×dh , AF yields the
vector x̃ ∈ R1×dh as follows:

AF(X) = x̃ =

m∑
i=1

αixi (16)

α = softmax(MLP(X)) (17)

where MLP projects X to m-dimensional vector.
α = [α1, · · · , αm] ∈ Rm are the attention weights.

Overview. First, the object-level visual features
Mv ∈ RK×dh and the question features Mq

t ∈

Figure 6: A detailed architecture of the node embed-
ding module. SA, GA, AF, MHA, and FFN denote self-
attention, guided-attention, attention flat, multi-head at-
tention, and feed-forward networks, respectively.

RL×dh are given to SA, yielding Zv ∈ RK×dh and
Zqt ∈ RL×dh , respectively. Then, GA takes Zv and
Zqt as inputs and computes the pair-wise relation-
ship between the visual features and the linguistic
features. Ẑv ∈ RK×dh is obtained from GA. Fi-
nally, Ẑv and Zqt are passed through to AF(·) and
the two-layer feed-forward networks, resulting in
zv ∈ R1×dh and zqt ∈ R1×dh , respectively. Conse-
quently, the visual-linguistic representation xt ∈
R1×dh is obtained by adding zv and zqt . From this
pipeline, the node embedding module fne embeds
the high-level abstraction of the visual and linguis-
tic inputs in a joint fashion. Note that the module
also embeds each round of the dialog history in the
same way as the question features.

B Generative Model

Overview. The authors of (Das et al., 2017) have
also proposed a generative model which is trained
for generating an answer without access to the an-
swer candidates. Specifically, the generative model
aims to generate the ground-truth answer’s word
sequence auto-regressively via a LSTM:

Lgen = −
T∑
t=1

log p(agtt |ht)

= −
T∑
t=1

L∑
l=1

log p(wl|w<l,ht)

(18)
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Model Overall NDCG MRR

MN (Das et al., 2017) 52.41 56.99 47.83
HCIAE (Lu et al., 2017) 54.39 59.70 49.07
ReDAN (Gan et al., 2019) 55.25 60.47 50.02

SGL 55.30 61.42 49.17
SGL+KT (I = 2) 55.42 63.80 47.03
SGL+KT (I = 3) 56.21 65.74 46.67

Table 4: VisDial v1.0 validation performance of the
generative models.

where ht is the hidden node feature for the current
round from SGL and agtt denotes the ground-truth
answer consisting of L words (w1, ..., wL). T is
the number of rounds for each dialog. We initialize
the hidden states of the LSTM with ht. Then,
the generative model is optimized by minimizing
negative log-likelihood of the ground-truth answer.
In inference time, following Das et al. (2017),
we utilize the log-likelihood scores to determine
the rank of candidate answers for the process of
evaluation.

Generative Model with Knowledge Transfer.
We further apply the Knowledge Transfer (KT)
technique to the generative model. Based on the
combined labels ŷt, which were discussed in Sec. 4,
we extract the top-I answer candidates for the given
question and use them to train the model. Formally,

Lgen, kt = −
T∑
t=1

ŷt log p(Ât|ht)

= −
T∑
t=1

I∑
i=1

ŷti log p(a
i
t|ht)

= −
T∑
t=1

I∑
i=1

ŷti

L∑
l=1

log p(wi,l|wi,<l,ht)

(19)

where Ât =
{
ait
}I
i=1

is a set of selected candidate
answers and ait consists of L words (wi,1, ..., wi,L).
I implies the number of candidate answers that
the generative model can access. Accordingly,
I = 1 is equivalent to the standard generative
model described in Eq. 18 since the ground-truth
answer contains the highest score (i.e., 1.0).
Note that Lgen, kt computes a weighted negative
log-likelihood loss because each selected candidate
answer ait has a different confidence score.

Experimental Results. We report the perfor-
mance of the generative model on the VisDial
v1.0 validation split. As shown in Table 4, SGL
shows slightly better performance than ReDAN
(Gan et al., 2019) on overall performance. Further-
more, we find that only a small subset of the knowl-
edge of the teacher model is also effective for this
generative approach. As observed in the discrimina-
tive model in Sec. 5, the use of teacher knowledge
also leads to huge NDCG improvements and the
counter-effect on other metrics.

C Implementation Details

We use pre-trained Glove (Pennington et al., 2014)
to embed all the language inputs. The maximum
sequence length of the questions, answers, and cap-
tions is 20, 20, and 40, respectively. Based on this
maximum length, each language input is padded
or truncated. We use K = 10 ∼ 100 object-
level visual features for reflecting the complexity
of each image. The dimension of each feature is
dv = 2048 and the number of attention heads in
multi-head attention is h = 2. The dimension of dh
is 512. The total number of rounds for each dialog
T is 10 and the number of candidate answers N is
100. The softmax temperature for computing the
binary edges τ is 0.5. We employ the Adam opti-
mizer (Kingma and Ba, 2014) with initial learning
rate 1 × 10−4. The learning rate is warmed up to
4 × 10−4 until epoch 4 and is halved every three
epochs from 12 to 24 epochs.

D Qualitative Examples

We visualize the inferred graph structures from
our proposed model and the ones from the Dense
model as a comparison. As shown in Figure 7, our
proposed model indeed captures semantic struc-
tures among a series of utterances by selectively
attending to the dialog history. On the other hand,
the Dense model yields fully-connected graphs due
to two constraints of the softmax function: (1) the
softmax function always assigns non-zero values
to all edge weights, and (2) the sum of the edge
weights for each node should be one. However,
SGL can assign zero values to all edge weights if
needed (e.g., Q4 in the first example of Fig. 7). We
believe this ability is crucial to prevent the visual
dialog model from overly relying on the dialog
history.
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Figure 7: The additional examples of the inferred semantic structures from the validation split. From the left, the
given image and caption, the dialog history, and the structures of ours and the baseline. The darker the color, the
higher the score.


