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Abstract

A popular approach to decompose the neu-

ral bases of language consists in correlating,

across individuals, the brain responses to dif-

ferent stimuli (e.g. regular speech versus

scrambled words, sentences, or paragraphs).

Although successful, this ‘model-free’ ap-

proach necessitates the acquisition of a large

and costly set of neuroimaging data. Here, we

show that a model-based approach can reach

equivalent results within subjects exposed to

natural stimuli. We capitalize on the recently-

discovered similarities between deep language

models and the human brain to compute the

mapping between i) the brain responses to reg-

ular speech and ii) the activations of deep lan-

guage models elicited by modified stimuli (e.g.

scrambled words, sentences, or paragraphs).

Our model-based approach successfully repli-

cates the seminal study of (Lerner et al., 2011),

which revealed the hierarchy of language ar-

eas by comparing the functional-magnetic reso-

nance imaging (fMRI) of seven subjects listen-

ing to 7min of both regular and scrambled nar-

ratives. We further extend and precise these re-

sults to the brain signals of 305 individuals lis-

tening to 4.1 hours of narrated stories. Overall,

this study paves the way for efficient and flex-

ible analyses of the brain bases of language.

1 Introduction

One of themost successful paradigms to decompose

the brain bases of language consists in correlating

the brain responses of multiple subjects listening

to the same carefully controlled stimuli (Brennan

et al., 2012; Fedorenko et al., 2016; Blank et al.,

2016; Mollica et al., 2019). In particular, (Lerner

et al., 2011) recorded subjects with functional mag-

netic resonance imaging (fMRI) while they listened

to a story whose (1) sounds (2) words, (3) sentences

or (4) paragraphs were scrambled, as well as (5) to

the regular version of the story (Figure 1A). The

authors then estimated the Inter Subject Correlation

(ISC), i.e., the correlation between i) the brain ac-

tivity of a voxel in response to one scrambling con-

dition and ii) the brain activity of a voxel averaged

across all other subjects, in response to the same

scrambled stimulus (Figure 1B). While successful,

this ‘model-free’ approach is costly: it requires

nsubjects × nconditions acquisitions of brain activity
in response to the same variably scrambled stimuli.

Here, we investigate whether and how a model-

based approach can replicate Lerner et al.’s find-

ings, even if we only have access to the recordings

elicited by the regular story in a single subject. We

further apply the method to extend Lerner et al’s

results to a large dataset of 305 individuals.

2 Methods

First, we formalize the ‘model-free’ and ‘model-

based’ approaches in the context of narrative listen-

ing, and explicit the link between the two.

Definitions Let’s define

• w = (‘Once’, ‘upon’, ... , ‘The’, ‘end.’) the

regular story. Ω the story’s vocabulary.

• w|sound, w|word, w|sent, w|parag the story scram-
bled at the acoustic, word, sentence and para-

graph level, respectively, following the setting

of Lerner et al. (cf. Appendix B for the scram-

bling paradigm).

• : ΩM → RT : the function returning the

brain recordings of length T time samples

(i.e., the number of fMRI pulses) induced by

a sequence ofM words.

• : ΩM → RM×D the function returning the

activations of a deep language model induced

by a sequence ofM words.

• y ∈ RT the brain recordings of one subject

elicited by w, recorded at one voxel. Here,
(w) = y.
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Figure 1: Objective and methods A. In Lerner et al.’s seminal study, each subject is presented successively with

i) a 7min long story (black), ii) the same story after its paragraphs (blue) iii) sentences iv) words (orange) or iv)

acoustics (red) has been scrambled. B. For each condition, subject and voxel, the authors compute the inter-subject

correlation (ISC), i.e the correlation ρ between i) the brain of the current subject y and ii) the average brain signals
of the other subjects ȳ. This method allows to decompose the hierarchy of language processing in the brain, from
the acoustic to the paragraph level. C. We aim to replicate the results of Lerner et al. using only the recordings

induced by the regular story (black). To this aim, we scramble, not the stimulus of the subject, but the inputs of

a deep language model (GPT-2). For each condition (word, sentence or paragraph), we extract the corresponding

activations x∗ averaged overK random scrambles. We then compare the brain signals of the current subject y with
the activations x∗ elicited by the scrambled texts, after a linear transformation fθ that maps x

∗ onto a brain-like

space. Because GPT-2 is not trained to process waveform, we use the phonemes, stresses and tones of the stimulus

instead of x∗ for the acoustic condition.

• y|sound, y|word, y|sent, y|parag the recordings

elicited by the scrambled versions of w.

• ρ : RT × RT → R, Pearson’s correlation

For clarity, we describe below themodel-free and

model-based approaches for the sentence condition.

The same methods can be used for the sound, word

and paragraph conditions.

Model-free analysis Lerner et al. do not have a

model of how the brain should react to sentences.

Instead, they assume that the neural signature of

sentence-level processing corresponds to the brain

response shared across all subjects listening to

scrambled sentences w|sent. They thus compute the
‘ISC score’ for each subject, i.e., the correlation be-

tween i) the brain response to the scrambled story

w|sent of a given subject (y|sent) and ii) the brain
response to the same stimulus averaged across all

other subjects (y|sent):

R = ρ
(
y|sent, y|sent

)
. (1)

This approach boils down to a leave-one-subject-

out cross-validation, using Pearson correlation as

evaluation metric and the average population re-

sponse as estimator.

Model-based analysis Here, we propose a

model-based analysis to circumvent the need for a)

the population average y, b) the scrambled stimuli
w|sent .
To eliminate the need for the population aver-

age, we capitalize on the recent findings that deep

language models tend to linearly predict brain re-

sponses to language (Jain and Huth, 2018; Gau-

thier and Levy, 2019; Toneva and Wehbe, 2019;

Schrimpf et al., 2020; Caucheteux and King, 2020).

We can thus assume that the average brain response

( ) can be well approximated by fθ, a linear func-
tion that maps the deep language model to the brain

response. i.e.,

i) ≈ fθ ◦ .

In practice, the coefficients θ of fθ are estimated
using ridge regression. Finite Impulse Response

functions are employed to allow the activations of

the deep language model of lengthM (number of

words) to map onto the slow and delayed brain

recordings of length T (number of pulses) (cf. Ap-

pendix C).

To eliminate the need for the scrambled stimuli,

we show below that equation (1) can be rewritten

only as a function of w as opposed to w|sent.
First, we separate the representation of the sen-

tence from that of its context. To this end, for each

sentence s of w, we note Ωs the set of sequences

ending with s, and whose preceding context is ran-
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Figure 2: Results. Following Lerner et al’s, a brain region is considered to process ‘acoustic’ level information

if its acoustic score (either brains-to-brain or model-to-brain correlation) is significant (red). It is considered to

process ‘word’-level (yellow) if its word score is significant but not its acoustic one – and similarly for ‘sentence’

(green) and ‘paragraph’ (blue). A. Adapted from (Lerner et al., 2011). Labels are based on the brains-to-brain

correlation scores (Figure 1B) averaged over seven subjects listening to a 7 min story. B. Labels are based on the

model-to-brain scores (Figure 1C), averaged over 75 subjects listening to the same 7 min story. Significance is

inferred using a Wilcoxon test across subjects, corrected with False Discovery Rate (FDR) across the 465 brain

regions in each hemisphere (cf.Appendix D), with a significance threshold of p < 10−3 (cf.Appendix E).C. Same

as B., but on the brain of 305 subjects listening to 4 hours of 15 audio stories (including the 7 min one). Because

of the large number of subjects, the significance threshold is set to p < 10−25.

dom. The representation of s without context, is,
by construction, also the sentence representations

of all sequences w′ ∈ Ωs. Thus, if we denote y
∗
s

this common representation, the brain response of

one subject to a sequence w′ can be modeled as

∀w′ ∈ Ωs, (w′) = y∗s + εw′ , (2)

with εw′ the context-dependent contribution to

(w′). Assuming it is a zero-mean random per-

turbation we have:

Ew′
[

(w′)] = y∗s , (3)

with w′ sampled uniformly in Ωs. Importantly,

we do not assume that words are independent of

their context but that the shufflings defined for each

sentence are independent of one another. This state-

ment is true by construction: shuffled contexts are

realizations of a uniform sampling of permuted

texts. Furthermore, the assumption that activations

of shuffled versions of the same context have a

zero-mean is not critical: assuming a constant mean

would not alter the methods and results, because

the final metrics (Pearson correlation) is invariant

to such constant.

Similarly, we can retrieve x∗s, the context-

independent representation of a particular sequence

s in a deep language model

Ew′
[

(w′)] = x∗s . (4)

In practice, it is approximated with an average over

K i.i.d. samples:

x∗s ≈
1

K

K∑
k=1

(wk) , (5)

where w1, . . . , wK are sentences uniformly sam-

pled in Ωs. Given equations (3), (4) and hypothesis

i).

ȳ∗s = Ew′

[
(w′)

]
= Ew′ [fθ ◦ (w′)]

⇒ ȳ∗s = fθ(x
∗
s) , (6)

with w′ sampled in Ωs.

From now on, we note y∗ (resp. x∗) the context-
free representation of the whole story w extracted

from the brain (resp. network) activations. We

obtain, ȳ∗ = fθ(x
∗).

We now assume that random contexts do not

actually affect the brain response to the current

sentence in each subject at a given voxel, i.e.,

ii) y|sent = y∗|sent = y∗ .

Under this condition and given equation (6),

y|sent = y∗ = fθ(x
∗) ,

and

ρ
(
y|sent, y|sent) = ρ

(
y∗, fθ(x

∗)
)

= ρ
(
y − εw, fθ(x

∗)
)

≈ ρ
(
y, fθ(x

∗)
)
,
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with εw the strictly contextual effects in y (y =
y∗ + εw), independent from x∗ (context-free).

Finally, under the assumptions that i) the deep
neural network approximates the average brain

response and ii) random context is not main-

tained in memory, the brains-to-brain scores R =
ρ
(
y|sent, y|sent

)
are equivalent to themodel-to-brain

scores R = ρ
(
y, fθ(x

∗)
)
.

3 Experiment

To test our model-based approach, we first apply

it to the fMRI responses of 75 subjects listening

to the same 7min story analysed in Lerner et al

(Nastase et al., 2020)1. Thus, for each condition

(word, sentence and paragraph), subject and voxel,

we compute the model-to-brain correlation R =
ρ
(
y, fθ(x

∗)
)
.

The extraction of the fMRI signals y, and the
estimation of the mapping function fθ are standard
and thus detailed in Appendices A and C. To esti-

mate context-free representations, we i) scramble

the stimulus at the word, sentence or paragraph

level, ii) extract the corresponding activations x
from a deep language model, and iii) compute x∗,
as detailed below.

Scrambling the stimulus at the word, sentence

and paragraph level Words and sentences of the

stimulus are delimited using Spacy tokenizer (Hon-

nibal et al., 2020). Note that punctuation marks

are not considered as words (e.g., ‘time.’ forms

one token, not two). We define paragraphs as con-

tiguous chunks of eight sentences. To ‘scramble’

a sequence at the word (resp. sentence, paragraph)

level, we uniformly shuffle the indices of its words

(resp. sentences, paragraphs) and form the new

sequence accordingly.

Extracting deep models’ activations For each

version of the scrambled stimulus, we extract the

activations from GPT-2 ( ), a deep neural lan-

guage model trained to predict a word given its past

context. GPT-2 consists of 12 transformer layers

of dimensionality 768, 8 heads, and has 1.5 billion

parameters in total. We use the model provided

by Huggingface (Wolf et al., 2020), trained on a

dataset of 8 million web pages.

To extract the activations elicited by a sequence

w ofM words from layer l, we proceed as follows:
we tokenize the sequence into sub-words called

1http://datasets.datalad.org/?dir=/labs/
hasson/narratives

“Byte Pair Encoding” (BPE) (Sennrich et al., 2016)

using the GPT-2 tokenizer provided by Hugging-

face. Then, we feed the network with theM ′ BPE
tokens (M ′ ≥ M , up to 256 tokens in memory) and

extract the corresponding activations from layer l,
of shape (M ′ ×D) with D = 758. Then, we sum
the activations over the BPEs of each word to obtain

a vector of size (M ×D).

All our analyses are based on the eighth layer

of GPT-2. We choose GPT-2 because it has been

shown to best encode the brain activity elicited by

language stimuli (Caucheteux et al., 2021; Schrimpf

et al., 2020). We choose its eighth layer because

the intermediate layers of transformers have shown

to encode relevant linguistic features (Jawahar

et al., 2019; Manning et al., 2020) and to better

encode brain activity than input and output layers

(Caucheteux and King, 2020; Toneva and Wehbe,

2019). Our results successfully generalize to two

other architectures as well as to the other interme-

diate layers of GPT-2 (Appendix F).

Computing x∗ for the word, sentence and para-

graph conditions For each of the word, sen-

tence and paragraph conditions, we compute x∗:
a context-free representation of x. In short, x∗ are
the activations of GPT-2, averaged over several

scrambled contexts. For clarity, we focus on the

sentence level to detail the approach.

To build the sentence-level representation x∗ of
the stimulus, we use the approximation introduced

in equation (5). For each sentence s of one story
w, we i) generate K=10 sequences ending with s,
but with scrambled previous context. The scram-

bled context is uniformly sampled from the other

sentences in the same story w. Then, ii) we extract
the K corresponding activations from GPT-2 (as

described in the previous section) and iii) average

the activations across theK samples. GPT-2 acti-

vations are extracted for each word. Thus, for each

of theMs words of sentence s, we obtain a vector
x∗s of shapeMs×D. We concatenate these vectors

to obtain x∗, a sentence-level representation of the
whole story w, of shape M ×D. This method is

adapted from (Caucheteux et al., 2021), in which

we computed the average over GPT-2’s activations

to extract syntactic representations from the input

sequence.

Acoustic features GPT-2 takes words as input

and not sounds. To build x∗ at the acoustic level,
we simply use non-contextual acoustic features:

http://datasets.datalad.org/?dir=/labs/hasson/narratives
http://datasets.datalad.org/?dir=/labs/hasson/narratives
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the word rate (D = 1), phoneme rate (D = 1)
phonemes, stress, and tone (categorical, D = 117).
For the latter, we use the annotations provided the

original Narratives dataset (Nastase et al., 2020).

4 Results

The results are displayed in Figure 2B. The hierar-

chy of temporal receptive fields (TRFs) typically

associated with acoustic, word, sentence and para-

graph processing along the temporo-parietal axis

is remarkably well replicated in both hemispheres

(Figure 2B). Notably, both the model-free and

model-based methods evidence that the precuneus,

the superior frontal gyrus and sulcus are character-

ized by sentence- and paragraph-level TRFs (Figure

2A and B).

Our results differ from Lerner et al.’s in several

ways. First, the acoustic TRFs are slightly more

inferior with the model-based method. Second,

frontal regions are detected to be associated not only

with sentences and paragraphs, but also with words

(consistent with (Huth et al., 2016; Caucheteux

et al., 2021; Goldstein et al., 2021)). Given that

Lerner et al’s dataset is not public, it is difficult to

quantify these differences and determine whether

they reflect an improved sensitivity, or, more sim-

ply, inter-individual differences.

Our model-based method can, in principle, be

applied to any natural stories. To test this predic-

tion, we extend our analyses to 305 subjects listen-

ing to 4.1 hours of fifteen narratives (Figure 2C).

Our model-based approach recovers the hierarchy

of TRFs, and further reveals additional word- and

sentence-level representations in the precuneus and

prefrontal regions.

5 Discussion

Here, we leverage the modeling power of deep lan-

guage models to show that the seminal results of

Lerner et al. can be retrieved without having sub-

jects listening to multiple scrambled stimuli. Criti-

cally, we formalize the assumptions under which

‘model-based’ and ‘model-free’ approaches can be

linked (Lerner et al., 2011).

Our model-based method recovers the hierarchy

of TRFs evidenced by Lerner et al., in the brain of

an unusually large cohort of 305 subjects. Thus,

our study complements the recent work of (Jain

and Huth, 2018; Toneva and Wehbe, 2019; Toneva

et al., 2020) who predict brain responses to speech

from language models input with variably-long con-

texts. Specifically, we show that previous model-

based results unravel the samemechanisms that was

previously identified with model-free approaches.

The replication is not perfect: the acoustic and

word TRFs slightly differ between the two methods.

This may be explained by individual subject’s vari-

ability, which is only captured by the model-based

approach. Further research, using the non-public

data from Lerner et al. should investigate these

remaining differences.

In line with previous work (Brennan, 2016; Bren-

nan and Hale, 2019; Gauthier and Levy, 2019;

Schrimpf et al., 2020), our study demonstrates that

deep neural networks build constructs that predict

brain activity, accurately enough to recover the hi-

erarchy of language processing in the brain. The

success of replication thus reinforces the idea that

naturalistic stimuli and deep neural networks form

a powerful couple to study the neural bases of lan-

guage (Hamilton and Huth, 2020).
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Appendix

To replicate Lerner et al.’s findings, we compute

the model-to-brain correlation (cf. Section 2):

R = ρ
(
y, fθ(x

∗)) ,

for the acoustic, word, sentence and paragraph level

respectively. Here, we provide additional details

on how to extract the brain signals y and estimate

the mapping function fθ in order to reproduce the
experimental setting used in Section 3.

A Brain signals

Functional MRI dataset We use the fMRI

recordings of the Narratives dataset (Nastase et al.,

2020)2, a publicly available dataset gathering the

brain recordings of 305 subjects listening to nar-

ratives. We use the unsmoothed version of the

fMRI recordings, already preprocessed in the orig-

inal dataset. As suggested in the original paper,

we reject subject / narrative pairs because of noisy

recordings, resulting in 617 unique (story, subject)

pairs and 4.1 hours of audio stimulus in total. To

replicate the results of Lerner et al. (2011), we re-

strict the analyses to the 75 subjects listening to the

‘Pieman’ story (7 min long), including the seven

subjects analysed in the original paper (only the data

for non-scrambled stimuli are publicly available).

Then, we extend the analyses to the brain record-

ings of 305 subjects listening to fifteen narratives

(from 3min to 57min), from the same dataset (Nas-

tase et al., 2020). For both analyses, we only have

access and thus use the brain recordings elicited by

regular –i.e non scrambled– version of the stimuli.

B Encoding features

Deep language models’ activations In Sec-

tion 3, we extract the activations of GPT-2 ( ),

a deep neural language model trained to predict

a word given its past context. It consists of 12

transformer layers of dimensionality 768, 8 heads,

and has 1.5 billion parameters in total. We use the

model provided by Huggingface (Wolf et al., 2020),

trained on a dataset of 8 million web pages.

To extract the activations elicited by a sequence

w of M words from a layer l, we proceed as fol-
lows: we tokenize the sequence into sub-words

called “Byte Pair Encoding” (BPE) (Sennrich et al.,

2http://datasets.datalad.org/?dir=/labs/
hasson/narratives

2016) using the GPT-2 tokenizer provided by Hug-

gingface. Then, we feed the network with theM ′

BPE tokens (M ′ ≥ M , up to 256 tokens in mem-

ory) and extract the corresponding activations from

layer l, of shape (M ′ ×D) with D = 758. Then,
we sum the activations over the BPEs of each word

to obtain a vector of size (M ×D).

All our analyses are based on the eighth layer

of GPT-2. We choose GPT-2 because it has been

shown to best encode the brain activity elicited

by language stimuli (Schrimpf et al., 2020). We

choose its eighth layer because the intermediate

layers of transformers have shown to encode rele-

vant linguistic features (Jawahar et al., 2019; Man-

ning et al., 2020) and to better encode brain activity

than input and output layers (Caucheteux and King,

2020; Toneva and Wehbe, 2019).

Scrambling the stimulus at the word, sentence

and paragraph level Words and sentences of the

stimulus are delimited using Spacy tokenizer (Hon-

nibal et al., 2020). Note that punctuation marks

are not considered as words (e.g., ‘time.’ forms

one token, not two). We define paragraphs as con-

tiguous chunks of eight sentences. To ‘scramble’

a sequence at the word (resp. sentence, paragraph)

level, we uniformly shuffle the indices of its words

(resp. sentences, paragraphs) and form the new

sequence accordingly.

Computation of x∗ for the word, sentence and
paragraph conditions In Section 2, we compute

a context-free representation x∗ for the word, sen-
tence and paragraph condition. In short, x∗ are the
activations of GPT-2, averaged over several scram-

bled contexts. For clarity, we focus on the sentence

level to detail the approach. To build the sentence-

level representation x∗ of the stimulus, we use the
approximation introduced in equation (5). For each

sentence s of one story w, we i) generate K=10
sequences ending with s, but with scrambled pre-
vious context. The scrambled context is uniformly

sampled from the other sentences in the same story

w. Then, ii) we extract the K corresponding acti-

vations from GPT-2 (as described in the previous

section) and iii) average the activations across the

K samples. GPT-2 activations are extracted for

each word. Thus, for each of theMs words of sen-

tence s, we obtain a vector x∗s of shapeMs×D. We

concatenate these vectors to obtain x∗, a sentence-
level representation of the whole story w, of shape
M ×D. This method is adapted from (Caucheteux

http://datasets.datalad.org/?dir=/labs/hasson/narratives
http://datasets.datalad.org/?dir=/labs/hasson/narratives
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B. XLNet C. DistilGPT-2A. GPT-2

Parag

Sent

Word

Acoustic

p < 10−25 p < 10−25p < 10−25

Figure 3: Replication to two other architectures. Same as Figure 2.C but using the intermediate layers of XLNet

and Distilgpt2 causal architectures (l = 4 for Distilgpt2, out of 6 layers in total and l = 8 for XLNet, out of 12
layers in total). As in Figure 2.C, the significance threshold is set to p < 10−25.

et al., 2021), in which the authors compute the av-

erage over GPT-2 activations to extract syntactic

representations from the input sequence.

Acoustic features GPT-2 takes words as input

and not sounds. To build x∗ at the acoustic level,
we simply use non-contextual acoustic features:

the word rate (D = 1), phoneme rate (D = 1)
phonemes, stress, and tone (categorical, D = 117).
For the latter, we use the annotations provided the

original Narratives dataset (Nastase et al., 2020).

C Mapping x∗ onto the brain

The linear function fθ maps x
∗ onto y, the fMRI

recordings of one subject at one voxel. Vector y
is of length T , the number of fMRI time samples,

whereas x∗ is of length M , the number of words

(or phonemes for acoustic features) in the story. To

align the two time domains, we apply the function

g : RM×D 7→ RT×5D that i) sums the features x∗

between the successive fMRI time samples, and ii)

uses a Finite-Impulse Response model (FIR) with

five delays. Thus, fθ = f ′
θ ◦ g, with fθ a linear

function whose parameters θ are learned, and g a
temporal alignment function.

To estimate θ, we fit an `2-penalized linear re-
gression to predict y given g(x∗) on a training set
of time samples. θ thus minimizes

argmin
θ′∈Θ

‖ytrain − fθ′ ◦ g(x∗train)‖2 + λ‖θ′‖2 ,

with λ the regularization parameter. We assess the

mapping with a Pearson correlation score evaluated

on the left out times samples:

R = ρ
(
ytest, fθ ◦ g(x∗test)

)
.

In practice, x∗ and g(x∗) are standardized (0-
mean, 1-std) and brain signals y are scaled based

on quantiles using scikit-learn RobustScaler (Pe-

dregosa et al., 2011) with quantile range (.01, .99).
We use the RidgeCV implementation of scikit-learn

with a pool of twenty possible penalization param-

eters between 10−3 and 106. We learn fθ on 90%
of the T time samples, and compute the correlation

scores R on the 10% left out data. We repeat the

procedure on 10 test folds using a cross-validation

setting, following the KFold implementation of

scikit-learn without shuffling. Finally, we aver-

age the R over the 10 folds to obtain one model-

to-brain correlation score per subject, voxel and

feature space x∗.

D Brain parcellation

In Figure 2, we use a subdivision of Destrieux’ atlas

(Destrieux et al., 2010). Regions of more than 200

vertices are split into smaller regions, so that each

region contains at most 200 vertices. Thus, from the

75 regions of Destrieux’ atlas (in each hemisphere),

we obtain a parcellation of 465 brain regions per

hemisphere.

E Significance

In Figure 2, we test whether the model-to-brain

correlations (R) are significantly different from

zero. To this aim, we use a two-sidedWilcoxon test

across subjects (N = 75 in Figure 2B,N = 305 in
Figure 2A), corrected using False Discovery Rate

(FDR) across the 465 region of interests in each

hemisphere.

F Generalization to other transformer

architectures

In Figure 3 (B and C), we replicate our results (Fig-

ure 2.C) on the activations of two other causal trans-

former architectures: XLNet (Yang et al., 2020)
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and Distilgpt2 (Figure 3.C), using the implementa-

tion from Huggingface3.

3https://huggingface.co/


