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Abstract

To reduce a model size but retain perfor-
mance, we often rely on knowledge distillation
(KD) which transfers knowledge from a large
“teacher" model to a smaller “student" model.
However, KD on multimodal datasets such as
vision-language tasks is relatively unexplored,
and digesting multimodal information is chal-
lenging since different modalities present dif-
ferent types of information. In this paper, we
perform a large-scale empirical study to in-
vestigate the importance and effects of each
modality in knowledge distillation. Further-
more, we introduce a multimodal knowledge
distillation framework, modality-specific dis-
tillation (MSD), to transfer knowledge from
a teacher on multimodal tasks by learning the
teacher’s behavior within each modality. The
idea aims at mimicking a teacher’s modality-
specific predictions by introducing auxiliary
loss terms for each modality. Furthermore,
because each modality has different saliency
for predictions, we define saliency scores for
each modality and investigate saliency-based
weighting schemes for the auxiliary losses. We
further study a weight learning approach to
learn the optimal weights on these loss terms.
In our empirical analysis, we examine the
saliency of each modality in KD, demonstrate
the effectiveness of the weighting scheme in
MSD, and show that it achieves better perfor-
mance than KD on four multimodal datasets.

1 Introduction

Recent advances in computer vision and natural
language processing are attributed to deep neural
networks with a large number of layers. Current
state-of-the-art architectures are getting wider and
deeper with billions of parameters, e.g., BERT (De-
vlin et al., 2019) and GPT-3 (Brown et al., 2020).
Such wide and deep models suffer from high com-
putational costs and latencies at inference. To miti-
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Figure 1: Density of model outputs on Hateful-
Memes: given multimodality samples as input (Multi),
given only image modality as input (Image), and given
only text modality as input (Text). KD denotes a stu-
dent model with knowledge distillation and the small
model is a student model without distillation. We ob-
serve that there is still a prediction gap between the
teacher and the student trained by KD. In this paper, we
study saliency explanations for each modality and pro-
pose modality-specific distillation (MSD) to minimize
the gap.

gate the heavy computational cost and the memory
requirement, there have been several attempts to
compress a larger model (a teacher) into a smaller
model (a student) (Ba and Caruana, 2014; Hinton
et al., 2015; Romero et al., 2015; Park et al., 2019;
Müller et al., 2020). Among them, knowledge dis-
tillation (KD) (Hinton et al., 2015) assumes the
knowledge in the teacher as a learned mapping
from inputs to outputs and transfers the knowledge
from a larger model to a smaller model. Recently,
KD has been explored in various studies such as
improving a student model (Hinton et al., 2015;
Park et al., 2019; Romero et al., 2015; Tian et al.,
2020; Müller et al., 2020) and improving a teacher
model itself by self-distillation (Xie et al., 2020;
Kim et al., 2020; Furlanello et al., 2018).

There has been a lot of interest in multimodal
distillation setup such as cross-modal distilla-
tion (Gupta et al., 2016; Tian et al., 2020). Multi-
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modal problems involve relating information from
multiple sources. For example, visual question
answering (VQA) requires answering questions
about an image (Antol et al., 2015; Goyal et al.,
2017; Gurari et al., 2018; Singh et al., 2019) and
models should incorporate information from the
text and image sources to answer the questions.
Multimodal problems are important because many
real-world problems require understanding signals
from different modalities to make accurate predic-
tions; information on the web and social media is
often represented as textual and visual descriptions.
Digesting such multimodal information in an ef-
fective manner is challenging due to their different
types of information on each modality.

In this paper, we offer a large-scale, system-
atic study on the effects of each modality through
saliency explanations in KD. While KD approaches
can be applied to multimodal applications, the stu-
dent and teacher models may significantly differ in
their outputs using each modality as input. We illus-
trate the point in Fig. 1. To minimize the gaps, we
introduce a multimodal KD framework, modality-
specific distillation (MSD), that aims to mimic the
teacher’s modality-specific predictions.

We show that the samples’ modalities have a
different amount of information. Based on this ob-
servation, we improve the knowledge transfer by
splitting the multimodality into separate modalities,
using them as additional inputs, and thus distill-
ing the modality-specific behavior of the teacher.
MSD introduces auxiliary losses per modality to
encourage each modality to be distilled effectively.

To maximize the effect of modality-specific dis-
tillation, we investigate multiple weighting schemes
to balance out the auxiliary losses. One of the
weighting schemes is based on modality saliency
scores that are proxy scores to modality importance.
Furthermore, we leverage a meta-learning method
to introduce weight-learning to automatically learn
optimal weights per sample per modality.

2 Preliminaries

In this section, we define notations and revisit con-
ventional knowledge distillation (KD).

2.1 Problem Definition

Given a trained and frozen teacher model T and a
student model S, the output of our task is a trained
student model. Our goal is to transfer knowledge
from the teacher to the student on multimodal

datasets. We let fT and fS be functions of the
teacher and the student, respectively. t and s refer
to the softmax output of the teacher and the student.
Typically the models are deep neural networks and
the teacher is deeper than the student. The func-
tion f can be defined using the output of the last
layer of the network (e.g., logits). X is a multi-
modal (language-vision) dataset, Xt refers to only
the text modality ofX , Xv refers to only the image
modality of X , and xi is a dataset instance. In this
work, we focus on one text and one image modali-
ties, but it is easy to extend the work to more/other
modalities.

2.2 Conventional Knowledge Distillation
In knowledge distillation (Hinton et al., 2015), a
student is trained to minimize a weighted sum of
two different losses: (a) cross entropy with hard
labels (one-hot encodings on correct labels) using
a standard softmax function, (b) cross entropy with
soft labels (probability distribution of labels) pro-
duced by a teacher with a temperature higher than
1 in the softmax of both models. The temperature
controls the softness of the probability distributions.
Thus, the loss for the student is defined as:

Lstudent = λLCE + (1− λ)LKD, (1)

where LCE is a standard cross-entropy loss on hard
labels, LKD is a distillation loss, which is a cross-
entropy loss on soft labels, and λ ∈ [0, 1] controls
the balance between hard and soft targets.

To be specific, knowledge distillation (Hinton
et al., 2015) minimizes the Kullback-Leibler di-
vergence between soft targets from a teacher and
probabilities from a student. The soft targets (or
soft labels) are defined as softmax on outputs of fT
with temperature τ . The distillation loss is defined
as follows:

LKD = τ2
1

|X|
∑
xi∈X

KL(t(xi; τ), s(xi; τ))), (2)

where t(xi; τ) = σ(fT (xi)
τ ), s(xi; τ) = σ(fS(xi)τ ),

σ is a softmax function. The temperature parame-
ter τ controls the entropy of the output distribution
(higher temperature τ means higher entropy in the
soft labels). Following Hinton et al. (2015), we
scale the loss by τ2 in order to keep gradient mag-
nitudes approximately constant when changing the
temperature. We omit τ for brevity.
Limitations. This KD can be applied to multi-
modal setups and student models in this distillation
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are directly trained to mimic a teacher’s outputs. As
a result, the student and teacher models may signifi-
cantly differ in outputs with a single-modality input,
i.e., modality-specific outputs, which may lead to
inefficient distillation (Fig. 1). To better mimic the
teacher’s behaviors, we introduce a multimodal KD
approach, modality-specific distillation, in the next
section.

3 Analysis Setup

In this section, we introduce a multimodal KD ap-
proach, modality-specific distillation, to understand
the importance of each modality (§3.1), experimen-
tal setup (§3.2), and datasets for the experiments
(§3.3).

3.1 Modality-specific Distillation
The idea of MSD is to feed each modality as a sep-
arate input into a teacher and a student, and trans-
fer the modality-specific knowledge of the teacher
to the student. Specifically, MSD introduces two
loss terms, LtextKD and LimageKD to minimize dif-
ference between probability distributions between
the teacher and the student given each modality (as-
suming text and image as the only two modalities).

LtextKD = τ2
1

|Xt|
∑
xi∈Xt

KL(t(xi), s(xi)). (3)

LimageKD is similarly defined; the input is the image
modality instead.

With above two auxiliary losses, the MSD loss
for the student is defined as follows:

LMSD =
∑
xi∈X

wiLKD(xi)

+
∑
xi∈Xv

wvi LimageKD(xi)+
∑
xi∈Xt

wtiLtextKD(xi),

(4)

where we omit the scaling factor τ2 1
|X| for brevity.

wi, w
t
i , w

v
i ∈ [0, 1] control the balance between

three distillation losses. These weights determine
the importance of each modality and we hypothe-
size that the choice of weighting approaches affects
the student’s performance. We will introduce four
weighting schemes for distillation losses and dis-
cuss each of them in §4.

3.2 Experimental Setup
Through our empirical analysis, we aim to answer
the following questions:

• Q1. How salient is each modality for predic-
tions?

• Q2. Can the saliency explanations aid students?

• Q3. Can we learn a sample weighting strategy to
better aid students?

• Q4. Is the student with the weighting strategies
consistent with the teacher?

• Q5. Can this be applicable to other distillation
methods?

We first define saliency scores for modalities to
investigate how salient each modality is for pre-
dictions. (Q1). Then, we analyze the influence in
downstream task performance brought by differ-
ent weighting schemes for wi, wti , w

v
i ∈ [0, 1] in

MSD (Q2 and Q3). For Q4, we examine the stu-
dent model’s sensitiveness to changes in modalities.
Lastly, we try to understand the effect of MSD in
various distillation approaches (Q5).

To this end, we use Conventional KD (Hinton
et al., 2015) as a base distillation approach for
MSD. In addition, we include several distillation
baselines including Conventional KD (Hinton et al.,
2015), FitNet (Romero et al., 2015), RKD (Park
et al., 2019), and SP (Tung and Mori, 2019) for
comparison. Other distillation approaches are ap-
plicable to MSD and we will discuss the results
using other KD approaches in our experiments.
To perform analysis, we adopt VisualBERT (Li
et al., 2019), a pre-trained multimodal model, as
the teacher model and TinyBERT (Jiao et al., 2020)
as a student model. VisualBERT consists of 12 lay-
ers and a hidden size of 768, and has 109 million
parameters, while TinyBERT consists of 4 layers
and a hidden size of 312, and has 14.5 million pa-
rameters. We use the region features from images
for both the teacher and the student and fine-tune
the student on each dataset. For training the weight
learner we use the datasets’ validation set as meta
data. We find the best hyperparameters on the vali-
dation set.

3.3 Datasets and Evaluation Metrics

To answer the questions, we select four multimodal
datasets: Hateful-Memes (Kiela et al., 2020) MM-
IMDB (Arevalo et al., 2017), Visual Entailment
(SNLI-VE) (Xie et al., 2019; Young et al., 2014),
and VQA2 (Goyal et al., 2017).

The Hateful-Memes dataset consists of 10K mul-
timodal memes. The task is a binary classification
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problem, which is to detect hate speech in multi-
modal memes. We use Accuracy (ACC) and AUC
as evaluation metrics for hateful memes.

The MM-IMDB (Multimodal IMDB) dataset
consists of 26K movie plot outlines and movie
posters. The task involves assigning genres to each
movie from a list of 23 genres. This is a multi-label
prediction problem, i.e., one movie can have multi-
ple genres and we use Macro F1 and Micro F1 as
evaluation metrics following (Arevalo et al., 2017).

The goal of Visual Entailment is to predict
whether a given image semantically entails an input
sentence. Classification accuracy over three classes
(“Entailment", “Neutral" and “Contradiction") is
used to measure model performance. We use accu-
racy as an evaluation metric following (Xie et al.,
2019).

The task of VQA2 is to correctly answer a ques-
tion given an image. VQA2 is built based on the
COCO (Lin et al., 2014) and is split into train (83k
images and 444k questions), validation (41k im-
ages and 214k questions), and test (81k images and
448k questions) sets. Following the experimental
protocol in BUTD (Anderson et al., 2018), we con-
sider it a classification problem and train models to
predict the 3,129 most frequent answers. We test
models on test-dev of the VQA2 dataset.

4 Modality Weighting Methods

For the analysis, we introduce three categories of
weighting schemes for MSD, presented in the or-
der of complexity: a) population-based (§4.1), b)
saliency-based (§4.2) weighting approaches for the
losses, and c) weight-learning approach (§4.3) to
find the optimal weights.

4.1 Population-based Weighting

Population-based weighting is to assign weights
depending on a modality; we give constant weights
(wi, w

v
i , w

t
i) for each loss term in equation (4). This

weighting approach assumes the weights are deter-
mined by the types of modality. Best weights or
coefficients for each loss term are obtained by grid
search on the validation set. However, population-
based weighting is limited because it does not as-
sign finer-grained weights to each data instance;
each data instance might have different optimal
weights for the loss terms. This is what we pursue
next in saliency-based weighting.

4.2 Saliency-based Weighting
While we observe prediction gaps between the
teacher and the student (Fig. 1) on each modal-
ity, it is unclear which modality leads to such gaps
between them and how salient modality is for pre-
dictions. Saliency-based weighting is to give dif-
ferent weights to each loss term depending on a
data sample based on its saliency of each modality.
The assumption is that each data point has differ-
ent optimal weights for knowledge distillation. By
assigning instance-level weights, we expect bet-
ter learning for the student to mimic the teacher’s
modality-specific behavior. As it is not possible to
tune sample weights as separate hyper-parameters,
we instead propose to use simple/intuitive fixed
weighting functions, described as follows. Obvi-
ously, the next step to this approach would be to
learn this weighting function alongside the rest of
the model, i.e. weight learning, which we discuss
further in §4.3.

To better understand how these modalities affect
the predictions, we first define saliency scores for
modalities per sample. Similar to Li et al. (2016),
we erase one of the modalities and measure the
saliency score by computing the difference between
two probabilities. Although the saliency scores can
be defined on all inputs, we limit our analysis to
explanations to different modalities in this work.
Quantifying Saliency of Modality. Given a
teacher model t and a multimodal dataset, we de-
fine a saliency score as follows:

S(m) = δ(t(x), t(x−m)), (5)

where m denotes a modality and x−m denotes an
input after masking out the corresponding modal-
ity input. δ is a function to measure difference
between t(x) and t(x−m). We exploit teacher’s
output to compute saliency scores. We introduce
two saliency-based weighting approaches with dif-
ferent δ functions.
KL divergence-based weighting. In this weight-
ing approach, δ is defined as Kullback–Leibler
(KL) divergence which measures the distance be-
tween two probability distributions. Thus, δ mea-
sures distance between predictions with multi-
modality and predictions by erasing one modality.
Thus, weights for loss terms are defined as wvi =
g(Si,t) and wti = g(Si,v), where g = tanh(·) to
ensure the weights are in the range [0, 1]. In this
strategy, we assign wi = 1 for the loss term for
multimodality. Note that in this strategy we do not
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explicitly use the true labels to decide the distilla-
tion weights, and we use the teacher’s predictions
instead.

Loss-based weighting. Another idea of saliency-
based weighting is to weight terms depending on
how different loss of predictions with one modality
is from loss of predictions with multimodality. We
explicitly use the true labels to measure the loss,
i.e., cross-entropy loss. If the loss of predictions
with one modality is similar to that with multi-
modality, then we consider the modality salient for
predictions. Thus, the weights are defined as

wi : wvi : wti = 1 :
h(t(xi))

h(t(xvi ))
:
h(t(xi))

h(t(xti))
, (6)

where h(x) = −
∑c

j=1 yi,j log x and yi,j ∈ {0, 1}
are the correct targets for the j-th class of the i-th
example. In this case, we also assign weightswi for
multimodality depending on the other two weights.
In order to choose the actual weights, we add a
normalization constraint such that, wi+wvi +wti =
1. It is worth noting that in this weighting scheme,
the actual labels are directly used in deciding the
weights unlike the previous one.

4.3 Weight Learning
Although the aforementioned weighting schemes
are intuitive, there is no reason to believe they are
the optimal way of getting value out of modality-
specific distillation. Moreover, it is not trivial to
get optimal weight functions since it depends on
a dataset. Thus, we propose a weight-learning ap-
proach to find optimal weight functions. Inspired
by (Shu et al., 2019), we design weight learners
to find the optimal coefficients. (wi, w

v
i , w

t
i) is de-

fined as follows:

(wi, w
v
i , w

t
i) = f(t(xi), t(x

v
i ), t(x

t
i); Θ) = w(Θ),

(7)
where Θ defines the parameters for the weight
learner network, a Multi-Layer Perceptron (MLP)
with a sigmoid layer, which approximates a wide
range of functions (Csáji et al., 2001). In general,
the function for defining weights can depend on any
input from the sample; but here we limit ourselves
to the teacher’s predictions.

Weight-Learning Objective. We assume that we
have a small amount of unbiased meta-data set
{x(meta)

i , y
(meta)
i }Mi=1, representing the meta knowl-

edge of ground-truth sample-label distribution,
where M is the number of meta samples and
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Figure 2: Saliency scores in the Hateful-memes and
MM-IMDB test sets. Saliency scores of text modal-
ity are mostly higher than those of image modality in
MM-IMDB while Hateful-Memes does not show such
a global pattern.

M � N . In our setup, we use the validation
set as the meta-data set. The optimal parameter
Θ∗ can be obtained by minimizing the following
cross-entropy loss:

Lmeta(w
∗(Θ))

= − 1

M

M∑
i=1

c∑
j=1

yi,j log(s(xi; w
∗(Θ)), (8)

where w∗ is an optimal student’s parameter, which
is defined as follows:

w∗(Θ) = arg min
w

Lstudent(w,Θ). (9)

w∗ is parameterized by Θ, a weight learner’s pa-
rameter.

The weight learner is optimized for generating
instance weights that minimize the average error
of the student over the meta-data set, while the stu-
dent is trained on the training set with the generated
instance weights from the weight learner. The al-
gorithm for weight learning is described in §A of
appendix.

5 Empirical Analysis

In this section, we revisit and discuss the questions
we raised in §3.2.
Q1. How salient is each modality for predic-
tions? To answer the question, we visualize
saliency scores in the Hateful-Memes, MM-IMDB,
and SNLI-VE datasets in Figs. 2 and 3. We use KL
divergence in Eq. (5). We observe that the MM-
IMDB dataset shows higher saliency scores of text
modality than those of image modality, which im-
plies that text information has important informa-
tion in general. On the other hand, Hateful-Memes
dataset does not show such a global pattern but one
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Table 1: Main Results. Mean results (±std) over five repetitions are reported. MSD outperforms all the KD
approaches. Here, we use MSD on top of conventional KD (Hinton et al., 2015). Also, our weight learning for
weights shows the best performance.

Method
Hateful-Memes MM-IMDB SNLI-VE VQA2 (D)

ACC AUC Macro F1 Micro F1 ACC ACC

Teacher 65.28 71.82 59.92 66.53 77.57 70.91

Small model 60.83 (±0.20) 65.54 (±0.25) 38.78 (±4.03) 58.10 (±1.23) 72.30 (±0.35) 64.20 (±0.56)
Conventional KD (Hinton et al., 2015) 60.84 (±1.50) 66.53 (±0.27) 41.76 (±4.72) 58.96 (±1.62) 72.61 (±0.55) 64.70 (±0.85)
FitNet (Romero et al., 2015) 62.00 (±0.26) 67.13 (±0.51) 46.21 (±2.12) 60.46 (±0.30) 73.06 (±0.50) 68.08 (±1.24)
RKD (Park et al., 2019) 61.43 (±0.40) 67.03 (±0.21) 51.16 (±1.64) 62.52 (±0.70) 73.09 (±0.53) 64.22 (±0.57)
SP (Tung and Mori, 2019) 61.70 (±1.10) 66.11 (±0.45) 49.07 (±0.82) 61.41 (±0.34) 73.00 (±0.98) 64.15 (±0.81)

MSD (Population) 62.15 (±1.71) 67.56 (±1.21) 51.85 (±0.34) 62.13 (±0.19) 73.64 (±0.54) 64.86 (±0.63)
MSD (Saliency, KL div) 62.78 (±1.00) 67.94 (±0.52) 49.20 (±1.27) 61.84 (±0.49) 73.34 (±0.48) 64.93 (±0.48)
MSD (Saliency, Loss) 63.27 (±0.45) 67.72 (±0.82) 51.02 (±0.70) 62.05 (±0.45) 73.52 (±0.54) 64.89 (±0.58)
MSD (Weight learning) 63.86 (±1.28) 68.30 (±0.62) 53.12 (±0.08) 63.00 (±0.09) 73.58 (±0.23) 64.35 (±1.56)
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Figure 3: Saliency scores in the SNLI-VE dev set. We
observe that saliency scores for text modality are corre-
lated with labels. For the "Entailment" label, scores for
text modality are relatively lower, while they are higher
for the "Contradiction" label.

can observe some correlations for individual in-
stances. In Fig. 3, we notice that saliency scores are
correlated with labels in SNLI-VE. For the "Entail-
ment" label, scores for text modality are relatively
lower, while they are higher for the "Contradic-
tion" label, which implies the role of text modality
is vital to predict the "Contradiction" label for the
teacher model.

Q2. Can the saliency scores aid students? Ta-
ble 1 shows our main results on Hateful-Memes,
MM-IMDB, SNLI-VE, and VQA2 datasets. The
small model refers to a student model without
knowledge distillation from the teacher. As is
shown, existing KD approaches improve the stu-
dent model on all datasets. However, the MSD

approaches improve the small model substan-
tially. Among them, saliency-based weighting
outperforms population-based weighting in the
Hateful-Memes dataset. We note that population-
based weighting shows good improvement, which
means weighting based on modality only is still
very effective on multimodal datasets. Also,
population-based weighting outperforms saliency-
based weighting on the MM-IMDB dataset, sug-
gesting all samples are likely to have the same
preference or dependency on each modality of the
dataset. We will discuss results on weight learning
in Q3. Interestingly, FitNet shows the best per-
formance in VQA2. Note that MSD is based on
Conventional KD. We will discuss the results of
MSD based on other KD approaches in Q5.

Q3. Can we learn a sample weighting strategy
to better aid students? We observe that among
weighting strategies, MSD with weight learning
shows the best performance in Hateful-Memes and
MM-IMDB, indicating it finds better weights for
each dataset in Table 1. We also find that MSD
(Weight learning) shows a similar density curve
to the teacher’s as shown in Fig 4, which implies
that it effectively mimics the teacher’s predictions.
However, there is a performance gap between the
teacher model and the student model (KD) in pre-
dicting true labels given a multimodal sample and
each of its individual modalities. For example,
given only image modality as input (the middle
plot in Fig 4), there is a considerable difference
between the teacher and the small model for pre-
dicting benign samples.

In addition, we measure Kullback-Leibler (KL)
divergence between the teacher’s outputs and other
models’ outputs on the MM-IMDB test set in Fig 5.
This is to measure the difference between teacher’s
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Figure 4: Density of model outputs on samples
of label 0 (not hateful) on the test set of Hateful-
Memes: given multimodal samples as input (Multi),
given only image modality as input (Image), and given
only text modality as input (Text). MSD with the
weight-learning approach, minimizes the gap between
the teacher and the student trained by KD.
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IMDB test set between the teacher’s outputs and
other models’ outputs. This is a measure of how the
teacher’s probability distribution is different from other
models’. The lower divergence is, the closer a model is
to the teacher.

probability distribution and others’. The MSD
(learning) approach shows the smallest KL diver-
gence from the teacher which means the student
learned with MSD outputs probability distribution
close to the teacher’s. Notably, MSD (popula-
tion) shows the smaller KL divergence than MSD
(saliency), which validates that one modality is
generally dominant in the MM-IMDB dataset.

Q4. Is the student with the weighting strategies
consistent with the teacher? To showcase that
our approach helps the student model to be more
sensitive to important changes in modalities, we
take examples from the Hateful-Memes test set
and randomly replace one of the modalities with a
modality from another sample. Hateful-Memes is
a multimodal dataset and changing the modalities
might or might not change the final label. In this
case, we do not have the ground truth, but we use
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Figure 6: Teacher-Student consistency ratio. We in-
vestigate the student model’s sensitiveness to changes
in modalities. Higher ratio indicates its sensitiveness is
closer to the teacher’s.

Table 2: Improvement over KD approaches with
MSD. The MSD improves existing KD approaches.

Method
Hateful-Memes MM-IMDB VQA2

ACC AUC Macro F1 Micro F1 ACC

KD (Hinton et al., 2015) 60.84 66.53 41.76 58.96 64.70
+MSD 62.15 67.56 51.85 62.13 64.86

FitNet (Romero et al., 2015) 62.00 67.13 46.21 60.46 68.08
+MSD 62.22 68.91 50.42 61.43 68.17

RKD (Park et al., 2019) 61.43 67.03 51.16 62.52 64.22
+MSD 62.30 66.71 52.56 63.27 64.40

SP (Tung and Mori, 2019) 61.70 66.11 49.07 61.41 64.15
+MSD 62.80 67.30 53.29 63.21 64.28

the teacher’s predicted label on the newly gener-
ated sample as a proxy for ground truth and count
the times that the student/small model is consistent
with the teacher on these generated samples. We de-
fine the ratio of such consistent predictions over the
total generated samples as “Teacher-Student con-
sistency ratio". Note that none of the models have
seen these samples during the training. As it can be
seen from Fig. 6, the MSD approach with weight
learning has a larger “Teacher-Student consistency
ratio" than the small model with and without KD.
This indicates that MSD not only improves the
accuracy but also improves the sensitivity of the
student model to better match the teacher on the
changes in modalities on unseen data. Please refer
to case study in §C of appendix.

Q5. Can this be applicable to other distillation
methods? We present improvements over KD ap-
proaches with/without MSD in Table 2. We choose
the population-based weighting approach in this
experiment. Here, we use MSD on top of each KD
approach. Note that the MSD approach is orthog-
onal to existing KD approaches. The results show
the benefits of the MSD method on top of other
approaches; MSD improves diverse KD methods
on multimodal datasets. Notably, MSD based on
FitNet also improves the accuracy on the VQA2
dataset.
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6 Related Work

Knowledge Distillation. There have been several
studies of transferring knowledge from one model
to another (Ba and Caruana, 2014; Hinton et al.,
2015; Romero et al., 2015; Park et al., 2019; Müller
et al., 2020; Tian et al., 2020; Furlanello et al.,
2018; Kim et al., 2020). Ba and Caruana (Ba and
Caruana, 2014) improve the accuracy of a shal-
low neural network by training it to mimic a deep
neural network by penalizing the difference of log-
its between the two networks. Hinton et al. (Hin-
ton et al., 2015) introduced knowledge distillation
(KD) that trains a student model with the objective
of matching the softmax distribution of a teacher
model at the output layer. Park et al. (Park et al.,
2019) focused on mutual relations of data exam-
ples instead and they proposed relational knowl-
edge distillation. Tian et al. (Tian et al., 2020)
proposed to distill from the penultimate layer using
a contrastive loss for cross-modal transfer. A few
recent papers (Furlanello et al., 2018; Kim et al.,
2020) have shown that distilling a teacher model
into a student model of identical architecture, i.e.,
self-distillation, can improve the student over the
teacher.

Learning for Sample Weighting. Recently, some
methods were proposed to learn an adaptive weight-
ing scheme from data to make the learning more
automatic and reliable including Meta-Weight-
Net (Shu et al., 2019), learning to reweight (Ren
et al., 2018), FWL (Dehghani et al., 2018), Mentor-
Net (Jiang et al., 2018), and learning to teach (Fan
et al., 2018; Wu et al., 2018; Fan et al., 2020).
These approaches were proposed to deal with noisy
and corrupted labels and learn optimal functions
from clean datasets. They are different in that they
adopt different weight functions such as a multi-
layer perceptron (Shu et al., 2019), Bayesian func-
tion approximator (Dehghani et al., 2018), and a
bidirectional LSTM (Jiang et al., 2018); and they
take different inputs such as loss values and sample
features. In our case, we adopt these ideas of meta-
learning, specifically Meta-Weight-Net, and utilize
it in a different context, i.e. multimodal knowledge
distillation.

Bias in Multimodal Datasets. Different multi-
modal datasets were proposed to study whether a
model uses a single modality’s features and the im-
plications for its generalization properties (Agrawal
et al., 2018). Different approaches were proposed

to deal with such problems where the model over-
fits to a single modality. Wang et al. (Wang et al.,
2020) suggest regularizing the overfitting behav-
ior to different modalities. REPAIR (Li and Vas-
concelos, 2019) prevents a model from dataset bi-
ases by re-sampling the training data. Cadene et
al. (Cadène et al., 2019) proposed RUBi that uses a
bias-only branch in addition to a base model during
training to overcome language priors. In our study,
although we do not directly deal with the overfitting
phenomena, we use different weighting schemes
to better transfer the modality-specific information
from the teacher to the student.

7 Conclusion

We studied knowledge distillation on multimodal
datasets; we observed that conventional KD may
lead to inefficient distillation since a student model
does not fully mimic a teacher’s modality-specific
predictions. To better understand knowledge
from a teacher on the multimodal datasets, we
introduced saliency scores for a modality and
modality-specific distillation; the student mim-
ics the teacher’s outputs on each modality based
on saliency scores. Furthermore, we investi-
gated weighting approaches, population-based and
saliency-based weighting schemes, and a weight-
learning approach for weighting the auxiliary
losses to take the importance of each modality into
consideration. We empirically showed that we can
improve the student’s performance with modality-
specific distillation compared to conventional distil-
lation. More importantly, we observe choosing the
right weighting approach boosted the student’s per-
formance. We believe that future work can expand
on our methods, and search the space of weighting
approaches beyond multimodal setups.
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Algorithm 1: Weight-Learning Algorithm
Input: Training data D, Meta-data set D̂, batch size

n,m, learning rates α, β, max iterations T .
1 for t← 0 to T − 1 do
2 {x, y} ← SampleMiniBatch(D,n).
3 {x(meta), y(meta)} ← SampleMiniBatch(D̂,m).
4 ŵ(t)(Θ(t))←

w(t) − α 1
n

∑n
i=1∇wLstudent(w

(t),Θ(t))

5 Θ(t+1) ←
Θ(t) − β 1

m

∑m
i=1∇ΘLmeta(ŵ

(t)(Θ(t)))

6 w(t+1) ←
w(t) − α 1

n

∑n
i=1∇wLstudent(w

(t),Θ(t+1))

7 return Network parameters w(T ),Θ(T )

A Weight Learning Algorithm

Finding the optimal Θ∗ and w∗ requires two nested
loops; one gradient update of a weight learner re-
quires a trained student on the training set. Thus,
we adopt an online strategy following (Shu et al.,
2019), which updates the weight learner with only
one gradient update of the student. Algorithm 1
illustrates its learning process. First, we sample
mini batches from the training and meta-data sets,
respectively (lines 2 and 3). Then, we update the
student’s parameter along the descent direction of
the student’s loss on a mini-batch training data
(line 4). Note that the student’s parameter is param-
eterized by the weight learner’s parameter. With
the updated parameter, the weight leaner can be up-
dated by moving the current parameter Θ(t) along
the objective gradient of equation (8) on a mini-
batch meta data (line 5). After updating the weight-
learner, the student’s parameter can be updated on
a mini-batch training data (line 6).

B Observation of Teacher’s Predictions

Samples from multimodal datasets have different
information on each modality. Fig. 7 shows a
teacher model’s predictions for samples in Hateful-
Memes and MM-IMDB test sets. For each sample,
three probabilities are calculated: 1) predictions of
samples with both of its modalities, 2) predictions
of samples with just its text modality, and 3) pre-
dictions of samples with just its image modality.
As one can see for MM-IMDB there is a strong
correlation between multimodal predictions and
predictions from text modality, indicating the fact
that in MM-IMDB text is a dominant modality. On
the other hand, for Hateful-Memes dataset there
is no such a global pattern but one can observe
some correlations for individual instances. This
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Figure 7: Prediction probabilities of test samples
for different modalities. Black points correspond to
the predictions of samples with both modalities (orig-
inal input), red points do with image modality, and
blue points do with text modality. The samples are
ordered based on their multimodal output probabil-
ities. There is a strong correlation between multi-
modal predictions and predictions from text modality
in MM-IMDB, while there is no such a global pattern
in Hateful-Memes.
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Figure 8: A multimodal violating sample (Left). We
further replaced its image modality with a background
picture that makes it benign and examined models on
both examples (Right).

behavior is actually expected based on the way
Hateful-Memes is built to include unimodal con-
founders (Kiela et al., 2020). Following these ob-
servations we introduce four weighting schemes
for distillation losses and discuss each of them in
§4.

C Case Study

We demonstrate the motivation behind our work
through an example. Fig. 8 shows an example
of a multimodal sample from Hateful Memes test
dataset. The sample is violating based on both
modalities together, and all models correctly pre-
dict that. To further probe the models, we replace
the background image of the sample with a picture
that makes the label benign. On this artificially
generated sample we notice that only the teacher
and MSD model correctly predict benign, while
the other two models make wrong predictions (pre-
sumably by just looking at the text only).
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D Hyperparameters

The teacher model is a VisualBERT (Li et al.,
2019), and the student model is TinyBERT (Jiao
et al., 2020). We used the MMF library and pre-
trained checkpoints from it for VisualBERT1 and
used a pretrained checkpoint in TinyBERT2. Visu-
alBERT consists of 12 layers and a hidden size of
768, and has 109 million number of parameters,
while TinyBERT consists of 4 layers and a hid-
den size of 312, and has 14.5 million number of
parameters. For all experiments, we performed a
grid search to find the best hyperparameters. We
adopt the AdamW optimizer to train networks. We
use a linear learning rate schedule that drops to 0
at the end of training with warmup steps of 10%
maximum iterations.

Hateful-Memes. We performed a grid search over
learning rates (1e-5, 3e-5, 5e-5, 1e-4), and temper-
atures (1, 2, 4, 8), and, batch sizes (10, 20, 30, 40,
50, 60), and the weight learner’s learning rates (1e-
1, 1e-2, 1e-3, 1e-4). We set the maximum number
of iterations to 5000. The balance parameter λ be-
tween cross entropy and distillation is set among
(0.2, 0.4, 0.5, 0.6, 0.8).

MM-IMDB. For MM-IMDB experiments, we fol-
low a similar procedure, a grid search, to the
Hateful-Memes. The batch size is 20, tempera-
ture is 1, and the weight learner’s learning rate is
1e-4. We set the maximum number of iterations to
10000. The balance parameter λ is set to 0.5.

SNLI-VE. For Visual Entailment (SNLI-VE), the
batch size is 64, temperature is 4, the student
model’s learning rate is 1e-4, and the weight
learner’s learning rate is 1e-4. We set the maxi-
mum number of iterations to 60000. The balance
parameter λ is set to 0.6.

VQA2. For VQA2, the batch size is 120, tempera-
ture is 1, the student model’s learning rate is 1e-4,
and the weight learner’s learning rate is 1e-4. We
set the maximum number of iterations to 60000.
The balance parameter λ is set to 0.8.

E Learning Curve

The MSD approaches can also help with training
speed, measured by test metrics over training steps.
Fig 9 shows the evolution of accuracy on the test

1https://mmf.sh
2https://github.com/huawei-noah/

Pretrained-Language-Model/tree/master/
TinyBERT

Table 3: Dataset Statistics.

Stat. \ Data Hateful-
Memes

MM-
IMDB

SNLI-
VE VQA2

Type Binary
Multil-

abel
Multi-
class

Multi-
class

# Classes 2 23 3 3,129

# Examples 10,000 25,959 565,286 1,105,904

# Training 8,500 15,552 529,527 443,757
# Validation 500 2,608 17,858 214,354

# Test 1,000 7,799 17,901 447,793
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Figure 9: Test accuracy of a student on SNLI-
VE during training and comparison between knowl-
edge distillation (KD) and modality-specific distilla-
tion (MSD) with population-based weighting, instance-
wise weighting, and weight learning for weights.

set during training on the SNLI-VE dataset. When
we train the student with MSD, training progresses
faster than KD. Since the teacher provides two addi-
tional probabilities with each modality, the student
learns faster and the final performance is better
than KD. We observe a large performance increase
early in training with the weight-learning approach,
thus leading to the best accuracy. In this case, the
weight learning for sample weighting finds the op-
timal weights for each data instance, so the student
quickly learns from more important modality that
is vital for the predictions.

https://mmf.sh
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT

