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Abstract

Pre-trained language models have led to sub-
stantial gains over a broad range of natural
language processing (NLP) tasks, but have
been shown to have limitations for natural lan-
guage generation tasks with high-quality re-
quirements on the output, such as common-
sense generation and ad keyword generation.
In this work, we present a novel Knowledge
Filtering and Contrastive learning Network
(KFCNet) which references external knowl-
edge and achieves better generation perfor-
mance. Specifically, we propose a BERT-
based filter model to remove low-quality can-
didates, and apply contrastive learning sep-
arately to each of the encoder and decoder,
within a general encoder–decoder architecture.
The encoder contrastive module helps to cap-
ture global target semantics during encoding,
and the decoder contrastive module enhances
the utility of retrieved prototypes while learn-
ing general features. Extensive experiments
on the CommonGen benchmark show that our
model outperforms the previous state of the
art by a large margin: +6.6 points (42.5 vs.
35.9) for BLEU-4, +3.7 points (33.3 vs. 29.6)
for SPICE, and +1.3 points (18.3 vs. 17.0) for
CIDEr. We further verify the effectiveness of
the proposed contrastive module on ad key-
word generation, and show that our model has
potential commercial value.

1 Introduction

Pre-trained language models have achieved impres-
sive results across a wide range of NLP tasks (De-
vlin et al., 2019; Yang et al., 2019; Sun et al., 2019;
Liu et al., 2019; Lewis et al., 2020a; Qi et al., 2020;
He et al., 2020b). However, their ability to accu-
rately reflect factual knowledge or perform logi-
cal inference is still limited. To investigate the
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ability of systems to capture commonsense knowl-
edge, datasets such as CommonsenseQA (Talmor
et al., 2019), SWAG (Zellers et al., 2018), and
WinoGrande (Sakaguchi et al., 2020) have been
proposed. Separate to these discriminative tasks
that require models to choose the correct option
from multiple candidates, CommonGen (Lin et al.,
2020) is framed as a generation task, and requires
the system to generate a logical and coherent sen-
tence describing an everyday scenario based on a
concept set. Experiments show that state-of-the-
art generation models are not adequate or accurate
enough to generate plausible sentences or reflect
commonsense assumptions in this setting.

External knowledge provides not only informa-
tion about the sorts of relationships that hold be-
tween concepts, to potentially guide generation
models in capturing the implicit logic between con-
cepts, but also interpretability. Inspired by Lewis
et al. (2020b) and Fan et al. (2020), we adopt a
retrieval-and-generation framework, and propose a
BERT-filter and two contrastive learning modules
for retrieval and generation, respectively.

For retrieval, previous research (Lewis et al.,
2020b) has shown that traditional sparse vector
space models, such as TF-IDF and BM25, perform
better than dense representation-based retrieval
on heavily entity-centric tasks such as FEVER
(Thorne et al., 2018). However, while using sparse
vector space retrieval models can retrieve relevant
prototypes that contain a set of concepts, there can
be significant domain mismatches between the re-
trieved results and target distribution, making it
difficult for generation models to bridge between
prototypes and targets. We argue that a two-stage
retrieval strategy alleviates this issue by combining
sparse vector space search and dense representa-
tion filters. First, a sparse vector retrieval model is
used to find passage candidates with high coverage
of concept words, and then a dense vector-based
filter is applied to score the candidates, and filter
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out low-quality prototypes.
For generation, we apply contrastive learning

to each of the encoder and decoder, in a general
encoder–decoder architecture. The core idea of
contrastive learning is to construct positive and neg-
ative samples from an anchor sample, and draw to-
gether the anchor and positive samples while push-
ing away the anchor from all negative samples in
the embedding space during training. Given that
high-quality prototypes can be used as clusters of
positive samples, we propose a decoder contrastive
module that minimizes the distance between de-
coded sentence representations with distinct proto-
types retrieved from the same concept set. Com-
mon scenario information and abstract concept re-
lationships can be learned based on the contrasts
between different prototypes. Moreover, we pro-
pose an encoder contrastive module to force the
encoder to learn sentence representations, and save
it into a global token which is visible to the decoder
during decoding. In this way, global sentence-level
semantics can be captured better.

The main contributions of this work are three-
fold: (1) we demonstrate that adding a high-quality
matching model to the word overlap-based retriever
benefits entity-centric retrieval tasks; (2) we pro-
pose two contrastive learning modules that can be
applied to a general encoder–decoder generation
model; and (3) we conduct experiments on Com-
monGen and an ad keyword generation task, and
show that our method achieves large-scale improve-
ments on both tasks.

2 Related Work

2.1 Knowledge Enhanced Generation

There is significant work on incorporating exter-
nal knowledge from knowledge bases and incor-
porating retrieved information in language gener-
ation tasks (Weston et al., 2018; Cao et al., 2018;
Guan et al., 2019; Hossain et al., 2020). Lewis
et al. (2020b) explore a general-purpose fine-tuning
recipe for retrieval-augmented generation that com-
bines a dense passage retriever (Karpukhin et al.,
2020) with a BART (Lewis et al., 2020a) genera-
tor. For commonsense generation, Liu et al. (2020)
propose a knowledge graph-augmented language
generation model that encompasses concepts from
a knowledge graph, and produces more logical and
natural sentences. Fan et al. (2020) propose to re-
trieve prototypes based on sparse vector similarity,
and introduce a scaling module and a prototype

position indicator to explicitly deal with retrieval
noise.

This paper proposes a two-stage retrieval strat-
egy and differs in applying contrastive learning to
make better use of prototypes for generation.

2.2 Contrastive Learning

Recently, contrastive learning has achieved remark-
able results in many self-supervised and supervised
learning tasks, primarily for computer vision. The
two key elements of contrastive learning are: (1)
the construction of positive and negative samples;
and (2) the learning framework.

2.2.1 Sample Construction
Usually in contrastive learning, positive samples
are augmented forms of anchor data points, and
negative samples are augmented forms of other
data points. In NLP, Meng et al. (2021) create posi-
tive samples by masking and cropping tokens from
sentences; Gunel et al. (2020) and Fang and Xie
(2020) use back-translation to create positive aug-
mentations of original sentences; Chi et al. (2020)
and Wei et al. (2021) regard parallel sentences dis-
tributed in one or multiple languages as different
views of the same semantics to learn cross-lingual
representations; and Gao et al. (2021) demonstrate
that constructing positive pairs with only standard
dropout as minimal data augmentation works sur-
prisingly well on the NLI task. Distinct from these
methods, we propose to create positive sample pairs
from retrieved results.

2.2.2 Learning Framework
Previous contrastive learning methods have re-
quired either specialized architectures (Bachman
et al., 2019; Hénaff, 2020) or a memory bank to
store large volumes of negative samples (Wu et al.,
2018; Tian et al., 2020). Chen et al. (2020) present
a simple framework consisting of a feature extrac-
tion module, and a non-linear transformation mod-
ule, which outperforms previous work on ImageNet
(Russakovsky et al., 2015) without using a special-
ized architecture or a memory bank. However, it re-
quires a large batch size to yield high performance,
which is computationally prohibitive. Moco (He
et al., 2020a) addresses this issue by maintaining
a queue of data samples as the memory bank, and
enqueuing encoded representations of the current
mini-batch and dequeuing the oldest representa-
tions on each iteration. They further propose a
momentum encoder to maintain the consistency
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of representations in the queue. In this work, we
use the Moco framework to train our contrastive
learning modules.

3 Method

In this section, we detail our method: Knowledge
Filtering and Contrastive learning Network (KFC-
Net). First, we introduce our prototype retrieval
strategy together with the knowledge filter model.
Then we present our generative model, based on an
encoder–decoder architecture with two contrastive
learning modules. Finally, we show how we adapt
the Moco contrastive learning framework, and deal
with multiple positive samples.

3.1 Task Formulation

We use S to denote a set of concepts, where S =
{c1, c2, ..., cm}, ci ∈ C and C is the concept vo-
cabulary, and use X to denote all possible concept
sets. The commonsense generation task is to learn a
function f : X → Y that maps the concept set S to
a sentence T , where T = {t1, t2, ..., tn} ∈ Y , and
Y is the target sentence space. The generated sen-
tence must be a plausible sentence that describes
a common scenario in our daily life based on the
contents of S.

3.2 Prototype Retrieval and Filtering

In order to retrieve prototypes that contain the
concepts in a given concept set while keeping
the retrieval results and target sentences seman-
tically as similar as possible, we use a two-stage
retrieval strategy combining sparse vector space
search and dense representation matching. In Stage
1, a sparse vector retrieval model is used to retrieve
N candidate prototypes from the corpus D, where
N � |D|. Then in Stage 2, a dense representation-
based scorer is used to score the candidates, and
the top-k scored candidates are chosen as the final
prototypes.

3.2.1 Stage 1
Given a concept set S = {c1, c2, ..., cm}, we first
split corpus D into m + 1 parts {d0, d1, ..., dm}
according to the number of concepts the sentence
contains, where sentences in di contain i concepts
in x. Given that most concepts in C are verb and
noun lemmas, we pre-process based on lemmatiza-
tion and stemming. Then we choose N sentences
as candidates from the parts, prioritized such that
dm > dm−1... > d1.

3.2.2 Stage 2
After retrieving N candidate prototypes, a scorer is
used to rank the candidates and filter out candidates
that are far from the targets in embedding space. In
this work, we use a BERT-based model as an en-
coder, and use the hidden state of the [CLS] token
as the sample representation. The representation
is then feed into a multi-layer perceptron with a
scalar output as follows:

rcls = BERT(S) (1)

score = MLP(rcls) (2)

where S = [CLS] + concept set + [SEP] +
sentence+ [SEP] is the training sample created
from the concept set and candidates/targets, rcls ∈
Rd is the sample representation, and score ∈ [0, 1]
is the final score of the sample. Theoretically, the
label of the training set can be any real number in
the range [0, 1], but we find that it is sufficient to
train the scorer as a simple binary classifier. We
create the positive samples by combining a con-
cept set with each corresponding target sentence,
and create the negative samples by combining the
concept set with a different candidate prototype or
random sentence from D. During inference, we
score all candidates and choose the candidate with
the highest score as the prototype.

For all experiments in this paper, we set k = 2
and N = 8. k = 2 means that for each input,
we construct one positive sample which is widely
used in contrastive leaning work. N = 8 is be-
cause experience shows that at least 2 high-quality
prototypes can be retrieved with 8 candidates.

3.3 Contrastive Learning for Generation

3.3.1 Encoder–decoder Architecture
The encoder–decoder architecture is widely used
in generation tasks. Compared to single decoder
generation models such as GPT-2 (Radford et al.,
2019) where words are conditioned only on left
context, models using an encoder–decoder frame-
work such as BART (Lewis et al., 2020a) and T5
(Raffel et al., 2020) enable bidirectional interac-
tions with an encoder, and auto-regressive gener-
ation with a decoder. In this work, we use BART
with an auto-regressive objective for generation
as shown in the middle of Figure 1, and propose
separate contrastive modules for the encoder and
decoder, corresponding to the right and left sub-
structures in the figure.
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Figure 1: Generation model structure with contrastive learning.

Typical generation inputs only contain the source
sentence, which is the concept set S in Common-
Gen. The difference here is that we append one of
the retrieved prototypes pi ∈ P to S to enhance the
input.

3.3.2 Encoder Contrastive Loss
Although BART learns bidirectional interactions
using a transformer-based encoder and implements
cross-attention at each layer of the decoder, the
global target information is not explicitly learned
during encoding, meaning that the decoder needs
to find important local information for the current
step during each timestep of decoding, without hav-
ing access to the global goal of generation. Here,
we propose to force the model to learn global target
information during encoding and save it to a spe-
cial token, using source–target contrastive learning.
The special token is visible to the decoder via cross-
attention during each timestep of decoding. Specif-
ically, given a concept set S = {c1, c2, ..., cm}
and a target sentence T = {t1, t2, ..., tn}, where
ci ∈ C, we denote the retrieved prototypes as
{p1, p2, ..., pk}, where each pi is a complete proto-
type. We construct the input for encoder contrastive
learning by concatenating S with T and S with pi,
respectively. As illustrated in Figure 1, the con-
catenation of S and pi will be used as the input to
the main encoder, which is followed by a decoder
with gradient and auto-regressive generation loss,
and the concatenation of S and pi will be used as
the input to another encoder without a decoder or
gradient.

3.3.3 Decoder Contrastive Loss

At the retrieval step, multiple high-quality retrieval
results are collected as prototypes to augment gen-
eration. Although these retrieved results substan-
tially boost external information, they inevitably
introduce noise. In order to learn general informa-
tion associated with the concept set and eliminate
noise in the prototypes, we propose a decoder con-
trastive learning module, which we apply to the
sentence representation at the decoder output. For-
mally, we concatenate S with pj (j 6= i), which is
a different prototype for S from the one used in the
main-branch BART model. Note also that different
from the main-branch model, here the gradient is
not back-propagated.

3.4 Momentum Contrast with Memory Bank

Most existing training methods greatly limit the
number of in-batch negative samples, limiting the
potential of contrastive learning. To enable large-
scale interactions between negative samples, we fol-
low Moco (He et al., 2020a) in maintaining a dictio-
nary as a queue of encoded/decoded data samples.
The keys of the dictionary are samples from data af-
ter encoding/decoding and the queries are samples
in current mini-batches after encoding/decoding
during training. Learning is formulated as mini-
mizing the contrastive loss, which makes the query
similar with its matching key and dissimilar to other
keys.
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3.4.1 Memory Bank as Queues

We use two dictionaries to store the representations
of the encoder and decoder output, respectively.
In each training iteration, the newest encoded rep-
resentations are enqueued and the oldest are de-
queued, to maintain a fixed queue size. For each
sample, the number of contrast pairs is the size of
the queue, where usually only the matching key in
the same mini-batch is positive, and all others are
negative.

3.4.2 Dealing with Multiple Positive Samples

In the CommonGen task, the mapping between
source sequences and gold targets can be many-
to-many. N independent sample pairs are created
for 1-to-N and N -to-1 source–target pairs, which
can be distributed across mini-batches. However,
these N samples should be all regarded as mutu-
ally positive. To enable interactions between posi-
tive samples intra- and inter-mini-batch, we assign
each source–target pair an identity, which indicates
pairs that share the same source or target. These
identities are saved in another queue that is syn-
chronously updated with an encoder and decoder
memory bank.

3.4.3 Momentum Updated Parameters

To keep the consistency of representations in the
memory banks, we update the parameters of the key
encoder and decoder with momentum. Formally,
denote the parameters of the query encoder and
decoder as θeq and θdq , and the parameters of the key
encoder and decoder as θek and θdk. The parameters
θeq and θdq are updated by back-propagation, and the
parameters θek and θdk are updated by:

θek ← mθek + (1−m)θeq (3)

θdk ← mθdk + (1−m)θdq (4)

Here, m ∈ [0, 1) is a momentum coefficient which
is set to be close to 1. In this way, the parameters of
the key encoder and decoder evolve more smoothly
than those of the query, which maintains the consis-
tency of key representations in the memory bank.

3.5 Training Objective

Consider a batch of query-key pairs
{(q1, k1), (q2, k2), ..., (qn, kn)}, where there
is only one positive key ki for a given query qi.
After encoding, we fetch the representation of the

last <EOS> tokens and apply a projection to it as:

aeosi = Encoder(qi) (5)

zi = Proj(aeosi ) (6)

The encoder contrastive loss function, called In-
foNCE, is as follows:

LEi = − log
exp(sim(zqi , zki)/τ)∑

j∈M exp(sim(zqi , zkj )/τ)
(7)

where sim(, ) denotes the similarity function, τ
is a temperature hyper-parameter, and M denotes
all indices in the memory bank. The denomina-
tor has |M | total terms, including one positive and
|M |−1 negative samples. Intuitively, the loss func-
tion is the log loss of an |M |-way softmax classifier
that tries to classify qi according to the positive ki.
Eqn (7) is only able to deal with the case of a single
positive key existing for each query. To general-
ize it to an arbitrary number of positives, inspired
by SupCon (Khosla et al., 2020), we consider the
following loss functions:

LoutEi
= −

∑
p∈P (i)

1

|P (i)|
logLsingleEi,p

(8)

LinEi
= − log

 1

|P (i)|
∑

p∈P (i)

LsingleEi,p

 (9)

LsingleEi,p
=

exp(sim(zqi , zkp)/τ)∑
j∈M exp(sim(zqi , zkj )/τ)

(10)

Here, P (i) denotes all positive indices of the sam-
ple i, Eqn (8) summarizes the positive samples out-
side of the log function, and Eqn (9) summarizes
those inside it.

The decoder contrastive loss LD can be obtained
in the same way, except that the sentence repre-
sentation is fetched from the <EOS> token after
decoding. During training, we try to minimize
the sum of the encoder contrastive loss, decoder
contrastive loss, and the decoder auto-regressive
generation loss:

L = LCE + λ1LE + λ2LD (11)

Here, LCE denotes the cross-entropy generation
loss, and λ1 and λ2 are tunable scalars.

During inference, we discard the momentum en-
coder and decoder, together with the projection
layers.
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Din Dout

# Sentences 4,118,993 70,245,048
# Length (avg) 11.10 18.76
# Missing concept (avg)

size=3 0.40 0.48
size=4 0.56 1.00
size=5 0.80 1.98

Table 1: Statistics of the two corpora. “Missing con-
cept” indicates the number of missing concepts in the
top-2 retrieved sentences, broken down by concept-set
size.

4 Experiments

4.1 Datasets

CommomGen (Lin et al., 2020) contains
32,651/993/1,497 unique training/development/test
concept sets, corresponding to 67,389 and 4,018
English target sentences in the training and devel-
opment sets, meaning that one concept-set can
map to multiple target sentences. The percentage
of concept-sets in the development and test sets
that are unseen in the training set are 99.60%,
and 100.00% respectively, making the dataset
challenging for compositional generalization.

4.2 Prototype Collection

4.2.1 In-domain Corpus
As CommonGen was created from visually-
grounded caption datasets that describe everyday
scenarios, we build an in-domain corpus from
datasets of image captions, video captions, and
natural language inference. In detail, we extracted
sentences from ActivityNet (Krishna et al., 2017),
VaTeX (Wang et al., 2019), Conceptual Captions
(Sharma et al., 2018), SNLI (Bowman et al., 2015),
and MNLI (Williams et al., 2018) as the in-domain
corpus (Din).

4.2.2 Out-of-domain Corpus
In addition to in-domain experiments, we create
an out-of-domain corpus (Dout) from Wikipedia,1

using SpaCy2 as our sentence tokenizer.
For both corpora, sentences with fewer than 5

tokens or more than 100 tokens were removed. Ta-
ble 1 shows the basic statistics of the two corpora.
Although Dout is much larger than Din, sentences
retrieved from Din contain more required concepts

1English Wikipedia dump from May 01, 2020.
2https://spacy.io/

than those from Dout on average. Specifically, for
concept-sets of size 4 and 5, the retrieved sentences
from Dout have 0.44 and 1.18, respectively, more
relevant concepts than Din.

4.3 Experimental Setup

4.3.1 Implementation Details

We employ the pre-trained BART-large model as
the base generation model, and initialize the mo-
mentum encoder and decoder by copying param-
eters from the base model. We use the Adam op-
timizer with β1,2 = (0.9, 0.999), ε = 1e− 6, and
0.1 weight decay, with the initial learning rate set-
ting selected from {8e− 6, 1e− 5, 3e− 5, 5e− 5}.
We use the polynomial decay learning rate sched-
uler with 500 warmup steps, and set dropout to
0.1. We set the max tokens per batch to 3000 and
max batch-size to 48, with 15k total updates. For
the auto-regressive generation loss, we use cross-
entropy loss with 0.1 label-smoothing penalty. Dur-
ing decoding, we use beam search with size 5, and
1.0 length penalty.

For contrastive learning, we use an MLP as the
projection network, with a single hidden layer of
1024d and the output size of 128d. We use Eqn (8)
as the loss function, with similarity measured by
dot-product, and set the temperature to 0.1. The
queue size of the memory bank is set to 4096, and
the momentum coefficient is set to 0.999.

4.3.2 Baselines

We use several state-of-the-art pre-trained language
generation models as baselines: GPT-2 (Radford
et al., 2019), BERT-Gen (Bao et al., 2020), UniLM
(Dong et al., 2019), UniLM-v2 (Bao et al., 2020),
T5 (Raffel et al., 2020), and BART (Lewis et al.,
2020a). All models are fine-tuned in seq2seq mode.
We also compare our model with two strong base-
lines that use external knowledge: EKI (Fan et al.,
2020) and KG-BART (Liu et al., 2020).

4.3.3 Evaluation Metrics

To evaluate generation performance, we use BLEU
(Papineni et al., 2002), ROUGE (Lin, 2004), and
METEOR (Banerjee and Lavie, 2005), in addition
to evaluation metrics for captioning tasks, namely
CIDEr (Vedantam et al., 2015) and SPICE (Ander-
son et al., 2016). As all metrics score the output
in the range [0, 100], we also present the average
score across all metrics.

https://spacy.io/
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Model ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Overall

GPT-2 (Radford et al., 2019) 17.18 39.28 30.70 21.10 26.20 12.15 25.90 24.64
BERT-Gen (Bao et al., 2020) 18.05 40.49 30.40 21.10 27.30 12.49 27.30 25.30
UniLM (Dong et al., 2019) 21.48 43.87 38.30 27.70 29.70 14.85 30.20 29.44
UniLM-v2 (Bao et al., 2020) 18.24 40.62 31.30 22.10 28.10 13.10 28.10 25.93
T5 (Raffel et al., 2020) 22.01 42.97 39.00 28.60 30.10 14.96 31.60 29.89
BART (Lewis et al., 2020a) 22.23 41.98 36.30 26.30 30.90 13.92 30.60 28.89

EKI-out (Fan et al., 2020) 24.36 45.42 42.90 32.10 32.00 16.80 32.50 32.29
KFCNet-out 24.10 45.59 44.09 34.20 32.83 17.39 33.11 33.04

KG-BART (Liu et al., 2020) 23.38 44.54 42.10 30.90 32.40 16.83 32.70 31.83
EKI (Fan et al., 2020) 25.43 46.53 46.00 36.10 33.80 17.80 33.40 34.15

KFCNet w/o FC 25.16 46.13 50.22 41.97 36.22 18.85 35.90 36.35
KFCNet w/o C 25.91 46.81 54.75 47.33 38.19 20.21 38.20 38.77
KFCNet 26.81 47.52 57.33 51.46 38.92 20.98 39.15 40.31

Table 2: Overall performance of the different models on CommonGen (v1.0). Models in the first block are fine-
tuned pre-trained language models without external knowledge; models in the second block use out-of-domain
knowledge; models in the last two blocks use in-domain knowledge, where the KG-BART uses ConceptNet, and
both EKI and KFCNet (our model) use the in-domain prototype corpus as a knowledge base.

5 Results

Table 2 presents the experimental results across
all the metrics.3 We observe the following: (1)
Methods in the 2nd, 3rd, and 4th blocks of Table 2
that use external knowledge outperform the fine-
tuned pre-trained language models in the first block.
This demonstrates that external knowledge benefits
commonsense reasoning and generation. (2) The
overall performance of EKI and our method (KFC-
Net) that both use natural sentences as prototypes
is better than KG-BART, which incorporates struc-
tured knowledge from knowledge bases. We hy-
pothesize that this is because pre-trained language
models like BART can more easily exploit natu-
ral language samples than structured information,
even with elaborate modules for information fusion.
(3) Prototypes retrieved from the in-domain corpus
result in better performance than those from the out-
of-domain corpus. (4) Simply fine-tuning BART on
our retrieved prototypes beats previous published
SOTA on several metrics, and using filtered proto-
types boosts the performance again. This on the
one hand shows that the quality of prototypes has a
large impact on generation, and on the other hand,
indicates our retrieval method is better than that of
EKI, and our filter helps in selecting good proto-

3Note that the latest test set (v1.1) adds one more human
reference to each example in the test set (v1.0), but is not
publicly available. Additionally, EKI and KG-BART were
evaluated on v1.0, so this is what we use for our experiments.

Model BLEU-4 CIDEr SPICE

w/o Retrieval 26.30 13.92 30.60
BM25 36.84 17.33 32.96
+Lemma & Stem 41.97 18.85 35.90
+BERT Filter 47.33 20.21 38.20

Table 3: Results for fine-tuning BART based on differ-
ent retrieval strategies over the test set.

types. (5) Our KFCNet achieves new state-of-the-
art results which surpass all other methods by a
large margin.

5.1 Ablation study

To better understand the impact of the different
modules in KFCNet, we perform a number of abla-
tion experiments.

5.1.1 Retrieval and Filter

Prototype retrieval is a key part of any retrieval-
based generation model. To assess the effective-
ness of the retrieval-and-filter mechanism, we re-
trieve prototypes from the in-domain corpus and
run ablations on a single BART model. Table 3
shows the results. Compared to models without
retrieval, using prototypes retrieved by a simple
BM25 model improves generation performance,
which we suggest is due to the retrieved prototypes
helping the model to better capture relationships
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Model BLEU-4 CIDEr SPICE

KFCNet 36.10 17.96 33.89
−CD 34.09 17.24 33.97
−CE − CD 30.82 16.20 33.16

Table 4: Contrastive ablation study on CommonGen de-
velopment set. CE and CD denote the encoder and de-
coder contrastive modules, respectively.

Sim Sum BLEU-4 CIDEr SPICE

(·) Out 34.11 16.77 33.59
(·) In 32.45 16.54 33.79
cos(, ) Out 32.49 16.62 33.73
cos(, ) In 33.52 16.64 33.39

Table 5: Comparison of different similarity functions
and positive sample summation locations. (·) denotes
dot-product similarity, and cos(, ) denotes cosine simi-
larity.

between concepts, and construct a coherent sce-
nario. With word lemmatization and stemming, the
variety of the retrieval results increases, resulting in
better prototypes. Adding a BERT filter boosts the
performance again, achieving +5.38, +1.36, and
+2.30 absolute improvements for BLEU-4, CIDEr,
and SPICE. This verifies the effectiveness of us-
ing a high-quality matching model as an auxiliary
module for a word overlap-based retriever.

5.1.2 Contrastive Learning
The contrastive loss plays an important role in our
model. We perform an ablation study on the de-
velopment set of CommonGen, by comparing the
model without the contrastive module, using only
encoder contrastive learning, and using both en-
coder and decoder contrastive learning. As shown
in Table 4, using only encoder contrastive learn-
ing leads to improvements over the baseline BART
model, and adding decoder contrastive learning fur-
ther improves results based on BLEU-4 and CIDEr.

5.2 Similarity Function and Summation
Location

We further compare the performance of different
similarity functions and positive summation loca-
tions, as mentioned in Section 3.5. The results in
Table 5 demonstrate that the combination of dot-
product similarity with summation outside of the
log function performs best, consistent with the find-
ings of Khosla et al. (2020).

Model BLEU-4 CIDEr SPICE

Human 46.49 37.64 52.43

KFCNet 42.45 18.37 33.27
RE-T5 40.86 17.66 31.07
KG-BART 33.86 16.92 29.63
EKI-BART 35.94 16.99 29.58
T5-Large 31.96 15.12 28.85
BART 31.82 13.97 27.99
UniLM 30.61 14.88 27.42
BERT-Gen 23.46 12.60 24.82
GPT-2 26.83 12.18 23.56

Table 6: Final CommonGen leaderboard results, using
SPICE to rank the methods.

5.3 Model Efficiency

5.3.1 Retrieval

The prototype retrieval is done separately from the
generation model, and the retrieval time consists of
2 parts: (1) sparse vector matching time, in the form
of BM25 search; and (2) BERT filter inference,
for fine-grained selection, noting that only a few
candidates (8 in our experiments) are left after stage
1, which can be processed in a single mini-batch.

5.3.2 Contrastive Module

During training, the momentum encoder and de-
coder parameters are updated by Eqn (3) and there
are no gradients or back-propagation in these mod-
ules. Therefore it takes no more than double the
training time without contrastive modules. Dur-
ing inference, the contrastive modules are disabled,
and hence the efficiency does not decrease.

5.4 Final Leaderboard Results

Table 6 shows the final evaluation results on the
latest test set with additional human references
(v1.1).4 Note that the model in second place (RE-
T5) expands the original training data and does con-
tinuous pretraining before fine-tuning on Common-
Gen. Our method, KFCNet, performs best on all
metrics. Among all fine-tuned methods, KFCNet
beats the previous state-of-the-art by a large mar-
gin: +6.51 (18.11%) for BLEU-4, +1.38 (8.12%)
for CIDEr, and +3.64 (11.95%) for SPICE.

4https://inklab.usc.edu/CommonGen/
leaderboard.html

https://inklab.usc.edu/CommonGen/leaderboard.html
https://inklab.usc.edu/CommonGen/leaderboard.html
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Model ROUGE-2/L BLEU-3/4 AVG

BART 33.03/60.17 31.61/25.03 38.96
+R 33.68/60.31 31.69/24.75 39.70
+CE,D 35.18/61.24 33.60/26.78 41.44

Table 7: Experimental results on ad keyword genera-
tion.

5.5 Experiment on Keyword Generation

To test the effectiveness of the proposed contrastive
learning modules, we constructed a real-world ad-
word dataset, based on an advertising platform
(Edelman et al., 2007). The goal is to display a
list of ads that matches the user intent, for which
the first step is to retrieve relevant keywords pro-
vided by advertisers given a user query. The dataset
contains 72,876 training samples, 10,000 dev sam-
ples, and 10,000 test samples from a major search
engine, with each sample corresponding to a query–
keyword pair. Titles of the top-two web search
results of the query from the search engine are kept
as prototypes.

We fine-tune BART models following the same
sequence generation experimental design. The re-
sults are shown in Table 7.

From the first two lines, we see that directly
appending the retrieved information to the source
does not lead to noticeable improvements, almost
certainly because of noise in the retrieved results.
However, our contrastive modules alleviate the ef-
fects of noise, and beat BART on all metrics.

6 Conclusion

In this paper, we present KFCNet: a novel knowl-
edge filtering and contrastive learning model for
retrieval-augmented sequence generation, which
achieves state-of-the-art results on the Common-
Gen benchmark. Two contrastive learning modules
are proposed to capture global target semantics and
learn general features from multiple retrieved proto-
types. A prototype retrieval ablation study showed
the effectiveness of the proposed filter for filtering
low-quality candidates, and further experiments on
ad keyword generation showed that our model has
potential commercial value. In the future, we plan
to extend the contrastive module to more general
settings, such as natural language understanding
and representation learning.
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