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Abstract

Previous neural seq2seq models have shown
the effectiveness for jointly extracting relation
triplets. However, most of these models suf-
fer from incompletion and disorder problems
when they extract multi-token entities from
input sentences. To tackle these problems,
we propose a generative, multi-task learning
framework, named GenerativeRE. We firstly
propose a special entity labelling method on
both input and output sequences. During the
training stage, GenerativeRE fine-tunes the
pretrained generative model and learns the
special entity labels simultaneously. During
the inference stage, we propose a novel copy
mechanism equipped with three mask strate-
gies, to generate the most probable tokens
by diminishing the scope of the model de-
coder. Experimental results show that our
model achieves 4.6% and 0.9% F1 score im-
provements over the current state-of-the-art
methods in the NYT24 and NYT29 bench-
mark datasets respectively.

1 Introduction

The seq2seq based models have attracted much at-
tention in recent years (Zeng et al., 2018; Nayak
and Tou Ng, 2019; Chen et al., 2019; Zeng et al.,
2019) to jointly extract entities and relations. These
models can transform the joint entity and relation
extraction task into a sequence generation task, in
which the relation triplets are generated in a se-
quence manner.

Early attempts (Gupta et al., 2016; Adel and
Schütze, 2017; Zheng et al., 2017; Paterson and
Dancík, 1994; Devlin et al., 2019; Takanobu et al.,
2018) are limited due to the out of vocabulary and
overlapping issues (Zeng et al., 2018; Riedel et al.,
2010; Gardent et al., 2017). To overcome these
problems, a copying (Gu et al., 2016) or pointing
mechanism (Vinyals et al., 2015) has been used.
However, two key problems remain: firstly, the
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model only considers single tokens when copy-
ing from input sentences and generates tokens in a
token-by-token manner, thus, losing tokens while
copying multi-token entities (Zeng et al., 2018;
Nayak and Tou Ng, 2019). This results in incom-
pletion errors(See appendix A.5). Secondly, some
previous attempts also (Chen et al., 2019; Zeng
et al., 2019) suffer from word disorder whilst ex-
tracting multi-token relation triplets from a long
input sentence as shown in Appendix A.5. These
issues worsen when more fine-grained tokenization
methods are applied, such as WorkPiece (Wu et al.,
2016), which splits the whole sequence into sub-
words and logically deteriorates these issues (Dong
et al., 2019). According to our experimental results
on NYT24 and NYT29 , 80.3% examples contain
multi-token triplets in NYT24 dataset (Zeng et al.,
2018), and 80.9% in NYT29 datasets (Takanobu
et al., 2018). Thus, although word incompletion
and disorder problem are very common in our task,
it has not been fully explored.

To address the issues aforementioned, we pro-
pose a multi-task learning framework, called Gen-
erativeRE, which incorporates a novel copy mech-
anism with a generative pretrained model (Dong
et al., 2019; Su, 2021)for joint entity and relation
extraction. Specifically, we first design a BIO la-
belling method by calculating the longest common
subsequence between input sentence and output
triplets sentence, which enables the BIO labels to
locate the boundaries for the complete multi-token
entities.

During the training stage, we adopt a generative
pretrained model as our backbone model network,
and propose a multi-task learning framework to
learn the masked tokens and their corresponding
BIO labels simultaneously. During the inference
stage, at each time step, we first predict the BIO
label of each token. BIO labels are aligned with
three masking strategies on the probability distribu-
tion over the entire vocabulary list, and the model
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is guided by different mask strategies to extract
the correct token in a correct order. Experimental
results show the effectiveness of our model in alle-
viating the incompletion issue and disorder issue
whilst copying multi-token entities.

2 Approach

2.1 BIO Label Construction

In our task, the model input is a sequence
of tokens and the output is a set of rela-
tion triplets. Following (Nayak and Tou
Ng, 2019), we represent the output as a sen-
tence pattern as entity ; entity ; relation
| entity ; entity ; relation as presented
in Figure 1, where ; is used to separate entities
and | is used to separate triplets. Multiple relation
tuples with overlapping entities and nested enti-
ties (Ju et al., 2018) can be represented in a simple
way using these special tokens ; and |.

The input and output sentences are then tok-
enized into subwords by WordPiece (Wu et al.,
2016). Then, we adopt the longest common sub-
sequence (LCS) algorithm (Paterson and Dancík,
1994) to generate the BIO labels for each subword.
LCS collects the entire longest common subse-
quences between input and output sentence. For
example, as shown in Figure 1, the longest com-
mon subsequences are “Evan Z ##ip ##ory ##n”,
“Massachusetts Institute of Technology”, “K ##ya
##w K ##ya ##w Na ##ing” and “New York”.

Last, we assign a BIO label on each token in the
input and triplets sequence to locate the boundary
index of multi-token entities, concretely, “B” is
the beginning position of the entity, “I” denotes
the middle(inside) position of the entity, and “O”
denotes not belonging to any entities.

2.2 Input Representation

We treat triple extraction as a sequence generation
task as shown in Figure 1.The input representation
follows that of BERT (Devlin et al., 2019). In our
task, [EOS] token is not only used as an end-of-
sequence symbol, but it is also used as a special
token to terminate the triplet generation. We denote
the input sentence as S 1 and the triplet sentence as
S 2. Thus, the model input {xi}

|x|
i=1 is a concatenation

of each part into [SOS] input sentence [EOS]
triplet sentence [SOS] . By conducting the
BIO construction approach in section 2.1, each
subword in the model input is also assigned to a
corresponding BIO label yBIO

i as shown in Figure

1.
We utilize a multi-layer Transformer as the back-

bone network to encode contextual features which
are constituted by stacked self attention layers.
Given the input vectors {xi}

|x|
i=1, we first pack them

into H0 = [x1, ..., x|x|], then we use a L-layer Trans-
former to encode the input into contextual repre-
sentation:

Hl = Transformerl(Hl−1) (1)

where l ∈ [1, L]. In each Transformer block, multi-
ple self-attention heads are applied to aggregate the
output vectors of the previous layer. We compute
the output of a self-attention head Al in the l-th
Transformer layer as follows:

Ql = Hl−1WQ
l ,Kl = Hl−1WK

l (2)

Mi j =

{
0 allow to attend

−∞ prevent from attending
(3)

Al = softmax(
QlK>
√

dk
+ M)(Hl−1Vl) (4)

where Ql, Kl, Vv
l ∈R

dh×dk denotes parameter ma-
trices of queries, keys and values for the projection
of the previous layer output Hl−1 respectively, and
the mask matrix M ∈ R|x|×|x| determines the context
that can be attended by the token. The setting of
seq2seq mask matrix follows Unilm (Dong et al.,
2019).

2.3 Training
In the training stage, different from Unilm (Dong
et al., 2019), we randomly mask not only the to-
kens as [MASK] with a certain probability, but also
their corresponding BIO labels from both segments,
and then compel the model to learn to recover the
masked tokens and BIO labels jointly. The training
objective is to maximize the likelihood of masked
tokens and their BIO labels given the context. For-
mally, given the masked tokens xi, we obtain its
contextualized representations hi, then we add two
separate fully-connected layers to obtain their to-
ken distribution and BIO label distribution respec-
tively:

hi = Transformer(xi) (5)

ytoken
i = softmax(W1hi + b1) (6)



2121

SegPeQW EPbeddLQg

PRVLWLRQ EPbeddLQg

TRNeQ EPbeddLQg

TUaQVfRUPeU BOacN 1

TUaQVfRUPeU BOacN 2

...
TUaQVfRUPeU BOacN L

K1 K2 K3 K4 K5 K6

S1

S1

S2

S2

S1: aWWeQd WR S1 WRNeQV
S2: aWWeQd WR OeIW cRQWe[W

SeT2SeT 
MaVN MaWUL[

6O6 [i MASK EO6 MASK [n EO6[1 [j
... ...

TUaQVIRUPeU

IQSXW SeQWeQce (S1) ¬TULSOeWV SeQWeQce (S2)

KPaVk KPaVk

\WRkeQ \biR \WRkeQ \biR

EYaQ

B

Z

I

##LS

I

##RU\

I

##Q

I

,

O

a

O

SURfeVVRU

O

aW

O

WKe

O

MaVVachXVeWWV

B

IQVWLWXWe

I

Rf

I

TecKQRORg\

I

PeW

O

K

B

##\a

I

##Z

I

K

I

##\a

I

##Z

I

Na

I

##LQg

I

LQ

O

NeZ

B

YRUN

I

EYaQ

B

Z

I

##LS

I

##RU\

I

##Q

I

;

O

MaVVachXVeWWV

B

IQVWLWXWe

I

Rf

I

TecKQRORg\

I O

cRmSan\

O

##\a

I

##Z

I

K

I

##\a

I

##Z

I

Na

I

##LQg

I

:

O

NeZ

B

YRUN

I

; _

O

K

B

; ;

O

SOace_
fRXQded

O

InSXW 
SenWence

¬TUiSleWV 
SenWence¬

TRken

BIO label

TRken

BIO label

TRken

BIO label

TRken

BIO label

EYaQ ZLSRU\Q, a SURfeVVRU aW WKe MaVVacKXVeWWV IQVWLWXWe
Rf TecKQRORg\ PeW K\aZ K\aZ NaLQg¬ LQ NeZ YRUN¬

< EYaQ ZLSRU\Q, MaVVacKXVeWWV IQVWLWXWe Rf TecKQRORg\,¬¬cRPSaQ\ >¬
<¬K\aZ K\aZ NaLQg, NeZ YRUN,¬ SOace_fRXQded >

InSXW SenWence:

TUiSleWV:

B
IO

 LabeO C
RQVWUXcWLRQ¬

M
XOWL-WaVN TUaLQLQg

IQSXW SeQWeQceSOS TUiSleWV SeQWeQceEOS EOS

R
aZ

 IQSXW

Figure 1: Overall model structure during training. The model goes in a bottom-to way: the raw input triplets are
firstly concatenated with special separator tokens and then tokenized by WordPiece (Wu et al., 2016). Then, the
model constructs the BIO labels for both input and triplet sentence, and feeds them into the Transformers encoder
for multi-task learning. The constructed BIO labels are used as the ground truth labels for training.

ŷBIO
i = softmax(W2hi + b2) (7)

where W1 ∈ R|V |×dh is the weight matrix and bias
vector b1 ∈ R|V |, |V | denotes the number of vocabu-
laries, while W2 ∈ R|L|×dh and bias vector b2 ∈ R|L|,
here |L| denotes the number of BIO label types
which equals to 3 in our case.

Then we define the cross entropy loss function
as the weighted summation of token loss and BIO
loss:

L =
∑ m∑

i=0

α(xi log(ŷtoken
i ))+(1−α)(yBIO

i log(ŷBIO
i ))

(8)
where α is a weight hyper-parameter to balance

different objectives.

2.4 Inference
During inference, instead of generating tokens in
a straightforward manner, at each time step, our
model decoder firstly predicts a BIO label . Then,
we conduct one of three mask strategies based on
the predicted BIO label to narrow down the scope
of token distribution, in which it enforces the model
to generate the multi-token entities completely and
in a correct order. The detailed mask strategies are
as follows:

If BIO = O, it indicates the token to be predicted
does not belong to any entities from input sentence,
so we retain the original token distribution.

If BIO = B, it indicates the token to be predicted
belongs to either a single-token entity or the first to-
ken of a multi-token entity from the input sentence,
so we only retain the distributions of tokens from
the input sentence, otherwise being masked as 0.

If BIO = I, it indicates the token to be predicted
belongs to a multi-token entity from the input sen-
tence. Therefore, we look back to the previous
predicted tokens and collect all these tokens until
we find the nearest token of which its BIO = B.
Then, we use these collected tokens as a sequence
to match the same sequence from the input sen-
tence. If it can be matched successfully, we will
pick all the tokens which are next to this sequence
in the input sentence as our candidates, and mask
all the distributions of tokens except candidates.
If not, we will retain the original token distribu-
tion as BIO = O does. A example is shown in
Appendix A.4.

3 Experiments

Datasets and experiment settings In this
work, we use NYT24 (Zeng et al., 2018) and
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NYT29 (Takanobu et al., 2018) as our experimental
datasets. Further information can be found in Ap-
pendix A.2. We utilize Unilm-base-cased1 as our
pretrained model. The model structure of Unilm
follows that of BERT-Large (Devlin et al., 2019).
The experimental parameters are aligned with those
in baselines, full details are listed in Appendix A.3.

3.1 Experimental Results

Comparison to previous baselines. Since we
extract entity and relation extraction in a seq2seq
framework, we compare the performance of Gen-
erativeRE with the state-of-the-art generative mod-
els(see Appendix A.1). Table 1 shows the result
of different models. The proposed model Generati-
veRE substantially outperforms the state-of-the-art
models by 4.6% and 0.9 % F1 score in NYT24 and
NYT29 respectively. These results verify the ef-
fectiveness of our proposed model. Moreover, our
GenerativeRE also achieves the best score in terms
of 86.3% Recall in NYT24 and 63.6% Recall in
NYT29, since GenerativeRE returns the relevant
multi-token entities most.

Ablation study. We examine the contributions
of our primary model components. As shown in
Table 2, LSTM represents Bi-LSTM are used as
our model encoder and decoder, which is as same
model structure as WordDec in baseline (Nayak
and Tou Ng, 2019). Pretrained represents we
use generative pretrained model and generate the to-
kens in the same way as Unilm (Dong et al., 2019).
By comparing the performance between LSTM and
Pretrained, we observbe that the model gains im-
provement of 7.5% and 5.2% F1 score in NYT24
and NYT29 respectively.+ Copy adds the copy
mechanism to GenerativeRE, which includes all the
steps in Section 2. For both LSTM and Pretrained,
it can be seen that they all gain better result by
adding our copy mechanism +Copy.

Effectiveness Analysis. The proposed copy
mechanism boosts the performance of joint entity
and relation extraction by addressing the incomple-
tion and disorder errors. To prove the effectiveness,
we test the number of both incompletion and dis-
order errors, In Table 3, we can observed that the
number of incompletion and disorder cases drop to
a large extent by adding our copy mechanism to the
raw model. Furthermore, since both incompletion

1https://github.com/microsoft/unilm/tree/
master/unilm

NYT24 NYT29
Model Prec Rec F1 Prec Rec F1

CopyRE 0.610 0.566 0.587 0.569 0.452 0.504
CopyMTL 0.757 0.687 0.720 0.701 0.623 0.660

MrMep 0.779 0.766 0.771 - - -
PtDec 0.806 0.773 0.789 0.732 0.624 0.673

WordDec 0.881 0.761 0.817 0.777 0.608 0.682
GenerativeRE 0.880 0.847 0.863 0.756 0.636 0.691

Table 1: Results of different baseline models in NYT
datasets

NYT24 NYT29
Model Prec Rec F1 Prec Rec F1
LSTM 0.762 0.647 0.700 0.665 0.551 0.603
+ Copy 0.877 0.777 0.824 0.757 0.612 0.677

Pretrained 0.890 0.687 0.775 0.739 0.588 0.655
+ Copy 0.880 0.847 0.863 0.756 0.636 0.691

Table 2: Ablation study of GenerativeRE with different
settings

and disorder problem occur in multi-token triplets,
we conduct an extra experiment that compare Gen-
erativeRE with state-of-the-art baseline models in
terms of tackling the triplets that contain multi-
token entities, as we can see from Table 4, our
GenerativeRE consistently outperforms the base-
line models by 5.2%, 6.1%, and 1.4% F1 score in
terms of 2-token triplets, 3-token triplets, and more
than 3-token triplets, respectively.

NYT24 NYT29
Inc. Dis. Inc. Dis.

Raw model 539 179 425 47
+ Copy 135 127 249 37

Table 3: Number of incompletion and disorder errors
with different settings.

Models 2-token 3-token 3+ tokens
WordDec 0.765 0.643 0.642

PtDec 0.731 0.674 0.700
GenerativeRE 0.817 0.735 0.714

Table 4: F1 scores of different multi-token triplets in
NYT24.

4 Conclusion

In this paper, we propose GenerativeRE which in-
corporates a novel copy mechanism to extract the
entity and relation autoregressively. GenerativeRE
achieves state-of-the-art result on two benchmark
datasets, whiche improves the model effectiveness.

https://github.com/microsoft/unilm/tree/master/unilm
https://github.com/microsoft/unilm/tree/master/unilm
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A Appendix

A.1 Baselines and Evaluation Metrics

Since we extract entity and relation extraction in a
Seq2Seq framework, we compare the performance
of GenerativeRE with the following state-of-the-art
Seq2Seq models:

CopyRE (Zeng et al., 2018) firstly uses an
encoder-decoder framework to jointly extract enti-
ties and relations. It copies only the last token of
an entity from the input sentence.

CopyMTL (Zeng et al., 2019) construct their
models based on CopyRE and propose a multitask
learning framework used to extract complete enti-
ties.

MrMep (Chen et al., 2019) proposes a novel
architecture that augments the encoder and decoder
in two elegant ways. First, they apply a binary CNN
classifier for each relation. Second, they perform
a multi-head attention over the text and a triplet
attention with the target relation interacting with
every token.

WordDec (Nayak and Tou Ng, 2019) utilizes a
word-level decoder and copy mechanism to gener-
ate target sequence token-by-token

PtDec (Nayak and Tou Ng, 2019) is originated
from the same paper as WordDec, it uses a pointer
network-based decoder to generate the target se-
quence.

We follow Takanobu et al. (2018) for evaluation,
where each extracted triplet is recognized as correct
only if the full entity names and the corresponding
relations are all correct. The performance is calcu-
lated in terms of precision, recall, and F1 score.

A.2 Detailed Dataset Statistics

NYT29 NYT24
Train Test Train Test

relations 29 29 24 24
examples 63,306 4,006 56,196 5,000
triplets 78,973 5,859 88,366 8,120
2 token 42,920 2,718 37,352 3,335
3 token 6,410 406 6,362 566
3+ tokens 1,833 116 1,259 112

Table 5: Statistics of train/test split of the two datasets.
n-token denotes the number of examples that contain
n-token entities

A.3 Experimental Settings
The model structure of Unilm uses a 24-layer
Transformer with 1024 hidden size and 16 self-
attention heads. The model has been pretrained
on English Wikipedia2 and BookCorpus3, as well
as preprocessed in the same way as Devlin et al.
(2019). In the fine-tuning stage, we optimize net-
work parameters by Adam (Kingma and Ba, 2015)
with a 3e − 5 learning rate. The dropout rate is 0.1
and weight decay is 0.01. We also set up the maxi-
mum length of input sentence is 512, the vocabu-
lary size is 28996. The tokens and their correspond-
ing BIO labels are masked with 15 % possibility.
The trade-off parameter α is set to 0.1.

2https://www.english-corpora.org/wiki/
3https://github.com/soskek/bookcorpus

https://www.english-corpora.org/wiki/
https://github.com/soskek/bookcorpus
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A.4 Mask Strategy Demonstration
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World Health Month is declared every April by the World Health Organization
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Figure 2: Mask strategy workflow when BIO = I: To
predict the current token, there are three steps: (1) we
collect the previously predicted token until we meet the
nearest BIO = B, which are "world", "health" in this
case. (2) We use "world", "health" to match the same
sequence in the input text and collect all the next to-
kens "Month", "Organization" as our candidates. (3)
We mask all the token distribution except candidate
token "Month", "Organization", so that our model de-
coder will have a much higher possibility to gain the
correct prediction and avoid incompletion and disorder
problem, accordingly.

A.5 Case Study

Southeastern Connecticut is known primarily as a sea services
area , for the presence of the Naval Submarine Base in Groton and
the United States Coast Guard Academy in New London .

GenerativeRE:

< Connecticut, London, contains >

Baseline:

< Southeastern Connecticut, New London, contains>

√×

Incom
pletion

Errors

Ann Moore , the chief executive of Time Inc., and Norman
Pearlstine , the editor in chief , said in a memo to employees of
the Time unit .

GenerativeRE:

<Inc. Ann Moore, Time, conpany>

Baseline:

<Ann Moore, Time Inc., company>

√×

D
isorder

Errors

Figure 3: The extracted samples are error cases in base-
line models while being predicted correctly in Genera-
tiveRE.


