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Abstract

Pre-trained language-vision models have
shown remarkable performance on the visual
question answering (VQA) task. However,
most pre-trained models are trained by only
considering monolingual learning, especially
the resource-rich language like English.
Training such models for multilingual se-
tups demand high computing resources and
multilingual language-vision dataset which
hinders their application in practice. To
alleviate these challenges, we propose a
knowledge distillation approach to extend
an English language-vision model (teacher)
into an equally effective multilingual and
code-mixed model (student). Unlike the ex-
isting knowledge distillation methods, which
only use the output from the last layer of the
teacher network for distillation, our student
model learns and imitates the teacher from
multiple intermediate layers (language and
vision encoders) with appropriately designed
distillation objectives for incremental knowl-
edge extraction. We also create the large-scale
multilingual and code-mixed VQA dataset in
eleven different language setups considering
the multiple Indian and European languages.
Experimental results and in-depth analysis
show the effectiveness of the proposed VQA
model over the pre-trained language-vision
models on eleven diverse language setups.

1 Introduction

Visual Question Answering (VQA) is a challeng-
ing problem in computer vision (CV) and natural
language processing (NLP) that have gained pop-
ularity due to its many-fold benefits ranging from
assisting visually impaired users to establishing
effective communication with robots via intuitive
interfaces.

The existing works (Tan and Bansal, 2019; Antol

∗∗These authors contributed equally to this work.

et al., 2015) on VQA are mainly limited to the En-
glish questions, making it challenging to acknowl-
edge progress in foreign languages. Moreover, the
current language-vision models do not serve the
purpose in the code-mixed setting, where the mor-
phemes, words, phrases of one language are embed-
ded into the other language. Since code-mixing has
been a mean of communication in a multi-cultural
and multi-lingual society, the next generation of
artificial intelligence (AI) agents should be capable
to understand the Multilingual and Code-Mixed
(MCM) questions about the image.

In the recent past, the pre-trained language-and-
vision models (Su et al., 2020; Tan and Bansal,
2019; Li et al., 2019; Lu et al., 2019) have become
the state-of-the-arts for solving a variety of CV and
NLP problems. However, the majority of these
models are predominantly built for resource-rich
languages like English. Therefore, their abilities to
process and answer the MCM questions are limited
(c.f. Fig. 1).

To address this, we propose a highly effective
and unified VQA method that allows us to ex-
tend the existing monolingual language-and-vision
models to multilingual (in 6 different languages)
and code-mixed (in 5 different code-mixed lan-
guages) scenarios. Specifically, we develop a novel
knowledge distillation (Hinton et al., 2015) ap-
proach to distill the knowledge from the mono-
lingual language-and-vision transformer network
(teacher model) to multilingual and code-mixed
language-and-vision transformer network (student
model). This enables the student model to adapt to
any language and code-mixed scenarios.

To effectively transfer the knowledge from the
teacher network to the student network, we intro-
duce multiple distillation objectives which ensure
the incremental knowledge extraction from mul-
tiple intermediate layers of language-and-vision
transformer model. These objectives are formu-
lated to guide the student model to learn two key
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Figure 1: Example multilingual and code-mixed questions (same question), where pre-trained language-and-vision
models fails to correctly predict the answer except for English question.

characteristics: (1) unified question representation
across different languages, and (2) effective cross-
modal (image-question) representation where the
key objects in the image are attended irrespective
of the language of the questions. With these charac-
teristics, we are able to build a unified VQA model,
which can correctly predict the answers to multilin-
gual and code-mixed questions.

Furthermore, to combat the data scarcity, we also
create a large-scale (3.7M image-question pairs)
multilingual and code-mixed VQA dataset. To-
wards this, we utilize the English VQA1.0 (Antol
et al., 2015) dataset and extend it to multiple lan-
guages. We also create their code-mixing coun-
terparts by designing the linguistically informed
strategy to formulate the code-mixed question by
mixing the words/phrases from the English ques-
tion and the foreign language question. We evaluate
our proposed approach on the created dataset and
achieve 11.74% average improvement across all
the languages over the pre-trained language-vision
model.
Contributions:

1. We devise a robust knowledge distillation
framework for multilingual and code-mixed
VQA by introducing multiple task-specific
objective functions, which distill knowledge
from the English pre-trained language-vision
model to train and develop equally effective
multilingual and code-mixed VQA system.

2. We create the large-scale (3.7M) multilingual
and code-mixed VQA datasets in multiple lan-
guages: Hindi (hi), Bengali (bn), Spanish (es),
German (de), French (fr) and code-mixed lan-
guage pairs: en-hi, en-bn, en-fr, en-de and
en-es. This dataset is publicly available here1.

3. We demonstrate the effectiveness of our pro-
posed single student model that can correctly

1https://www.iitp.ac.in/~ai-nlp-ml/
resources.html

predict the answers to the questions of the var-
ious language combinations (on eleven (11)
different language-vision setups) including
code-mixed setups over state-of-the-art pre-
trained language-vision models.

2 Related Work

Multilingual and Code-Mixing: There is a re-
cent trend in developing methods and resources for
various NLP applications involving multilingual
and code-mixed languages. Some of the works
include question-answering (Raghavi et al., 2015;
Gupta et al., 2018b), word embedding (Chen and
Cardie, 2018; Lample et al., 2018; Pratapa et al.,
2018b), code-mixed text generation (Pratapa et al.,
2018a; Gonen and Goldberg, 2019; Gupta et al.,
2020a), code-mixed language modelling (Winata
et al., 2018; Gonen and Goldberg, 2019), and other
NLP tasks (Gupta et al., 2018a, 2016a,b, 2017).

Visual Question Answering: In the literature,
various VQA datasets (Silberman et al., 2012; Gao
et al., 2015; Antol et al., 2015; Goyal et al., 2017)
have been created to encourage multi-disciplinary
research. The popular frameworks for VQA ex-
plore attention mechanisms to learn the joint rep-
resentation of image and question (Fukui et al.,
2016; Kim et al., 2017; Yu et al., 2017; Kim et al.,
2018). Recently, with the success of Transformer
(Vaswani et al., 2017), Tan and Bansal (2019) pro-
posed cross-modality framework, LXMERT, for
learning the connection between vision and lan-
guage. There are other notable works (Su et al.,
2020; Zhou et al., 2020; Li et al., 2020), where the
Transformer-based models are pre-trained to learn
the joint language-vision representation. Knowl-
edge distillation has also been used in the literature
for the VQA task for the optimal training strat-
egy (Mun et al., 2018), knowledge transfer from
tri-modal to bi-modal (Do et al., 2019), and the
missing modalities (Cho et al., 2021). Unlike these,

https://www.iitp.ac.in/~ai-nlp-ml/resources.html
https://www.iitp.ac.in/~ai-nlp-ml/resources.html
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our current work focuses on knowledge transfer
from the monolingual pre-trained language-vision
model to the multilingual and code-mixed VQA.

3 Multilingual and Code-Mixed VQA
Dataset

Dataset Creation: The large-scale VQA dataset
(VQAv1.0) released by Antol et al. (2015) con-
tains the triplet information in the form of the ques-
tion, image, and answers. Gupta et al. (2020b)
introduced a VQA dataset named MCVQA, which
comprises questions in Hindi and Hinglish (i.e.,
code-mixed English and Hindi). However, the ap-
proach to create MCVQA dataset has two major
shortcomings: (1) algorithm is not scalable to other
languages, and (2) it requires the NLP components
(part-of-speech tagger, named entity recognizer,
transliteration, etc.) for the resource-scarce lan-
guages, which, themselves are an active research
area for the resource-scare languages.

To address these shortcomings, in this work,
we create the large-scale “Multilingual and Code-
mixed Visual Question Answering” (MuCo-VQA)
dataset which supports the five (5) languages (hi,
bn, es, de, and fr) and five (5) different code-mixed
settings (en-hi, en-bn, en-es, en-de, and en-fr).
To generate the code-mixed questions, we follow
the matrix language frame (MLF) theory (Myers-
Scotton, 1997) of code-mixed text. According to
MLF, a code-mixed sentence will have a dominant
language (matrix-language) and inserted language
(embedded-language). We utilize the Google ma-
chine translation to translate the English questions
from VQAv1.0 dataset to the foreign language xx
∈ {hi, bn, es, de, fr}. From the parallel questions
(en-xx), we learn the alignment of English words
in the foreign language question. Given a pair of
questions from the two languages (en-xx), we iden-
tify the words following Gupta et al. (2020a) from
the English question and substitute their aligned
counterparts (in foreign language question) with
the identified English words to synthesize the En-
glish embedded code-mixed questions. Please see
Appendix for the implementation details and sam-
ples of the MuCo-VQA dataset.

Analysis: Similar to the VQAv1.0 dataset, our
created MuCo-VQA dataset consists of 248, 349
training and 121, 512 test questions for each of the
five different languages and five code-mixed set-
tings. We perform a qualitative analysis of this
dataset by randomly selecting 5, 00 questions, each

from en, hi and corresponding en-hi. We seek an-
notation help from two bilingual (en, hi) experts to
manually translate and create the code-mixed ques-
tions. Towards this, we compute the BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004) and Transla-
tion Error Rate (TER) (Snover et al., 2006) consid-
ering the manually created code-mixed questions
as the gold standard; and the generated code-mixed
questions from MuCo-VQA as the candidates. We
compute the mean values of the individual scores
obtained from both experts. We found the BLEU:
78.34, ROUGE-L: 91.13, and TER: 8.23, which
show the generated code-mixed questions are close
to the human formulated code-mixed questions.
The detailed analysis and statistics in terms of code-
mixed complexity can be found in the Appendix.

4 Methodology

Our proposed knowledge distillation framework for
the VQA model is tailored to predict the answer for
multilingual and code-mixed questions. We utilize
LXMERT (Tan and Bansal, 2019), a pre-trained
English vision-language model, as the teacher net-
work to train our student network. Our student
network is inspired by the teacher network and
has three components, viz. (1) MCM Question
Encoder that processes and effectively encode the
multilingual and code-mixed questions, (2) Image
Encoder which learns the representation of the ob-
jects detected in the image, (3) Cross-Modality
Encoder, that learns the joint feature representa-
tion by applying the cross-attention on the language
and image features, and (4) Answer Prediction,
which predicts the answer for MCM questions.

4.1 Background
Transformer Block: For an input sequence
Sl = {Sl

1, S
l
2, . . . , S

l
|S|} of length |S| (which is the

output of the lth transformer block) the (l + 1)th

transformer block computes the hidden states Sl+1

as follows:

Ŝl+1
i = Sl

i + MHA(LayerNorm(Sl
i))

Sl+1
i = Ŝl+1

i + MLP(LayerNorm(Ŝl+1
i ))

(1)

where, MHA(.) is Multi Head Attention (Vaswani
et al., 2017), LayerNorm(.) is Layer Normal-
ization (Ba et al., 2016) and MLP(.) is a feed-
forward network. Based on Eq. 1, we define
Transformer-Block(.) as a function of input
Sl ∈ R|S|×d as follows:

Sl+1 = Transformer-Block(Sl) (2)
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4.2 Student Network
MCM Question Encoder: The input question
Q is tokenized using the WordPiece tokenizer (Wu
et al., 2016) to form the sequence of tokens
{t1, t2, . . . , tn} with length n. We compute the
word embedding wi for the ith token similar to
the teacher network LXMERT. Since, in this work,
we deal with multilingual and code-mixed ques-
tions; therefore, we utilize Multilingual-BERT (M-
BERT) (Devlin et al., 2019) model as our language
encoder. Multilingual-BERT is a single model pre-
trained on the monolingual Wikipedia corpora from
104 languages. The word embedding sequence
{w0=[CLS], w1, . . . , wn} (with the [CLS] token)
is passed to the stack of M-BERT encoders. Each
M-BERT encoder consists of the MHA(.) layer fol-
lowed by a point-wise feed-forward network with
the residual connection. We obtain the hidden state
representation HM = {hM0 , hM1 , . . . , hMn } from
M-BERT having M layers as follows:

h1
0, . . . , h

1
n = M-BERTl=1(w0, . . . , wn)

hM
0 , . . . , h

M
n = M-BERTl=M (hM−1

0 , . . . , hM−1
n )

(3)

For brevity, we will call {hM0 , hM1 , . . . , hMn } as
H = {h0, h1, . . . , hn} in rest of the paper.

Image Encoder: Given the input image I, we
extract k objects {o1, o2, . . . , ok} from Anderson
et al. (2018). For each object oj , we obtain RoI
features rj ∈ Rdr and bounding box co-ordinates
bj ∈ Rdb . We follow the object-relationship en-
coder from Tan and Bansal (2019) to obtain the
image representation. We first project RoI and co-
ordinates via a feed-forward network to obtain fj
and pj , respectively. Then we obtain the object
feature for the object oj as uj = (fj +pj)/2 ∈ Rd

. With k objects in the image, we obtain the object
feature matrix U0 ∈ Rk×d. We employ the stack
of Transformer-Block (c.f. Eq . 2) to encode
the image. For the first Transformer-Block,
we fed the object feature matrix U0 and obtain
the hidden state representations u11, . . . , u

1
k. Sub-

sequently, we obtain the final image representa-
tion U = UN ∈ Rk×d from the last layer (N ) of
Transformer-Block as follows:

u1, . . . , uk = Transformer-Block(UN−1) (4)

Cross-Modality Encoder: Given the MCM
question representation H ∈ Rn×d and im-
age representation U ∈ Rk×d, similar to
Tan and Bansal (2019), we aim to compute

the cross-modal representations using the lay-
ers of Transformer-Block. For a given
layer l, the cross-modality encoder consists of
two cross-attention layers (one from question
to image another from image to question) and
two Transformer-Block for each modality.
Cross-attention layer X-Att(.) takes the query
vector xq of the representation x from one of the
modals and compute the attention weight αj =
softmax(xq.ykj ) with the key vectors= ykj from
the other modality. Thereafter, it computes the fi-
nal cross-modal representation x =

∑
αjy

v
j as the

weighted average of the set of value vectors {yv}.
For the cross-modal representation H l ∈ Rn×d

from the lth layer of the question, we apply the
X-Att followed by the Transformer-Block
operation as follows:

h̃l
i = X-Att(hl−1

i , [ul−1
1 , ul−1

2 , . . . , ul−1
k ])

H̃l = [h̃l
0, h̃

l
1, . . . , h̃

l
n] ∈ Rn×d

H
l
= Transformer-Block(H̃l)

(5)

Similarly, the cross-modal representationU l for the
image considering the question as another modal
is computed. We use the L layers of cross-modal
encoders to encode the cross-modal representation.

Answer Prediction: To predict the answer for
the multilingual question, we take the output of
question from the last (Lth) cross-modal encoders.
We use the [CLS] token representation h

L
[CLS] ∈

Rd and predict the answer as follows:

P = gelu(WPh
L
[CLS] + cP )

p(Ai|X ; θS) = σ(WiP + ci)
(6)

where, WP ∈ R2d×d is the weight matrix and
cP ∈ R2d is the bias vector. σ denotes the sigmoid
function. Wi and ci are the ith entry of weight
matrix W ∈ Rd×|A| and bias vector c ∈ R|A|.
h
L
[CLS] ∈ Rd is the hidden state representation

of [CLS] token obtained from cross-modality en-
coder. |A| is the length of the answer vocabulary.
X is the set of input {Q, I}. p(Ai|X ; θS) is the
probability of the ith answer from answer vocabu-
lary A.

4.3 Distillation Objectives
In our knowledge-distillation framework, we pro-
pose multiple objectives to transfer the knowledge
from the monolingual Teacher network (with θT

parameters) to the MCM Student network (with θS

parameters):
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Objective 1 - CLS Token Distillation: The
[CLS] token embedding learned at the cross-
modality encoder represents the semantics of the
monolingual question-image pair in teacher net-
work and MCM question-image pair in student
network. We argue that it should learn a similar
representation to correctly predict the answer irre-
spective of the language. Towards this, we com-
pute the [CLS] token loss by computing the Mean
Squared Error (MSE) between the vector represen-
tation learned at the Cross-modality Encoder in the
teacher network and student network.

LCLS =

i=|L|∑
i=1

j=|MH|∑
j=1

MSE(h
T
(i,j,[CLS]), h

S
(i,j,[CLS]))

(7)

where, h
T
(i,j,[CLS]) ∈ Rd and h

S
(i,j,[CLS]) ∈ Rd are

the representation of the [CLS] token obtained
from the ith cross-modal encoder layer under jth

attention head from teacher and student network,
respectively. |MH| is the number of attention head
in the Transformer-Block.

Objective 2 - Object Attention Distillation:
The answer to a given question is defined by the
object detected in the image. It is to be noted that
the answer to a question is independent of the lan-
guage. We argue that in order to correctly predict
the answer to MCM questions, the student network
should attend the same object as the teacher net-
work. This helps in aligning the question repre-
sentation across different languages to the object
representation and thus assists towards learning the
effective language-agnostic cross-modal represen-
tation of the question-image pair. Towards this, we
compute the object attention loss (Lobject), which
measures the MSE between the raw score vectors
z ∈ Rk (obtained using the dot product between
[CLS] token’s query vector and set of object’s key
vector) learned at the Cross-modality Encoder in
the teacher network and student network.

Lobject =

i=|L|∑
i=1

j=|MH|∑
j=1

MSE(zT(i,j), z
S
(i,j)) (8)

where, zT(i,j) ∈ R
k and zS(i,j) ∈ R

k are the vector
raw scores obtained from the ith layer under the jth

attention head from Teacher and Student network,
respectively.

Objective 3 - Prediction Distillation: In addi-
tion to imitating the behaviors of intermediate lay-
ers, we also use the knowledge distillation to mimic

the predictions of teacher network. Specifically, we
penalize the binary cross-entropy loss between the
answer probabilities obtained from the teacher and
student network.

Lpred = −
i=|A|∑
i=1

p(Ai|X ; θT )log(p(Ai|X ; θS))+

(1− p(Ai|X ; θT ))log(1− p(Ai|X ; θS))

(9)

Objective 4 - Negative Log-likelihood Loss:
We also penalize the binary cross-entropy loss be-
tween the gold answer probability yi and model’s
predicted probability p(Ai|X ; θS) obtained from
the student network.

Lnll = −
i=|A|∑
i=1

yilog(p(Ai|X ; θS))+

(1− yi)log(1− p(Ai|X ; θS))

(10)

4.4 Learning

To apply the knowledge distillation, first, we need
to train our Teacher network, having θT parameters
with English questions from the VQAv1.0 dataset.
Thereafter, the Teacher network’s parameters are
frozen, and the Student network is trained with the
following objective function:

L = LCLS + Lobject + Lpred + Lnll (11)

During training, the Teacher network is fed with
the English question and the corresponding image,
and the Student network is fed with multilingual
and code-mixed questions (one language at a time)
and the corresponding image.

5 Dataset and Experiments

5.1 Datasets

We evaluate our proposed knowledge distilla-
tion framework on the MuCo-VQA dataset having
eleven different language setups, and the MCVQA
dataset (Gupta et al., 2020b) that consists of en,
hi, en-hi language setups. We train the Student
network with the training dataset from all these
languages. We take out 5% of the training dataset
as the validation dataset for evaluating and select-
ing the best Student model. The best Student
model is used to evaluate the performance of the
MuCo-VQA test dataset in all the language setups.
For evaluation, we follow the accuracy metric as
defined in Antol et al. (2015).
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5.2 Implementation Details

We use the pre-trained Multilingual BERT2 having
12 encoder layers, each having 12 attention heads
and a hidden dimension of 768 for each token. In
our proposed knowledge distillation framework, we
train the model on MuCo-VQA training dataset for
16 epochs. Since the input image remains the same
for the LXMERT model and our proposed model,
we initialize our image encoder weights with the
LXMERT object relationship encoders weights.

We set the maximum question length to 20
words. The numbers of objects extracted from the
image is k = 36 and the dimension of bounding
box coordinates and RoI features are db = 4 and
dr = 2048, respectively. For the Teacher network,
the language encoder has M = 9 layers, the image
encoder has N = 5 layers, and the cross-modality
encoder has the L = 5 layers. Similarly, in the
Student network, the values of these layers are
M = 12, N = 5, L = 5. During training, we
fine-tune the top 4 M-BERT encoders and the top
2 image encoders. We learn the cross attention
layer from scratch to align the multilingual and vi-
sion embeddings. For the CLS token distillation,
we set the layers i ∈ {1, 4} and attention head
j ∈ {1, 4, 5}. Optimal values of the hyperparame-
ters are chosen based on the model performance on
the development set of MuCo-VQA dataset.

5.3 Baselines

We compare the performance of the proposed
network with the following baseline models.
(1) LXMERT: We train the individual LXMERT
model on the training dataset of each language
from MuCo-VQA dataset and evaluate the perfor-
mance on the respective test dataset.
(2) Joint LXMERT: We train the single LXMERT
model on all the training datasets of each language
from MuCo-VQA dataset and evaluate the perfor-
mance on the respective test dataset.
(3) Joint LXMERT+ M-BERT: This baseline is
similar to the Joint LXMERT, but the monolingual
language encoder is replaced with a multilingual
M-BERT encoder.
(4) VL-BERT (Su et al., 2020): We also
compare the performance of our proposed
model with the VL-BERT base model
(vl-bert-base-e2e.model). We train
a separate VL-BERT model on the training dataset

2https://github.com/google-research/
bert/blob/master/multilingual.md

of each language from the MuCo-VQA dataset and
evaluate the performance on the respective test
dataset.
(5) VisualBERT (Li et al., 2019): Similar to the
LXMERT, we also compare the performance of
our proposed network on the MuCo-VQA dataset
with the VisualBERT monolingual model.

5.4 Results

We report the performance of the baseline models
and our proposed model on MuCo-VQA dataset in
Table 1. We also reported the answer-type wise
results on MuCo-VQA dataset in Table 3. Our
proposed model achieves 70.76 overall accuracy
and outperforms the best monolingual and mul-
tilingual baselines with significant improvements
of 2.86 and 11.74, respectively. Our proposed ap-
proach also outperforms the state-of-the-art model
on MCVQA dataset (c.f. Table 2) with considerable
performance improvement of 5.07%. We could not
observe a similar improvement on en language, be-
cause the LXMERT teacher model (en) is already
pre-trained with the English VQA dataset.

It is to be noted that each monolingual model
is trained separately with the respective language
dataset and has a different model for each lan-
guage setup. The results conclude two important
claims: (1) effectiveness of knowledge distillation
approach to handle MCM questions, and (2) scala-
bility of our proposed single unified VQA model
that can deal with questions from all the languages
and their code-mixed setups.

We also perform the ablation study (c.f. Ta-
ble 1) on different distillation objective functions.
The results show that Object Attention Distillation
(Lobject) is the most contributing objective func-
tion, removal of which leads to the 3.49% decre-
ments in the overall average accuracy. We also ob-
serve the importance of the CLS Token Distillation
(LCLS). This is the key loss function responsible
for aligning the same multilingual and code-mixed
questions in the vector space, and removing it leads
to 1.68% decrements in overall average accuracy.
Similarly, we observe 1.45% and 1.41% perfor-
mance drops after the removal of Lpred and Lnll
objective functions, respectively. The observed
improvements over the multilingual baselines are
statistically significant as p < 0.05 for the t-test
using Dror et al. (2018). Please see the Appendix
for additional results.

https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Models bn en-bn de en-de es en-es fr en-fr hi en-hi en Average
M

on
ol

in
gu

al
LXMERT

(Tan and Bansal, 2019)
60.74 64.95 67.95 70.52 68.66 71.27 68.43 71.12 59.83 69.95 73.57 67.90

VL-BERT
(Su et al., 2020)

58.53 61.30 64.29 65.33 64.79 66.09 64.72 65.84 59.40 65.28 67.30 63.89

VisualBERT
(Lu et al., 2019)

61.45 64.20 66.74 67.49 67.31 67.42 66.35 67.21 59.68 63.67 68.12 65.42

M
ul

til
in

gu
al

Joint LXMERT
(Tan and Bansal, 2019)

48.44 60.07 58.02 62.79 58.41 63.07 58.34 62.96 50.28 61.52 65.41 59.02

Joint LXMERT+ M-BERT 55.68 56.89 57.73 58.01 57.87 58.34 57.45 57.82 56.22 57.18 58.78 57.45
Proposed Approach 69.62 70.19 70.89 70.80 71.14 71.11 70.93 71.13 70.23 70.78 71.66 70.76

−LCLS 67.95 68.50 69.18 69.06 69.45 69.59 69.23 69.42 68.55 69.05 69.91 69.08
−Lobject 66.02 66.56 67.30 67.32 67.60 67.74 67.32 67.56 66.66 67.13 68.80 67.27
−Lpred 68.17 68.77 69.40 69.32 69.65 69.88 69.42 69.62 68.77 69.30 70.11 69.31
−Lnll 68.17 68.83 69.50 69.41 69.70 69.88 69.48 69.47 68.80 69.35 70.28 69.35

Table 1: Performance comparison between the state-of-the-art baselines and our proposed model on the
MuCo-VQA dataset. All the numbers are shown in % and denote the overall accuracy.

Models en hi en-hi Average
LXMERT (Tan and Bansal, 2019) 73.02 63.33 68.77 68.37

VL-BERT (Su et al., 2020) 67.28 59.32 63.28 63.29
VisualBERT (Li et al., 2019) 68.04 59.69 63.62 63.78

Gupta et al. (2020b) 65.37 64.51 64.69 64.85
Proposed Approach 71.37 69.94 69.47 70.26

Table 2: Performance comparison of different models
on the MCVQA dataset.

Language Number Other Yes/No Overall
en 51.15 64.56 88.02 71.66
bn 50.62 62.16 85.97 69.62

en-bn 50.78 62.89 86.45 70.19
de 50.86 63.50 87.49 70.89

en-de 50.84 63.34 87.45 70.80
es 50.93 63.95 87.54 71.14

en-es 50.94 64.19 87.68 71.11
fr 50.95 63.47 87.61 70.93

en-fr 51.01 63.84 87.58 71.13
hi 50.72 62.57 87.01 70.23

en-hi 50.95 63.30 87.43 70.78

Table 3: Performance of our proposed model on dif-
ferent answer types across all the language setups in
MuCo-VQA dataset

5.5 Discussion and Analysis

Behavior Analysis: We analyze the behavior of
our proposed VQA model along the following di-
mensions:
(a) Question Understanding: Motivated from
Agrawal et al. (2016), we analyze the performance
of the model as a function of partial question length
to establish the fact that the proposed model is more
sensitive to MCM questions as compared to other
pre-trained models. To examine this, we fed the
LXMERT (monolingual), Joint-LXMERT (multi-
lingual), and the proposed model (multilingual)
with partial questions in the range of 20 to 100% in
an incremental manner. We observe (c.f. bar chart
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Joint LXMERT (multilingual) model
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en-de

Joint LXMERT (multilingual) Accuracy
LXMERT (monolingual) Accuracy
Proposed Model (multilingual) Accuracy

% of question length fed as input to the model

Figure 2: Performance comparison of different models
for question understanding by varying the partial ques-
tion as input to the model.

in Fig. 2) that our proposed model does not jump
to quick conclusions by looking at partial questions
as the overall accuracy is comparatively low for the
proposed model for the incomplete questions. How-
ever, with full questions, the accuracies are high
for the proposed model, indicating that the model
is sensitive to questions in different languages.

Furthermore, we also analyze what percentage
of answers do not change when the partial ques-
tions are provided as input to the model. We can
observe from the line chart of Fig. 2 that our
proposed model is capable of changing the an-
swers when more question words are received as
input to the model, unlike the LXMERT and Joint
LXMERT model where the answers remain the
same for around 50% of the questions. Addition-
ally, to assess the role of syntax and semantics
of the multilingual input questions, we analyze the
performance of the system by feeding the randomly
shuffled questions in Fig 6. The results show that
our model is capable of understanding the question
semantics.
(b) Alignment: We also analyze the alignment of
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(b) Proposed Approach
Figure 4: t-SNE visualization for MCM questions in all
eleven language setups. For proposed approach (b), we
observe that the question representations of the same
questions (shown in the same color) in different lan-
guages are very close in vector space unlike the Joint
LXMERT model (a).
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Figure 5: Heatmap of the learned attention weight (for
the question: “What kind of building is shown?” in en
(left) and en-hi (right) code-mixed ) for objects in the
image from our proposed model. The proposed model
is able to focus on the same object and correctly predict
the answer irrespective of the language of the question.
x-axis shows the heads of self-attention.

the learned MCM question representation from our
MCM Question Encoder. Towards this, we project
the question representation ([CLS]) of the same
question asked in different MCM settings using the
t-SNE visualization (Van der Maaten and Hinton,
2008) in Fig 4. The plot shows that the question
representations learned from the Joint LXMERT
model are scattered in the vector space. In contrast,
our proposed model learns the question represen-
tations, which are very close in the vector space,
indicating the capability of the model to learn the
language-agnostic question representations, which
help the model to correctly predict the answer of
the MCM questions.

In addition, we also analyze the cross-modal
alignment learned from our proposed model. To-
wards this, we plot the attention heatmap (c.f. Fig
5) from the cross-modal encoder (X-Att). We an-
alyze that our proposed model is able to effectively
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Figure 6: Performance comparison of the proposed
model with shuffled questions and original questions
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Figure 7: Zero-shot performance comparison of the
proposed model on the different languages

learn the language-agnostic cross-modal represen-
tation, where the key objects from the images are
attended to predict the correct answer for MCM
questions. We also show (in the Appendix) that
the cross-modal representation learned from the
proposed model is tightly coupled with the image
and question as the attention to objects get changes
when the different questions are asked from the
same image. Overall this analysis confirms that our
model is not myopic to images and MCM questions
to predict the answers.
(c) Zero-shot Capability: We also assess the
zero-shot capability of our proposed model. To-
wards this, we perform the experiments on the six
more languages, viz. Arabic (ar), Italian (it), Rus-
sian (ru), Urdu (ur), Polish (pl), and Portuguese
(pt). We evaluate the performance of our pro-
posed model in zero-shot manner on the 500 ques-
tions translated into the respective languages (using
Google translation). We compare the performance
(c.f. Fig 7) with the multilingual Joint LXMERT
model. The proposed model achieves better overall
accuracy compared to the Joint LXMERT model.
This demonstrates the capability of our model
on the unseen languages, which eventually con-
firms that the proposed distillation objectives have
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Q1: What is this man holding?
GT Answer: Turkey
Predicted Answer: Bird

Q2: How many light bulbs
should there be in the lamp?
GT Answer: 2
Predicted Answer: 3

Q3: What is the speed limit?
GT Answer: 30
Predicted Answer: 25

Q4: What is on the green chair
in the corner?
GT Answer: Broom
Predicted Answer: pillow

Q5: How old is the boy?
GT Answer: 2 years
Predicted Answer: 3 years

model is able to answer the questions from differ-598

ent languages and code-mixed settings. In future,599

we plan to explore model compression with quan-600

tization/pruning for multilingual and code-mixed601

visual question answering.602

7 Ethical Declaration603

All the datasets used in this paper are publicly avail-604

able. The dataset used in this paper is used only605

for the purpose of academic research. There are606

no ethical concerns associated with the research607

carried out here.608
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Figure 8: Examples from the various type of errors committed by our proposed model

guided the student to learn the robust cross-modal
representations. Please see the Appendix for the
detailed qualitative analysis.

Error Analysis: We categorize the following
major sources of errors by sampling 200 incorrectly
predicted answers:
(a) Answer Specificity and Ambiguity (E1):
This type of error occurs when the objects in the
image can be interpreted in multiple ways based
on their visual surroundings. In those cases, our
model sometimes predicts the incorrect but seman-
tically similar to the ground truth (GT) answer. For
example, Q1 in Fig. 8, the question is “What is the
man holding". Our model predicts the ‘bird’ as the
answer for all languages of the questions. However,
the ground truth answer is ‘Turkey’, which is more
specific and semantically similar.
(b) Object Counting (E2): We observe that our
proposed model sometime predicts the incorrect
answer for the counting type questions. The exam-
ple is shown as Q2 of Fig 8.
(c) Character Recognition (E3): This type of er-
ror occurs when the answer to the MCM questions
can only be predicted by recognizing the characters
from the images. The example is shown in Fig. 8
(Q3), where the GT answer is ‘30’ (speed limit),
but the model predicts the incorrect answer ‘25’
because it could not recognize the character written
in the image.
(d) Spatial Interpretation (E4): Such errors oc-
cur when the model cannot correctly interpret the
spatial information in the image. The example is
shown in Fig. 8 (Q4), where the model predicted
the ‘pillow’ as the answer instead ‘broom’.
(e) Answer Reasoning (E5): This type of error
occurs for the question, requiring understanding
the causal relationship or in-depth reasoning to cor-
rectly predict the answer. We show the example
(Fig. 8 (Q5)), where to infer the age of the boy, the
system has to establish the fact that number of can-

dles on the cake can determine the age. There are
some other errors caused by parallel question align-
ment and translation of the questions. We found
the error E5 contributes to the maximum of 26.5%,
E1: 23.5%, E3: 21%, E2: 16%, E4: 9% and other
types of error contributes to 4% of the total errors.

6 Conclusion

This paper proposes a unified framework for mul-
tilingual and code-mixed VQA by distilling the
knowledge from the monolingual language-vision
pre-trained LXMERT model. To fully utilize the
rich information from the question, image, and
cross-modal encoders, we devise effective distilla-
tion objectives to encourages the student model to
learn from the teacher through a multi-layer distilla-
tion process. To train and evaluate the proposed ap-
proach, we have created a large-scale MuCo-VQA
dataset supporting eleven different MCM settings.
Extensive experiments over the MuCo-VQA and
MCVQA datasets demonstrate the effectiveness of
our proposed approach.
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A Multilingual and Code-Mixed VQA
Dataset

A.1 MuCo-VQA Dataset Creation

We use the Indic-nlp-library3 to tokenize the ques-
tions of the Indic languages and Moses based to-
kenizer4 for remaining languages. Following, we
learn the alignment matrix using the fast alignment
technique proposed in Dyer et al. (2013). The align-
ment helps to select the words or phrases to be
mixed in the code-mixed question. Thereafter, we
construct the aligned phrases between the English
and foreign language questions. We extract the
PoS, named entity (NE), and noun phrase (NP)
from the English questions and mix them in the
proper places of the corresponding Hindi questions.
More specifically, we start with the NEs of types
‘PER’, ‘LOC’, and ‘ORG’ in the English question
and replace the corresponding words in the foreign
language questions with the detected NEs from the
English question. Similarly, we replace the corre-
sponding words in the foreign language questions
with the detected NPs from the English question.
Finally, we also follow the same for the PoS tags
‘Adjective’. We utilize the constructed phrase and
alignment information to identify the appropriate
places to insert English words in the foreign lan-
guage questions.

A.2 Analysis

We compute the complexity of the generated code-
mixed questions using the Code-Mixing Index
(CMI) (Gambäck and Das, 2014), Switch Point
Fraction (SPF) (Pratapa et al., 2018a; Gupta et al.,
2020a) and Complexity Factor (CF) (Ghosh et al.,
2017) for the entire code-mixed questions from
MuCo-VQA dataset (Table 5) and aforementioned
500 questions. These are the standard metrics used
in the literature to indicate the level of language

3https://github.com/anoopkunchukuttan/
indic_nlp_library

4https://github.com/moses-smt/
mosesdecoder
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Qen : Are there trees near the building?
Qes : ¿Hay árboles cerca del edificio ?
Qen-es : ¿Hay trees cerca del building?    

English-Spanish Code-Mixed

Qen : Are there trees near the building?
Qhi : �ा इमारत के पास पेड़ ह� ?
Qen-hi : �ा building के पास trees ह�?    

English-Hindi Code-Mixed

Qen : Are there trees near the building?
Qfr : Y a-t-il des arbres près du bâtiment ?
Qen-fr : Y a-t-il des trees près du building?

English-French Code-Mixed

Yes
Answer

Qen : Are there trees near the building?
Qbn : ভবেনর কােছ িক গাছ আেছ ?
Qen-bn : building কােছ িক trees আেছ ?

English-Bangla Code-Mixed

Qen : Are there trees near the building?
Qde : Gibt es Bäume in der Nähe des Gebäudes?
Qen-de : Gibt es trees in der Nähe des building?

English-German Code-Mixed

Qen : What type of animal is in the scene?
Qde : Welche Art von Tier ist in der Szene ?
Qen-de : Welche type von animal ist in der scene?

English-German Code-Mixed

Qen : What type of animal is in the scene?
Qfr : Quel type d'animal est dans la scène ?
Qen-fr : Quel type animal est dans la scene?

English-French Code-Mixed

Qen : What type of animal is in the scene?
Qes : ¿Qué tipo de animal hay en la escena?
Qen-es :¿Qué type de animal esta en la scene?    

English-Spanish Code-Mixed

Qen : What type of animal is in the scene?
Qhi : �� म� िकस �कार का जानवर है?
Qen-hi : scene म� िकस type का animal है?    

English-Hindi Code-Mixed

Qen : What type of animal is in the scene?
Qbn : দৃেশ� কী ধরেণর �াণী রেয়েছ?
Qen-bn : িক type animal scene আেছ?

English-Bangla Code-Mixed

Zebras
Answer

Figure 9: Sample questions (in multiple languages and code-mixed settings) with their corresponding images and
answer from our MuCo-VQA dataset.

mixing in the code-mixed sentence. For the 500
questions, the mean values of the individual score
obtained from each human expert are shown in
Table 4. Our analysis shows that the code-mixed
questions in MuCo-VQA dataset have similar CMI
and SPF scores compared to the human formu-
lated code-mixed questions. Similar observations
are also made for the CF2 and CF3 metrics. The
reported values in Table 4 also indicate that the au-
tomatically generated questions are slightly more
complex (in terms of mixing the language) than the
human-annotated code-mixed questions.

Metrics BLEU ROUGE-L TER CMI SPF CF2 CF3
MuCo-VQA 78.34 91.13 8.23 33.42 79.65 13.14 12.27

Human NA NA NA 33.23 80.21 13.43 12.59

Table 4: Comparison of the generated code-mixed ques-
tions in terms of the level of code-mixing (CMI, SPF,
CF2, and CF3) and quality of the generated code-mixed
questions (BLEU, ROUGE-L, and TER). Here, NA:
Not applicable as the scores are computed against the
human annotation itself.

B Teacher Network

Learning Cross-Modality Encoder Representations
from Transformers (LXMERT) (Tan and Bansal,
2019) is a pre-trained language model to learn
the language-vision representation. It is built
with the self-attention and cross-attention layers.
The LXMERT model is pre-trained with a large
amount of image-and-sentence pairs from VQA
v2.0 (Goyal et al., 2017), GQA (Hudson and Man-
ning, 2019), and VG-QA (Zhu et al., 2016) datasets.
It is pre-trained on different tasks, such as masked
object prediction, masked language modeling, vi-
sual question answering, and cross-modality match-
ing.

Given a text and an image as inputs, LXMERT
learns the language, image, and cross-modality
(language-image) representations from the inputs.
The language embedding is created using the word

and position embeddings followed by applying the
layer normalization operation on the embeddings.
The language encoder, composed of Transformer
encoders, takes the language embedding as input
and generates the language representation. The im-
age embedding is generated using the features of
the detected objects from the image. Each detected
object in the image is represented by its position
and region-of-interest (RoI) features. The final
image embedding is computed by averaging the
revised position and RoI features using the layer
normalization operation on the respective feature.
The image embedding is passed into the image en-
coder, which is another transformer encoder. The
cross-modality encoders are the stack of multiple
encoder layers. Each encoder layer consists of two
self-attention sub-layers, one bi-directional cross-
attention sublayer, and two feed-forward sub-layers.
The bi-directional cross-attention sub-layer con-
tains one sub-layer from language to image and
another from image to language.

C Additional Implementation Details

To update the model parameters, we use the Adam
(Kingma and Ba, 2015) optimization algorithm
with the learning rate of 1e − 5. We obtain the
optimal hyper-parameter values based on the per-
formance of the model on the validation set of
MuCo-VQA dataset. We use a cosine annealing
learning rate (Loshchilov and Hutter, 2017) decay
schedule, where the learning rate decreases linearly
from the initial rate set in the optimizer to 0. To
avoid the gradient explosion issue, the gradient
norm was clipped within 6. For doing the baseline
experiments, we follow the official source code and
train the model on the MuCo-VQA dataset. All the
experiments are performed on a single GeForce
GTX 1080 Ti GPU having GPU memory of 11GB.
The average runtime (each epoch) for the proposed
approach is 2.5 hrs.
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Figure 10: Performance comparison between the state-of-the-arts (LXMERT and Joint LXMERT) models and
proposed model for question understanding by varying the partial question as input to the model.

Language
Pairs

#Code-Mixed
Question: Train

% of
Code-Mixed SPF CMI #Code-Mixed

Question: Test
% of

Code-Mixed SPF CMI

en-bn 243,203 97.93 92.47 35.65 118,989 97.92 92.21 36.14
en-de 242,854 97.79 81.22 33.96 118,895 97.85 81.46 34.05
en-es 234,570 94.45 74.80 31.69 114,747 94.43 74.80 31.70
en-fr 241,430 97.21 80.27 33.98 118,112 97.20 80.17 33.93
en-hi 242,963 97.83 78.35 32.82 118,935 97.88 78.54 32.80

Table 5: Statistics of generated code-mixed questions and along with the training and test set distributions. We
also show the complexity of the generated code-mixed sentence in terms of SPF and CMI
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Ques: What color is the upper tier of the bus?
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Ques:        ?

trans: What color is the upper tier of the bus?
Ground Truth: white

Answer by Proposed Model: white
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Language: English
Ques: What color is the lower tier of the bus?

Ground Truth: red

Answer by Proposed Model: red
Corresponding Attention Map
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Language: Hindi
Ques:        ?

trans: What color is the lower tier of the bus?
Ground Truth: red

Answer by Proposed Model: red
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Figure 11: Heatmap of the learned attention weight for various objects in the image from our proposed model
(Top) and LXMERT (Bottom). The proposed model is able to attend to the correct objects (the one attended by
LXMERT when the English question is passed) in a language-agnostic way and hence predict the correct answer
for MCM questions. However, the LXMERT monolingual model attends to the same objects and focuses only
on the image giving same answers irrespective of the question. This shows the efficiency and robustness of the
proposed model as it is sensitive to the question and maintains similar behavior across the languages.

Language bn en-bn de en-de es en-es fr en-fr hi en-hi en average
Validation Accuracy 72.98 73.51 74.08 73.88 74.29 74.52 74.25 74.43 73.42 74.13 74.86 74.03

Table 6: Performance of our proposed model on MuCo-VQA validation dataset of different languages.

Q: What is this man holding?
GT Answer: Turkey
Predicted Answer: Bird

(a)

Q: How many light bulbs should
there be in the lamp?
GT Answer: 2
Predicted Answer: 3

(b)

Q: What is the speed limit?
GT Answer: 30
Predicted Answer: 25

(c)

Q: What is on the green chair in
the corner?
GT Answer: Broom
Predicted Answer: pillow

(d)

Q: How old is the boy?
GT Answer: 2 years
Predicted Answer: 3 years

(e)

Q: Is the hat made with cloth or
plastic?
GT Answer: Plastic
Joint LXMERT: Cloth
Our Proposed: Plastic

(a)

Q: What are the people doing?
GT Answer: Watching
Joint LXMERT: Playing tennis

Our Proposed: Watching

(b)

Q: What happened to the glass
object?
GT Answer: Broken
Joint LXMERT: Paint
Our Proposed: Broken

(c)

Q: Which zebra is closest to the
fence?
GT Answer: left
Joint LXMERT: right
Our Proposed: left

(d)

Q: What does the surfer have on?
GT Answer: wetsuit
Joint LXMERT: surfboard
Our Proposed: wetsuit

(e)

Figure 7: Sample questions (in English, Hindi and Code­Mixed) with their corresponding images and answers (in
English, Hindi) from our MCVQA dataset.

13

Figure 12: Sample questions where our proposed model perform better and correctly predict the answer compare
to the multilingual Joint LXMERT model.


