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Abstract

Contextual language models have led to sig-
nificantly better results, especially when pre-
trained on the same data as the downstream
task. While this additional pre-training usu-
ally improves performance, it can lead to infor-
mation leakage and therefore risks the privacy
of individuals mentioned in the training data.
One method to guarantee the privacy of such
individuals is to train a differentially-private
language model, but this usually comes at the
expense of model performance. Also, in the
absence of a differentially private vocabulary
training, it is not possible to modify the vo-
cabulary to fit the new data, which might fur-
ther degrade results. In this work we bridge
these gaps, and provide guidance to future re-
searchers and practitioners on how to improve
privacy while maintaining good model perfor-
mance. We introduce a novel differentially
private word-piece algorithm, which allows
training a tailored domain-specific vocabulary
while maintaining privacy. We then experi-
ment with entity extraction tasks from clinical
notes, and demonstrate how to train a differen-
tially private pre-trained language model (i.e.,
BERT) with a privacy guarantee of ε = 1.1 and
with only a small degradation in performance.
Finally, as it is hard to tell given a privacy pa-
rameter ε what was the effect on the trained
representation, we present experiments show-
ing that the trained model does not memorize
private information.

1 Introduction

Recent advancements in natural language process-
ing (NLP), mainly the introduction of the trans-
former architecture and contextual language rep-
resentations, have led to a surge in the perfor-
mance and applicability of large language mod-
els (Vaswani et al., 2017; Devlin et al., 2019).
Such models rely on pre-training on massive self-
labeled corpora to incorporate knowledge within
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the language representation. Additionally, when
presented with a new dataset and task, such models
often gain from an additional pre-training stage,
where they are trained to solve a language model-
ing task on the new training data.

While the pre-training steps are crucial for good
model performance on downstream tasks, it can
come at the expense of the privacy of the persons
mentioned in the data. As these models learn to pre-
dict words using their context, they often memorize
individual words and phrases. Such memorization
can lead to information leakage when using the
trained models or the language representation. This
problem is particularly acute in medical domains,
where sensitive patient data might leak (Hartman
et al., 2020; Feder et al., 2020).

One solution for pre-training the model while
preserving patients’ privacy is to train the model
with a differential privacy guarantee (Abadi et al.,
2016b). Such guarantee is achieved through a train-
ing process which introduces random noise, allow-
ing the modeler to bound the effect an individual
has on the model. However, for a sufficiently small
privacy parameter ε, this usually comes at the ex-
pense of model performance. Also, differentially
private training schemes were only shown to work
for recurrent language models, and not for more
recent systems that are based on the transformer
architecture (McMahan et al., 2018; Kerrigan et al.,
2020).

Apart from their size (110M trainable parameters
for BERT), transformer-based language models in-
troduce an additional privacy concern. When using
pre-trained language models on new datasets, we
can often improve performance by learning a new
domain-specific vocabulary, and re-training the
model with the new tokenizer (Section 5). Unfortu-
nately, commonly used transformer-based models
such as BERT rely on the WordPiece tokenization
algorithm (Wu et al., 2016b), which uses the dis-
tribution of words in the data and can therefore
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potentially leak private information as well.
Finally, even if we successfully train a contex-

tual embedding model with a sufficiently small ε
guarantee, it is hard to test and evaluate the re-
sulting privacy-preserving properties of the model.
One also has difficulty understanding whether the
differentially-private training procedure affected
the language representation other than by measur-
ing performance on a downstream task. For exam-
ple, it could be that other valuable information was
also lost during the differentially private training.

In this work, we provide a detailed solution
to training a differentially-private vocabulary and
contextual embedding model, and to better under-
standing the resulting representation. We present a
method for training BERT, a contextual embedding
model, on medical data with a strong privacy guar-
antee of ε = 1.1 in total (including the private Word-
Piece and pre-training algorithms) and with only a
small degradation in performance (Section 2.1). To
do that, we introduce the first differentially private
WordPiece algorithm, designed to generate a new
domain-specific vocabulary while maintaining user
privacy (Section 3.2). Following that, we success-
fully generate a differentially private BERT model,
which uses the new vocabulary to improve results
on the downstream tasks.

Possibly the most major technical challenge in
pre-training a differentially-private contextual em-
bedding model is the fact that the training batch
size has to be very large (128K), all the while
training on specific hardware (TPUs) in which the
batch size is limited. We overcome this obstacle
by spreading each training batch over time during
the training process, along with other useful ma-
nipulations we discuss in Section 2.1. Finally, after
training the differentially-private BERT on clinical
notes, we follow common wisdom (Carlini et al.,
2019) and provide privacy tests showing that infor-
mation leakage has been prevented in this process
(Section 5). We hope that this work will further im-
prove user privacy, and will spur more theoretical
and empirical research in the intersection of differ-
ential privacy and natural language processing.

2 Previous Work

Since the introduction of the differentially-private
Stochastic Gradient Descent (SGD) algorithm
(Song et al., 2013; Abadi et al., 2016b), it is possi-
ble to train deep neural networks (DNN) with pri-
vacy guarantees. Specifically, there have been sev-

eral attempts to train DNN-based language models
with such guarantees, though with mixed results in
terms of performance on downstream tasks (McMa-
han et al., 2018; Kerrigan et al., 2020). To better
understand the trade-offs between the performance
and privacy of deep language models, we survey
here the literature on differentially-private training
and on methods for measuring privacy in language
models.

2.1 Training Differentially-Private Models
Differential Privacy (DP; Dwork et al., 2006;
Dwork, 2011; Dwork et al., 2014) is a framework
that quantifies the privacy leaked by some random-
ized algorithm accessing a private dataset, reader
unfamiliar with DP, can consult the short introduc-
tion in Appendix A. In the context of training a
machine learning model on private data, it enables
one to bound the potential privacy leakage when
deploying the model to the world.
Definition 1 ((ε, δ)-DP). Given some ε, δ > 0, we
say that algorithm A has (ε, δ)-differential privacy,
if for any two datasets D, D′ differing in a single
element and for all S ⊆ Range(A), we have:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

The leading method for training models with
small differential privacy parameters ε, δ is the DP-
SGD method introduced by Abadi et al. (2016b).
The method was subsequently incorporated into
Tensorflow’s privacy toolbox with improved pri-
vacy analysis (Mironov, 2017; Mironov et al.,
2019). The basic idea behind DP-SGD is to clip
and add noise to the per-example gradients of the
loss function during model training. The intuition
is that such a mechanism guarantees that, for each
step, the influence of each example on the outcome
is bounded.

In the context of NLP, there have been several at-
tempts to train language models using the DP-SGD
algorithm. Specifically, McMahan et al. (2018) pre-
sented a pipeline for training differentially-private
language models based on the recurrent neural net-
work (RNN) architecture. While successful on the
RNN architecture, results on a fine-tuned trans-
former, specifically GPT-2, were shown to be less
successful in preserving privacy without hurting
task performance (Kerrigan et al., 2020). In this
paper, we present the first, as far as we know, suc-
cessfully trained differentially private BERT model,
with a strong privacy guarantee and with only a
small decrease in downstream performance.
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2.2 Evaluating the Privacy of Language
Models

While differential privacy training provides privacy
guarantees (in terms of the privacy parameters ε, δ),
it is often hard to evaluate the practical implication
of such a guarantee. When evaluating language
models it becomes even trickier, as private informa-
tion might be encoded in specific phrases contained
in the text, but it can also be implicitly contained in
the language model. In the context of clinical notes,
for example, information regarding the linguistic
style of the doctor can be captured and predicted
from linguistic cues in the text itself (Rosenthal
and McKeown, 2011; Preoţiuc-Pietro et al., 2015;
Coavoux et al., 2018).

Song and Raghunathan (2020) studied informa-
tion leakage from language representations, and
presented several methods for evaluating the pri-
vacy preserving qualities of trained language mod-
els. They provided a taxonomy of adversarial at-
tacks, differing by the adversary’s access to model’s
internal state. Specifically, they defined member-
ship attacks on language representation, which are
designed to detect memorized information. In this
paper, we build on the secret sharer membership
test, a method for quantitatively assessing the risk
that rare or unique training-data sequences are un-
intentionally memorized by generative sequence
models (Carlini et al., 2019). While not specifically
designed for language models such as BERT, it fits
the DP evaluation setup perfectly. Concretely, in
this test a secret sharer plants n identical occur-
rences of a k-WordPiece token sequence into the
train corpus. The sequence itself consists of i.i.d.
random tokens where the secret is the middle token.
The model is then trained on the modified corpus
and evaluated for each planted sequence by trying
to predict the secret token.

In Section 5, we show that unlike the original
BERT model, our trained DP-BERT model does
not memorize sequences of words introduced via
the secret sharer.

3 Training Differentially Private
Contextual Language Models

Training differentially private language models
becomes exceedingly difficult with model size.
Hence, attempting to train a transformer model
such as BERT using the DP-SGD algorithm, with-
out any modifications, is bound to result in a sig-
nificant performance degradation (Kerrigan et al.,

2020). Moreover, as the WordPiece algorithm, the
process that tokenizes the textual input of BERT,
is not differentially private, re-training it to fit a
domain-specific vocabulary will not guarantee that
there is no information leakage regardless of the
DP-SGD training. In this section, we formulate the
problem of training a DP BERT model on medical
text, and explain the process of constructing a dif-
ferentially private vocabulary. We then discuss the
importance of parallel training and very large batch
sizes in training such large language models, and
provide a method for sufficiently increasing such
crucial parameters.

3.1 Problem Formulation
We choose to focus our DP training on entity extrac-
tion (EE) tasks from medical text, specifically clini-
cal notes. Clinical notes include medically relevant
information regarding patients’ conditions, and are
often used as training data for downstream machine
learning tasks (Esteva et al., 2019). However, they
can contain private information that might put pa-
tients at risk (Feder et al., 2020; Hartman et al.,
2020). For this reason, language models trained on
such datasets must be able to learn domain-relevant
information (such as medical jargon and doctors’
writing style) without memorizing private informa-
tion (Lee et al., 2020).

To test our ability to train a DP language model
on clinical notes, we use a BERT model (Devlin
et al., 2019) with specialization to the medical do-
main. To this end, the public Wikipedia and Book-
Corpus datasets (Zhu et al., 2015) used to train
BERT were amended with the Medical Informa-
tion Mart for Intensive Care III corpus (Johnson
et al., 2016, MIMIC-III) in order to improve per-
formance on medical tasks.

Before introducing changes designed to guaran-
tee privacy, let us review the procedure used to
obtain the Medical BERT model. The available
resources are the 3 billion word Wikipedia + Book-
Corpus datasets, and the 712M word MIMIC-III
corpus. The training process consists of the follow-
ing three steps:

(i) Build the vocabulary from the MIMIC-III cor-
pus.

(ii) Train BERT from scratch on the Wikipedia +
BookCorpus using the new vocabulary.

(iii) Continue BERT’s training on the MIMIC-III
corpus.



1181

The steps that are susceptible to leaking MIMIC-
III data are the first, and the third. Therefore, by
the composability property of differential privacy
(Dwork et al., 2014, Theorem 3.16), our problem
reduces to providing algorithms with satisfactory
DP guarantees for steps (i) and (iii) without causing
a significant performance loss. We discuss these
problems in detail in the following two subsections.

3.2 Constructing a differentially private
vocabulary

Transformer-based models commonly tokenize in-
puts into sub-words using the WordPiece algorithm.
The WordPiece algorithm (Wu et al., 2016a) is a
general method for improving the generalization
properties of a language model by tokenizing based
on the most frequent combination of symbols rather
than words. While its efficacy is undisputed, it can
leak private information by memorizing certain to-
kens in the training data. To prevent such leakage,
we modify this algorithm to satisfy DP. We do so
by introducing noise to the word histogram used in
its training process.

The WordPiece algorithm starts with construct-
ing the word histogram of the corpus. This his-
togram is then manipulated to obtain the Word-
Piece output vocabulary through an iterative pro-
cess which forms sub-words according to their like-
lihood. Since DP is robust to post-processing, mak-
ing the input histogram DP is sufficient to guarantee
a DP end-result vocabulary (Dwork et al., 2006).
Our DP WordPiece algorithm therefore adds noise
to the histogram with given privacy parameters and
then applies the standard WordPiece algorithm.

There exist techniques to generate histograms
with differential privacy, e.g. Korolova et al. (2009)
and (Bun et al., 2019). The situation encountered in
language models is slightly different, since we wish
to protect not the privacy of a single word in the
histogram, but of a larger entity such as an example
spanning many words. In this work we guarantee
differential privacy at the level of a single training
example, N = 256 words, to be consistent with
the differential privacy guarantee by the training
process itself.

Given a textual dataset over the set of words X,
we partition the dataset into a sequence D of N-
word tuples. For each tuple v, we define its word
histogram fv : X → R as:

fv(x) =

{
1, if x ∈ Supp(v)
0, otherwise

Note that this is not exactly the word histogram
of the text, since each distinct word is counted
exactly once, regardless of the number of times
it appeared in the tuple. This heuristic is useful
to get a better DP bound and describe below. It
can possibly reduce utility and somewhat change
the vocab obtained, since it is not the exact word
histogram.

We use fv to construct an (ε, δ)-DP histogram h
using the procedure described next. One should
also note that the construction holds for a general
fv, not necessarily the one defined above.

Given a collection of datasets D, where each
dataset D ∈ D is a sequence of tuples in XN , a
function f : XN → RX , and some constants C,σ >
0, we define a randomized function h : D → RX

by the following process:

1. Set h′(D) =
∑

v∈D
f (v).

2. For all coordinates x ∈ Supp(h′) add Gaussian
noise N (0,σ2) to the x coordinate in h′(D).

3. Clip h′ as follows to get h:

h(D) =

{
h′(D), for h′(D) ≥ C
0, otherwise

Now, using the above definitions, we can prove
that our newly modified WordPiece algorithm is
indeed differentially private. Specifically, the fol-
lowing theorem holds:

Theorem 1. With the notations above, let k, m, δ >
0, ε = k

σ

√
2 log (2.5/δ) and C = m + σ erf–1(1 –

δ/2N).
Then, if ‖f (v)‖2 < k, ‖f (v)‖∞ < m, and

supp(f (v)) ⊂ supp(v) hold for all v ∈ XN , then
h is (ε, δ)-DP.

Proof. Given two neighboring datasets D, D′ = D∪
{v} where v ∈ XN . We divide the coordinates of v
into two sets:

For elements in the vector v which already ap-
pear somewhere in D, the construction of h′ is
just the Gaussian mechanism because the L2-norm
bound on f , which is (ε, δ/2)-DP as shown in
(Dwork et al., 2014). Therefore h is also (ε, δ/2)-DP,
as post processing of h′.

If x is an element of X that appears in v but not
in D, then h′(D)(x) = 0 and

h′(D′)(x) = f (v)(x) +N (0,σ2) < m +N (0,σ)
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Where in the last inequality we used the bound on
‖f (v)‖∞. This will be clipped unless h′(D′)(x) >
C = m+σ erf–1(1–δ/2N) the probability of which is
smaller then Pr[N (0,σ2) > erf–1(1–δ/2N)] = δ/2N.
By the requirement on the support of f , there are at
most N such coordinates x, so by the union bound
we get a non-zero with probability < δ/2. Which
makes this part (0, δ/2)-DP.

So, summing up the contribution of both parts
we get (ε, δ)-differential privacy.

We apply the theorem with m = 1 as f is at
most 1 in all coordinates, and with k =

√
N, as

the maximal L2-norm is obtained for tuples of N-
distinct words and ‖(1, . . . , 1)‖2 =

√
N. In this

work we used N = 256.

Corollary 1. Let σ > 0, 0 < δ < 1.25e–3/2, and
let C = 1 + σ erf–1(1 – δ/N). Then, the above
procedure yields an (ε, δ)-DP histogram h, with
ε =

√
N
σ

√
2 log (1.25/δ).

The theorem proves the corollary with slightly
worse bounds: C = 1 + σ erf–1(1 – δ/2N) and
ε =

√
N
σ

√
2 log (2.5/δ). For the proof of the corol-

lary as stated, which allows us to decrease ε and
therefore improve the privacy guarantee, Appendix
B.

Parameters for learning a DP-vocabulary In
this work we used corollary 1 with N = 256 and
required δ = 10–9. We added a noise with σ = 200,
as in the corollary we used C = 982.5 and ob-
tained ε = 0.517 (denoted as εV in Section 5). We
applied WordPiece on the DP-histogram, the result-
ing vocabulary had 20, 855 WordPieces, compared
to 29, 157 when WordPiece was applied to the orig-
inal histogram.

3.3 Training a differentially private BERT

Equipped with a DP trained vocabulary, we can
now train our language model. To train a differ-
entially private contextual embedding model (i.e.
BERT), we use the DP-SGD method supplied by
the TF privacy toolbox (see Section 2.1). The pa-
rameters of the algorithm are the number of steps,
batch-size B, `2-norm-clip C, and the noise mul-
tiplier σ. To fix notation, we formally define the
DP-SGD step, as defined in Abadi et al. (2016b, Al-
gorithm 1). Given the per-example gradients of the
loss function g1, . . . , gB, the gradient g̃ for passing

to apply_gradients is defined by:

gi = gi/ max(1, ‖gi‖2/C), for all i; (1)

g̃ =
1
B

(∑
i

gi +N (0,σ2C2I)

)
. (2)

The most important parameter of the algorithm
is the noise multiplier σ – increasing σ directly
decreases ε; i.e., increases the differential-privacy
guarantee of the algorithm. On the other hand, it
harms performance on the target data-set, and thus
a careful choice of σ is necessary to balance the
trade-off between privacy and performance. We
choose the noise σ to be proportional to the square
root of the batch size B. This is done in order to
make the privacy guarantee oblivious to changes in
the batch size B (as one can observe from Eq. (2)).
The privacy guarantee is also affected by the num-
ber of training steps (or epochs), but this behavior
is more gradual since ε increases near-linearly in
the range of interest. In our experience, the clip
level C is of lesser importance and we fix it to be
0.01.

For any choice of parameters, we upper bound
the privacy parameter ε using the TF privacy
toolbox compute_dp_sgd_privacy function,
where we also use the number of MIMIC examples
N = 83M. We fix privacy δ to be 10–8, which is
smaller than 1/N.

The effect of parallelism. In order to make the
training run faster, we use TPUs1 to parallelize
training by splitting example batches to shards.
This mechanism is readily available through Ten-
sorflow (TF; Abadi et al., 2016a), but its effect
has to be taken into account when computing the
bounds on ε.

In order to understand this effect, let us first
review the way we incorporate TF privacy into
the BERT training procedure. The change
consists of changing the loss computation code
to compute the vector loss (per-example loss),
and of wrapping the existing Adam weight
decay optimizer (Kingma and Ba, 2015), our
optimizer of choice, by the DP optimizer using
the make_gaussian_optimizer_class
method.

The subtle point lies in the second change,
as the optimization is also wrapped by
CrossShardOptimizer which handles

1https://cloud.google.com/tpu/docs/
tpus.

https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
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the sharded batching. Let B denote the unsharded
batch size, and P denote the number of parallel
shards. For each batch, the examples are split
between P independent instances of the TF privacy
optimizer, each handling B/P examples. For each
shard, the gradients are clipped, averaged and
noise is added by equations Eqs. (1) and (2).
Subsequently, the CrossShardOptimizer
averages the P shard gradients to obtain the single
gradient to be passed to apply_gradients.

Therefore, denoting the i-th gradient of shard j by
gi,j, the gradient passed to apply_gradients
can be written as follows:

g̃ =
1
P

∑
j

[
1

B/P

(∑
i

gi,j +N (0,σ2C2I)

)]

=
1
B

∑
i,j

gi,j +N (0, Pσ2C2I)

 . (3)

This implies that using noise multiplier σ with P
shards is equivalent to an unsharded training with
noise multiplier σ

√
P. As computing an upper

bound on ε through TF privacy does not take paral-
lelism into account, one must use σ

√
P as the noise

multiplier in order to get the correct result.

Achieving larger batch sizes. As it quickly be-
came apparent, to successfully train a large trans-
former with DP-SGD, larger batch sizes are re-
quired. However, usually batch size cannot in-
crease beyond a certain point because of mem-
ory considerations and limitation on the number of
available TPUs. With the resources available to us,
for example, we couldn’t get beyond parallelism of
P = 256 with sharded batch size of 32, achieving
total batch size B = 8192.

We chose to solve this problem by spreading the
batch in time, so apply_gradients is called
only once every T batches with the total average
gradient. This is equivalent to increasing both P
and B by a factor of T . With this method, the only
limit on T is processing time. From our experience,
the value of T = 32 is a reasonable choice, achiev-
ing parallelism of P = 256 · 32 and total batch size
B of 128k with the above parameters.

We briefly remark upon the implementation of
this mechanism. For every trainable variable, we
created a variable with /grad_acc suffix added
to the original name. For each step, the train_op
either accumulates the current gradients in the

new variables, or zeros the accumulator and calls
apply_gradients, depending on the current
step modulo T .

4 Experimental Setup

We design our experiments to demonstrate the abil-
ity of the DP training scheme to achieve similar
results to the non-DP training scheme on the same
data. We focus on the medical domain as it has
strict privacy requirements and its language is dis-
tinct enough so that additional pre-training should
be useful. We start by describing the data used
for the DP training and relevant implementation
details. We then present the entity extraction task
used for the supervised task training and evaluation.
Finally, we discuss the relevant baselines, chosen to
demonstrate the efficacy of the DP training scheme.

Pre-training data. For the DP pre-training, we
supplement the original training data used in Devlin
et al. (2019) with the MIMIC-III dataset, a com-
monly used collection of medical information that
contains more than 2 million distinct notes (John-
son et al., 2016; Alsentzer et al., 2019). MIMIC-III
covers 38,597 distinct adult patients and 49,785
hospital admissions between 2001 and 2012. The
clinical notes in this dataset are widely used by
NLP researchers for a variety of clinically-related
tasks (Feder et al., 2020; Hartman et al., 2020), and
were previously used for pre-training BERT mod-
els specifically for the medical domain (Alsentzer
et al., 2019).

Using the combined dataset, we train our DP-
BERT model using the training scheme described
in Section 3.

Entity-extraction task. For the supervised task
training, we used two datasets from the i2b2 Na-
tional Center for Biomedical Computing for the
NLP Shared Tasks Challenges: i2b2-2010 and i2b2-
2011 (Uzuner et al., 2011). These datasets contain
clinical notes tagged for concepts, assertions, and
relations (i2b2-2010 - 170 clinical notes, i2b2-2011
- 424 clinical notes). In this task, patient reports
are labeled with three concepts: test, treatment,
and problem. The total number of entities in each
category can be seen in Table 1.

The i2b2-2011 data is split to training (251 notes)
and test (173 notes) sets. On i2b2-2010, we per-
form 5-fold cross validation where each fold has
random training (136 notes) and test (34 notes) sets.
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Concept i2b2-2010 i2b2-2011
Problem 7, 073 11, 924

Test 4, 608 8, 071
Treatment 4, 844 8, 328

Table 1: Number of Concept entities included in the
i2b2 2010 and 2011 datasets, for each type of Concept
(Problem, Test and Treatment).

Baselines. We compare our differentially private
BERT model, denoted as BERT-DP, to several non
private baselines:
BERT (Wikipedia + Books) We train a BERT-

large model, as in Devlin et al. (2019), using
the default hyperparameters.

BERT-M (Wikipedia + Books + MIMIC-III)
We supplement the original training from
Devlin et al. (2019) with the MIMIC-III
clinical notes corpus. In addition, we also
use a (non-differentially private) WordPiece
vocabulary generated from MIMIC-III.

BioBERT We use the training data presented in
Lee et al. (2020), and use it to train BERT. We
tested version v1.1 which it trained using the
original dataset + 1M PubMed abstracts.

In Section 5 we compare several differentially
private models, discuss their differences and high-
light the effect of certain parameters (as discussed
in Section 3) on the EE task performance.

5 Results

In this section we empirically evaluate the trade-
offs between a model’s privacy and its usefulness.
Previously, in Section 3, we have shown how to pre-
train a contextual embedding model such as BERT
with any, possibly substantial, privacy guarantee.
We naturally expect that a stronger privacy guaran-
tee would entail that less information is preserved
during pre-training, which in turn would degrade
performance on downstream tasks. Thus, we aim
to ascertain the exact trade-off between these two
goals in order to be able to choose a model that has
both good performance and a satisfactory privacy
guarantee.

We provide two sets of experiments to help bet-
ter understand this trade-off as well as to provide
practitioners with tools to understand the effects
of DP pre-training. First, we use the pre-trained
DP model and fine-tune it on the entity extraction
task on both i2b2-2010 and i2b2-2011, demonstrat-
ing the ability of the differentially private language

model to benefit from the pre-training step. Then,
we test the ability of the model to memorize private
information and show that it is protected against
commonly used privacy attacks. Aggregating both
results, we argue that medically-relevant informa-
tion is preserved in the DP model all the while
private information is not revealed.

For all our model variants, unless explicitly
stated otherwise, the parameters are as discussed
in Section 3, with batch size B = 128k, noise multi-
plier σ = 2.72, and 1M training steps.

5.1 Preserving Useful Information
For our first experiment, we pre-trained a DP BERT
model, and then fine-tuned it on an EE task over
the i2b2-2010 and i2b2-2011 datasets. We summa-
rize our results in Table 2. As can be seen in the
table, the additional pre-training either on MIMIC-
III (BERT-M) or on PubMed (BioBERT) gives a
significant boost in performance over the off-the-
shelf BERT, increasing F1 performance from 76.3
to 86.8 on i2b2-2010 and from 77.6 to 83.6 on i2b2-
2011. Importantly, we observe that adding differen-
tial privacy guaranties, using the hyperparameters
and training procedure discussed in Section 3, de-
grades performance only slightly. Still, as expected,
F1 performance decreases as privacy guaranties im-
prove (ε gets smaller), decreasing by 0.8 and 0.5 (in
absolute terms) in F1 performance on i2b2-2010
and i2b2-2011, respectively. Indeed, the BERT-DP
with the smallest epsilon (εV + εT = 1.1) improves
performance by 7.4 on i2b2-2010 and 3.5 on i2b2-
2011 (in absolute terms).

Model εV εT i2b2-2010 i2b2-2011
BERT ∞ ∞ 76.3 77.6

BERT-M ∞ ∞ 86.8 83.6
BioBERT ∞ ∞ 86.5 –
BERT-DP 0.51 2.8 84.5 81.7
BERT-DP 0.51 0.6 83.7 81.2

Table 2: Results on the Medical Entity Extraction task
on both the i2b2-2010 and i2b2-2011 datasets. ε = ∞
denotes no differential privacy guarantee. BERT-DP
with the best privacy guarantee (ε = 1.1) highlighted in
bold.

In addition, in Fig. 1 we evaluate the change in
the DP-SGD ε = εT and in the F1 score of the
downstream task as a function of the batch size, the
noise multiplier σ, and the number of pre-training
epochs. The behavior in all three parameters is as
expected. Specifically, increasing σ enables more
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Figure 1: Top to bottom - DP-SGD privacy parameter ε (red) and test F1 score on the i2b2-2010 EE task (blue), as
a function of: noise multiplier σ; number of pre-training epochs; pre-training batch size.

privacy (lower ε), but worsens performance. Sim-
ilarly, with more pre-training epochs, the model
gathers more information about the training data,
and so obtain better F1 score but worse privacy
preservation (higher ε). When increasing the batch
size without modifying the noise multiplier σ pro-
portionally, both ε and the F1 increase. To summa-
rize, based on the results in Fig. 1, we recommend
practitioners interested in generating DP models to
opt for very large batch sizes and train for as many
epochs as their target ε allows them.

5.2 Forgetting Private Information

For our second batch of experiments, we follow
Carlini et al. (2019) to test the model’s ability
to memorize private information. We inject the
MIMIC-III data set with “canaries”, where canary
Ck,p is a length k sequence of random word pieces
that is injected into a random location for each train-
ing example with probability p. For each canary,
one word piece is regarded as the secret, while the
others as hints. We evaluate a model trained on the
injected MIMIC-III data set on the same training
examples while masking the secret and using the

masked language model task to evaluate the true
secret rank. We measure how well the model mem-
orizes the secret by the exposure metric defined as
log2(|vocab|) – log2(average secret rank).

We tested the HS, HSH, and HHSHH canary
hint/secret patterns for different values of p on a
DP model and a non-DP model. As can be seen
from Fig. 2, even when the secret appears as much
as 100K times in the data, the DP model performs
significantly better than the non-DP model. This
suggests that the model learns through information
that helps it generalize rather than memorize the
dataset in its entirety, which includes private and
personal information as well.

6 Discussion and Future Work

In this paper, we have shown a procedure for learn-
ing and evaluating a differentially-private contex-
tual language model. We have defined the prob-
lem of learning such a model with end-to-end pri-
vacy guarantees and have discussed the pitfalls that
might lead to poor downstream performance. Al-
lowing for vocabulary modifications, we have in-
troduced a novel WordPiece algorithm and proved
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Figure 2: Secret exposure as a function of the number of secret occurrences. Black lines denote models with DP
ε = 1, red lines models without DP ε =∞. bs denotes batch size, step denotes step size and HHSHH/HSH/HS the
hint pattern used.

that it is differentially-private. Then, to overcome
the difficulties associated with learning DP contex-
tual language models, we have offered practical
measures for circumventing them, most notably
through vastly increasing batch sizes. Finally, to
increase the trust of the DP trained contextual lan-
guage model, we have utilized a secret sharer eval-
uation test and showed that our trained language
model does not memorize private information.

While these results are definitely encouraging,
more research is needed. Our results are confined
to the medical domain, where privacy needs are per-
haps most stringent. Showing the efficacy of this
training and evaluation pipeline on other domains
would certainly increase the trust in it. Addition-
ally, we have not fully explored potentially tighter
bounds on our DP WordPiece algorithm. In future
work, we plan to provide more theoretical and em-
pirical support for end-to-end privacy guarantees.

Finally, the observed performance gain due to
the vocabulary training presents an interesting ques-
tion for the larger NLP community. Understanding
the importance of vocabulary vs. linguistic style
when performing additional pre-training could im-
prove the domain adaptation capabilities of existing
NLP systems. In future work, we plan to expand
our DP training to additional domains, allowing
us to test the power of vocabulary modifications
via the DP WordPiece training in increasing across
domain performance.
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A A short introduction to differential
privacy.

The results in this section are standard in differen-
tial privacy (DP), and will be stated without proofs,
for more details and proofs consult e.g. Dwork
et al., 2006; Dwork, 2011; Dwork et al., 2014).

A.1 Definition of DP
Suppose we have a dataset which holds private in-
formation about individuals. We wish to obtain
some information about the dataset, for example
descriptive statistics without revealing private in-
formation about the individuals.

Not revealing private information is informal,
DP formalizes this concept by requiring that adding
or removing any individual from a dataset, will
not change significantly any probability computed
from the information provided. The word "prob-
ability" suggests that DP makes sense only in the
framework of randomized algorithms, that is why
typically in DP one adds noise to the algorithms.
The formal definition of DP goes as follows:

Definition 2 (ε-DP). Given ε > 0, we say that the
randomized algorithm A has ε-DP, if for any two
datasets D, D′ differing in a single element and for
all S ⊆ Range(A), we have:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S].

In other words, the ratio between the probabil-
ities to obtain some result with or without the in-
dividual, is bounded by a small factor. This defini-
tion is sometimes too strict, because the condition
needs to be satisfied even on very rare events. Most
DP papers, including this one, works with an ap-
proximate DP definition which allows the above
definition to fail with small probability δ, more
formally:

Definition 3 ((ε, δ)-DP). Given ε, δ > 0, we say
that the randomized algorithm A has (ε, δ)-DP, if
for any two datasets D, D′ differing in a single
element and for all S ⊆ Range(A), we have:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

Typically δ is taken smaller than 1/dataset-size,
to avoid failures of the definition.

A.2 Example: counting with DP.
Suppose we have a group D of people and we wish
find how many of them has a disease, we define
p(x) = 1 if the person x has the disease and p(x) = 0
otherwise.

One method is to release the count directly:

A(D) =
∑
x∈D

p(x)

This method is not DP. Indeed, suppose A(D) = N,
or Pr[A(D) = N] = 1. Let D′ be obtained by adding
a person with the disease to D, then A(D′) = N + 1,
or or Pr[A(D) = N] = 0. Hence for any ε > 0:

1 = Pr[A(D) ∈ {N}] > eε Pr[A(D′) ∈ {N}] = 0

And the DP definition is not satisfied.
To obtain a DP version of this count, we can

use the Laplace mechanism. Consider the Laplace
distribution with density function: Lapb(x) =
1

2bexp( |x|
b ) We can add noise to the above algorithm

making it ε-DP as follows:

A′(D) = A(D) + Lap1/ε(x) =
∑
x∈D

p(x) + Lap1/ε(x)

Indeed for all D, D′, x and since |A(D)–A(D′)| ≤
1:

Pr[A′(D) = x]
Pr[A′(D′) = x]

=
Pr[A(D) + Lap1/ε+ = x]
Pr[A(D′) + Lap1/ε = x]

=

=
ε
2exp(ε|x – A(D)|)
ε
2exp(ε|x – A(D′)|

=

= exp(ε(|x – A(D)| – |x – A(D′)|)) < exp(ε)

A.3 Useful properties of DP.
DP is robust to post processing, in other words any
process applied to the result of a DP algorithm is
still DP. Formally:

Theorem 2. LetA be (ε, δ)-DP algorithm and let f
be any (possibly randomized) function on the range
of A, then the composition f ◦ A is also (ε, δ)-DP.

For example, in this work we used the robustness
to post processing when we stated that clipping the
result of the histogram was still DP, because the
original histogram was DP.

Suppose we apply multiple DP algorithms to
the dataset. Can we still say something about the
privacy loss in this case? DP behaves nicely with
respect to composition:



1189

Theorem 3. Suppose A1 . . .Ak are all (ε, δ)-DP,
then an adaptive composition of them is (kε, kδ)-
DP.

Adaptive in the above definition means that the
algorithm Ai can make choices based on the out-
comes of A1, . . .Ai–1.

For example, in this work we used the composi-
tion theorem when took a DP-algorithm to compute
the vocab and a separated DP algorithm to train the
model, claiming that the entire process is DP.

There are more advanced composition theorem
for DP, but these are beyond the scope of this intro-
duction.

B A tighter bound on the differential
privacy of the vocab.

In the main text, we proved a theorem about differ-
ential privacy (DP) of histograms. In the proof we
bounded separately the contributions of new words
by an example, and already existing words. Here
we will provide stricter analysis for the case we
used in this paper, by bounding both contributions
together.

Given a textual dataset over the set of words X,
partition the dataset into a sequence D of N-word
tuples. For each tuple v, define its word histogram
fv : X → R as:

fv(x) =

{
1, if x ∈ Supp(v)
0, otherwise

Let D denote a set of possible dataset of N-tuples.
Construct h : D → RX as follows:

1. Set h′(D)(x) =
∑

v∈D
fv(x).

2. For all coordinates x ∈ Supp(h′) add Gaussian
noise N (0,σ2) to the x coordinate in h′(D).

3. Clip h′ as follows to get h:

h(D) =

{
h′(D), for h′(D) ≥ C
0, otherwise

Then we have:

Corollary 2. Let σ > 0, 0 < δ < 1.25e–3/2, and
let C = 1 + σ erf–1(1 – δ/N). Then, the above
procedure yields an (ε, δ)-DP histogram h, with
ε =

√
N
σ

√
2 log (1.25/δ).

Proof. Let D, D′ = D ∪ {v} ∈ D. We note
that if there are ` elements x1, . . . x` ∈ X in
Supp(v) which are not in Supp(D), then when we
restrict fv to Supp(D), its norm can be bounded
by ‖fv|X–{x1...x`}(x)‖2 ≤ N – `, where equality is
achieved when the support of the restriction is a
single element.

By (Dwork et al., 2014) We can therefore ob-
tain (ε, ∆1(`))-DP for the restriction to supp(D)
with ε = N–`

σ

√
2 log (1.25/∆1(`)) or ∆1(`) =

1.25exp(–1
2 ( εσN–` )2).

Hence:

∆1(`) = 1.25(δ/1.25)( N
N–` )2

For each xi the probability to get non-zero count
is smaller then δ/N. Therefore the part outside
supp(D) is (0, ∆2(`)-DP with

∆2(`) = δ`/N

by the union bound.
Therefore, for any 0 ≤ ` ≤ N, we can bound the

δ-term by:

∆(`) = ∆1(`) + ∆2(`) = 1.25(δ/1.25)( N
N–` )2

+ δ`/N

To simplify notations we denote y = N–`
N , in order

to prove (ε, δ)-DP, it is enough to show that ∆(y) ≤
δ for all 0 < y ≤ 1, we have:

∆(y) = 1.25(δ/1.25)
1

x2 + δ(1 – x)

Taking the derivative:

∆′(y) =
5( δ

1.25 )1/y2
ln(1.25/δ)

2y3 – δ

And the second derivative:

∆′′(y) =
5( δ

1.25 )1/y2
ln(1.25/δ)(3y2 + 2ln(δ/1.25))

2y6

If δ < 1.25e–3/2, we have ∆′′(y) > 0 for 0 <
y ≤ 1, we can also see that ∆(y = 1) = δ and
lim

y→0+
∆(y) = δ, therefore ∆(y) ≤ δ for 0 < y ≤ 1,

and we proved (ε, δ)-DP.


